1
|
Pitton M, Valente LG, Oberhaensli S, Gözel B, Jakob SM, Sendi P, Fürholz M, Cameron DR, Que YA. Targeting Chronic Biofilm Infections With Patient-derived Phages: An In Vitro and Ex Vivo Proof-of-concept Study in Patients With Left Ventricular Assist Devices. Open Forum Infect Dis 2025; 12:ofaf158. [PMID: 40182131 PMCID: PMC11966103 DOI: 10.1093/ofid/ofaf158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Background Phage therapy is being reconsidered as a valuable approach to combat antimicrobial resistance. We recently established a personalized phage therapy pipeline in healthy volunteers, where therapeutic phages were isolated from individuals' skin microbiota. In this study, we aim to validate this pipeline in end-stage heart failure patients supported by left ventricular assist devices (LVADs), focusing on phages targeting Staphylococcus epidermidis, a common pathogen responsible for LVAD infections. Methods Over a 2.5-year period, 45 LVAD patients were consistently sampled at their driveline exit sites and foreheads. S epidermidis strains from patients' foreheads were used to amplify patient-specific phages. Newly isolated phages were characterized and tested against S epidermidis isolates (n = 42) from the patient cohort. The virulent phage vB_SepS_BE22, isolated from a patient with a driveline infection, was further tested for its bactericidal activity against S epidermidis biofilms ex vivo with rifampicin on driveline biofilms. Results S epidermidis was detected in 32 patients, 3 of whom had driveline infections. Phages were isolated from 8 patients, 6 of which were unique and exhibited narrow host ranges, infecting 19%-52% of S epidermidis strains. vB_SepS_BE22, isolated from patient ID25's microbiota, was the only phage that specifically killed S epidermidis clones linked to a patient's infection. vB_SepS_BE22 also reduced bacterial loads in exponential and stationary phase cultures, as well as in biofilms on drivelines when combined with rifampicin. Conclusions This study validated a personalized phage therapy approach, where phages from a patient's own microbiota can be used in chronic infection settings as therapeutic agents.
Collapse
Affiliation(s)
- Melissa Pitton
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Luca G Valente
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bülent Gözel
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Monika Fürholz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David R Cameron
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Duarte AC, Fernández L, Rodríguez A, García P. A new bacteriophage infecting Staphylococcus epidermidis with potential for removing biofilms by combination with chimeric lysin CHAPSH3b and vancomycin. mSphere 2025; 10:e0101424. [PMID: 39982075 PMCID: PMC11934314 DOI: 10.1128/msphere.01014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Staphylococcus epidermidis is the cause of serious skin and prosthetic joint infections despite being a common inhabitant of human body surfaces. However, both the rise in antibiotic resistance in this species and its ability to form biofilms are increasingly limiting the available therapeutic options against these illnesses. In this landscape, phage therapy stands out as an interesting alternative to antibiotics. In the present study, we report the isolation and characterization of a novel virulent phage infecting S. epidermidis (Staphylococcus phage IPLA-AICAT), which belongs to the Herelleviridae family. The estimated genome size of this virus is 139,941 bp, and sequence analysis demonstrated the absence of antibiotic resistance genes and virulence factors. This phage infects a high proportion (79%) of clinically relevant S. epidermidis strains and exhibits antibiofilm activity. Moreover, a combination of this phage with other antimicrobials, i.e., vancomycin and the lytic protein CHAPSH3b, further improved the reduction in surface-attached bacteria. Notably, the combination of Staphylococcus phage IPLA-AICAT (109 PFU/mL) and CHAPSH3b (8 µM), originally designed to target Staphylococcus aureus, was able to reduce the number of viable cells by 3.06 log units in 5-h-old biofilms. In 24-h-old biofilms, the reduction was also significant after 6 h of treatment (2.06 log units) and 24 h of treatment (2.52 log units). These results confirm our previous data regarding the potential of phage-lysin mixtures against staphylococcal biofilms.IMPORTANCEStaphylococcus epidermidis is one of the main causes to device-associated infections mostly due to its ability to form stable biofilms attached to human tissues. Besides the inherent antimicrobial tolerance of biofilms, this microorganism is also increasingly becoming resistant to standard-of-care antibiotics. To fight against this problem, phage therapy is a viable option to complement the available antibiotics in the treatment of recalcitrant infections. This work describes a new phage infecting S. epidermidis clinical strains that is a member of the Herelleviridae family and the combination with other antimicrobials to further improve the reduction of biofilms. Together with the significant progress achieved in the development of diagnostic tools, phages and their derived proteins will bring us much closer to a therapeutic landscape in which we are not so heavily reliant on antibiotics to combat bacterial pathogens.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Oviedo, Asturias, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
3
|
Lopes MS, Silva MD, Azeredo J, Melo LDR. Coagulase-Negative Staphylococci phages panorama: Genomic diversity and in vitro studies for a therapeutic use. Microbiol Res 2025; 290:127944. [PMID: 39550872 DOI: 10.1016/j.micres.2024.127944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Coagulase-negative staphylococci (CoNS) are commensal bacteria of the human skin and mucosal membranes. The incidence of nosocomial infections caused by these species is on the rise, leading to a potential increase in antibiotic tolerance and resistance. Phages are emerging as a promising alternative to combat CoNS infections. Scientists are isolating phages infecting CoNS with a particular interest in S. epidermidis. This review compiles and analyses CoNS phages for several parameters including source, geographical location, host species, morphological diversity, and genomic diversity. Additionally, recent studies have highlighted the potential of these phages based on host range, in vitro evaluation of performance and stability, and interaction with biofilms. This comprehensive analysis enables a better understanding of the steps involved in using these phages for therapeutic purposes.
Collapse
Affiliation(s)
- Maria Sequeira Lopes
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Maria Daniela Silva
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
4
|
Pye HV, Krishnamurthi R, Cook R, Adriaenssens EM. Phage diversity in One Health. Essays Biochem 2024; 68:607-619. [PMID: 39475220 PMCID: PMC12055037 DOI: 10.1042/ebc20240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
One Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity. Our review shows that 98% of phages applied in One Health belong to the class Caudoviricetes, compared to 85% of sequenced phages belonging to this class. Only three RNA phages from the realm Riboviria have been used in environmental biocontrol and human therapy to date. This emphasises the lack in diversity of phages used commercially and for phage therapy, which may be due to biases in the methods used to both isolate phages and select them for applications. The future of phages as biocontrol agents and therapeutics will depend on the ability to isolate genetically novel dsDNA phages, as well as in improving efforts to isolate ssDNA and RNA phages, as their potential is currently undervalued. Phages have the potential to reduce the burden of antimicrobial resistance, however, we are underutilising the vast diversity of phages present in nature. More research into phage genomics and alternative culture methods is required to fully understand the complex relationships between phages, their hosts, and other organisms in the environment to achieve optimal health for all.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Revathy Krishnamurthi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Evelien M Adriaenssens
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| |
Collapse
|
5
|
Kolenda C, Bonhomme M, Medina M, Pouilly M, Rousseau C, Troesch E, Martins-Simoes P, Stegger M, Verhoeven PO, Laumay F, Laurent F. Potential of training of anti- Staphylococcus aureus therapeutic phages against Staphylococcus epidermidis multidrug-resistant isolates is restricted by inter- and intra-sequence type specificity. mSystems 2024; 9:e0085024. [PMID: 39248470 PMCID: PMC11494967 DOI: 10.1128/msystems.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024] Open
Abstract
Phage therapy appears to be a promising approach to tackle multidrug-resistant bacteria, including staphylococci. However, most anti-staphylococcal phages have been characterized in Staphylococcus aureus, while a limited number of studies investigated phage activity against S. epidermidis. We studied the potential of phage training to extend the host range of two types of anti-S. aureus phages against S. epidermidis isolates. The Appelmans protocol was applied to a mixture of Kayvirus and a mixture of Silviavirus phages repeatedly exposed to seven S. epidermidis strains representative of nosocomial-associated sequence types (ST), including the world-wide disseminated ST2. We observed increased activity only for the Kayvirus mixture against two of these strains (ST2 or ST35). Phage subpopulations isolated from the training mixture using these two strains (five/strain) exhibited different evolved phenotypes, active only against their isolation strain or strains of the same ST. Of note, 16/47 ST2 strains were susceptible to one of the groups of trained phages. A comparative genomic analysis of ancestral and trained phage genomes, conducted to identify potential bacterial determinants of such specific activity, found numerous recombination events between two of the three ancestors. However, a small number of trained phage genes had nucleotide sequence modifications impacting the corresponding protein compared to ancestral phages, two to four of them per phage genome being specific of each group of phage subpopulations exhibiting different host range. The results suggest that anti-S. aureus phages can be adapted to S. epidermidis isolates but with inter- and intra-ST specificity.ImportanceS. epidermidis is increasingly recognized as a threat for public health. Its clinical importance is notably related to multidrug resistance. Phage therapy is one of the most promising alternative therapeutic strategies to antibiotics. Nonetheless, only very few phages active against this bacterial species have been described. In the present study, we showed that phage training can be used to extend the host range of polyvalent Kayvirus phages within the Staphylococcus genera to include S. epidermidis species. In the context of rapid development of phage therapy, in vitro forced adaptation of previously characterized phages could be an appealing alternative to fastidious repeated isolation of new phages to improve the therapeutic potential of a phage collection.
Collapse
Affiliation(s)
- Camille Kolenda
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mélanie Bonhomme
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mathieu Medina
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mateo Pouilly
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Clara Rousseau
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Emma Troesch
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Patricia Martins-Simoes
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Marc Stegger
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul O. Verhoeven
- GIMAP Team, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Faculty of Medicine, Université Jean Monnet St-Etienne, St-Etienne, France
- Department of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne, France
| | - Floriane Laumay
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Laurent
- Service de bactériologie, Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
- Equipe StaPath, CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
- Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Pu F, Zhang N, Pang J, Zeng N, Baloch FB, Li Z, Li B. Deciphering the Genetic Architecture of Staphylococcus warneri Prophage vB_G30_01: A Comprehensive Molecular Analysis. Viruses 2024; 16:1631. [PMID: 39459963 PMCID: PMC11512304 DOI: 10.3390/v16101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The current knowledge of Staphylococcus warneri phages is limited, with few genomes sequenced and characterized. In this study, a prophage, vB_G30_01, isolated from Staphylococcus warneri G30 was characterized and evaluated for its lysogenic host range. The phage was studied using transmission electron microscopy and a host range. The phage genome was sequenced and characterized in depth, including phylogenetic and taxonomic analyses. The linear dsDNA genome of vB_G30_01 contains 67 predicted open reading frames (ORFs), classifying it within Bronfenbrennervirinae. With a total of 10 ORFs involved in DNA replication-related and transcriptional regulator functions, vB_G30_01 may play a role in the genetics and transcription of a host. Additionally, vB_G30_01 possesses a complete set of genes related to host lysogeny and lysis, implying that vB_G30_01 may influence the survival and adaptation of its host. Furthermore, a comparative genomic analysis reveals that vB_G30_01 shares high genomic similarity with other Staphylococcus phages and is relatively closely related to those of Exiguobacterium and Bacillus, which, in combination with the cross-infection assay, suggests possible cross-species infection capabilities. This study enhances the understanding of Staphylococcus warneri prophages, providing insights into phage-host interactions and potential horizontal gene transfer.
Collapse
Affiliation(s)
- Fangxiong Pu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Jiahe Pang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (F.P.); (J.P.)
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| | - Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| | - Zijing Li
- Food Science College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (N.Z.); (F.B.B.)
| |
Collapse
|
7
|
Rafiee M, Tabarraei A, Yazdi M, Ghaemi EA. Isolation of lytic bacteriophages and their relationships with the adherence genes of Staphylococcus saprophyticus. BMC Res Notes 2024; 17:200. [PMID: 39039580 PMCID: PMC11265347 DOI: 10.1186/s13104-024-06864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE This study aimed to introduce a lytic bacteriophage against Staphylococcus saprophyticus from wastewater in Gorgan, northern Iran. RESULTS The vB_SsapS-46 phage was isolated from urban wastewater and formed round and clear plaques on bacterial culture. It was visualized by electron microscopy and had a large head (approximately 106 nm) and a long tail (approximately 150 nm), indicating that it belongs to the Siphoviridae family. The host range of vB_SsapS-46 was determined using a spot test on 35 S. saprophyticus clinical isolates, and it was able to lyse 12 of the 35 clinical isolates (34%). Finally, the relationship between phage sensitivity and adherence genes was assessed, revealing no significant correlation between phage sensitivity and the frequency of adherence genes. The vB_SsapS-46 phage can be used alone or in a mixture in future studies to control urinary tract infections caused by this bacterium, especially in the elimination of drug-resistant pathogens.
Collapse
Affiliation(s)
- Maryam Rafiee
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsa Yazdi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Ezzat Allah Ghaemi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
8
|
Sarkar S, Anyaso-Samuel S, Qiu P, Datta S. Multiblock partial least squares and rank aggregation: Applications to detection of bacteriophages associated with antimicrobial resistance in the presence of potential confounding factors. Stat Med 2024; 43:2527-2546. [PMID: 38618705 DOI: 10.1002/sim.10058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/16/2024]
Abstract
Urban environments, characterized by bustling mass transit systems and high population density, host a complex web of microorganisms that impact microbial interactions. These urban microbiomes, influenced by diverse demographics and constant human movement, are vital for understanding microbial dynamics. We explore urban metagenomics, utilizing an extensive dataset from the Metagenomics & Metadesign of Subways & Urban Biomes (MetaSUB) consortium, and investigate antimicrobial resistance (AMR) patterns. In this pioneering research, we delve into the role of bacteriophages, or "phages"-viruses that prey on bacteria and can facilitate the exchange of antibiotic resistance genes (ARGs) through mechanisms like horizontal gene transfer (HGT). Despite their potential significance, existing literature lacks a consensus on their significance in ARG dissemination. We argue that they are an important consideration. We uncover that environmental variables, such as those on climate, demographics, and landscape, can obscure phage-resistome relationships. We adjust for these potential confounders and clarify these relationships across specific and overall antibiotic classes with precision, identifying several key phages. Leveraging machine learning tools and validating findings through clinical literature, we uncover novel associations, adding valuable insights to our comprehension of AMR development.
Collapse
Affiliation(s)
- Shoumi Sarkar
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | | | - Peihua Qiu
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, Florida
| |
Collapse
|
9
|
Beck C, Krusche J, Elsherbini AMA, Du X, Peschel A. Phage susceptibility determinants of the opportunistic pathogen Staphylococcus epidermidis. Curr Opin Microbiol 2024; 78:102434. [PMID: 38364502 DOI: 10.1016/j.mib.2024.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus epidermidis is a common member of the human skin and nose microbiomes and a frequent cause of invasive infections. Transducing phages accomplish the horizontal transfer of resistance and virulence genes by mispackaging of mobile-genetic elements, contributing to severe, therapy-refractory S. epidermidis infections. Lytic phages on the other hand can be interesting candidates for new anti-S. epidermidis phage therapies. Despite the importance of phages, we are only beginning to unravel S. epidermidis phage interactions. Recent studies shed new light on S. epidermidis phage diversity, host range, and receptor specificities. Modulation of cell wall teichoic acids, the major phage receptor structures, along with other phage defense mechanisms, are crucial determinants for S. epidermidis susceptibility to different phage groups.
Collapse
Affiliation(s)
- Christian Beck
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Janes Krusche
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Ahmed M A Elsherbini
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Xin Du
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Andreas Peschel
- Cluster of Excellence "Controlling Microbes to Fight Infections (CMFI)", University of Tübingen, 72076 Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology, University of Tübingen, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
Zhao X, Sun C, Jin M, Chen J, Xing L, Yan J, Wang H, Liu Z, Chen WH. Enrichment Culture but Not Metagenomic Sequencing Identified a Highly Prevalent Phage Infecting Lactiplantibacillus plantarum in Human Feces. Microbiol Spectr 2023; 11:e0434022. [PMID: 36995238 PMCID: PMC10269749 DOI: 10.1128/spectrum.04340-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human diseases, but its phages in the human gut remain unexplored. Here, we report its first gut phage, Gut-P1, which we systematically screened using metagenomic sequencing, virus-like particle (VLP) sequencing, and enrichment culture from 35 fecal samples. Gut-P1 is virulent, belongs to the Douglaswolinvirus genus, and is highly prevalent in the gut (~11% prevalence); it has a genome of 79,928 bp consisting of 125 protein coding genes and displaying low sequence similarities to public L. plantarum phages. Physiochemical characterization shows that it has a short latent period and adapts to broad ranges of temperatures and pHs. Furthermore, Gut-P1 strongly inhibits the growth of L. plantarum strains at a multiplicity of infection (MOI) of 1e-6. Together, these results indicate that Gut-P1 can greatly impede the application of L. plantarum in humans. Strikingly, Gut-P1 was identified only in the enrichment culture, not in our metagenomic or VLP sequencing data nor in any public human phage databases, indicating the inefficiency of bulk sequencing in recovering low-abundance but highly prevalent phages and pointing to the unexplored hidden diversity of the human gut virome despite recent large-scale sequencing and bioinformatics efforts. IMPORTANCE As Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is increasingly used as a probiotic to treat human gut-related diseases, its bacteriophages may pose a certain threat to their further application and should be identified and characterized more often from the human intestine. Here, we isolated and identified the first gut L. plantarum phage that is prevalent in a Chinese population. This phage, Gut-P1, is virulent and can strongly inhibit the growth of multiple L. plantarum strains at low MOIs. Our results also show that bulk sequencing is inefficient at recovering low-abundance but highly prevalent phages such as Gut-P1, suggesting that the hidden diversity of human enteroviruses has not yet been explored. Our results call for innovative approaches to isolate and identify intestinal phages from the human gut and to rethink our current understanding of the enterovirus, particularly its underestimated diversity and overestimated individual specificity.
Collapse
Affiliation(s)
- Xueyang Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Menglu Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingchao Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Xing
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hailei Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Recent Approaches for Downplaying Antibiotic Resistance: Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5250040. [PMID: 36726844 PMCID: PMC9886476 DOI: 10.1155/2023/5250040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
Antimicrobial resistance (AMR) is a ubiquitous public health menace. AMR emergence causes complications in treating infections contributing to an upsurge in the mortality rate. The epidemic of AMR in sync with a high utilization rate of antimicrobial drugs signifies an alarming situation for the fleet recovery of both animals and humans. The emergence of resistant species calls for new treatments and therapeutics. Current records propose that health drug dependency, veterinary medicine, agricultural application, and vaccination reluctance are the primary etymology of AMR gene emergence and spread. Recently, several encouraging avenues have been presented to contest resistance, such as antivirulent therapy, passive immunization, antimicrobial peptides, vaccines, phage therapy, and botanical and liposomal nanoparticles. Most of these therapies are used as cutting-edge methodologies to downplay antibacterial drugs to subdue the resistance pressure, which is a featured motive of discussion in this review article. AMR can fade away through the potential use of current cutting-edge therapeutics, advancement in antimicrobial susceptibility testing, new diagnostic testing, prompt clinical response, and probing of new pharmacodynamic properties of antimicrobials. It also needs to promote future research on contemporary methods to maintain host homeostasis after infections caused by AMR. Referable to the microbial ability to break resistance, there is a great ultimatum for using not only appropriate and advanced antimicrobial drugs but also other neoteric diverse cutting-edge therapeutics.
Collapse
|
12
|
Tian F, Li J, Li L, Li F, Tong Y. Molecular dissection of the first Staphylococcus cohnii temperate phage IME1354_01. Virus Res 2022; 318:198812. [DOI: 10.1016/j.virusres.2022.198812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
|
13
|
Kwon H, Park SY, Kim MS, Kim SG, Park SC, Kim JH. Characterization of a Lytic Bacteriophage vB_SurP-PSU3 Infecting Staphylococcus ureilyticus and Its Efficacy Against Biofilm. Front Microbiol 2022; 13:925866. [PMID: 35923398 PMCID: PMC9340203 DOI: 10.3389/fmicb.2022.925866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
In response to the increasing nosocomial infections caused by antimicrobial-resistant coagulase-negative staphylococci (CoNS), bacteriophages (phages) have emerged as an alternative to antibiotics. Staphylococcus ureilyticus, one of the representative species of the CoNS, is now considered a notable pathogen that causes nosocomial bloodstream infections, and its biofilm-forming ability increases pathogenicity and resistance to antimicrobial agents. In this study, a lytic phage infecting S. ureilyticus was newly isolated from wastewater collected from a sewage treatment plant and its biological and antimicrobial characteristics are described. The isolated phage, named vB_SurP-PSU3, was morphologically similar to Podoviridae and could simultaneously lyse some S. warneri strains used in this study. The sequenced genome of the phage consisted of linear dsDNA with 18,146 bp and genome-based phylogeny revealed that vB_SurP-PSU3 belonged to the genus Andhravirus. Although its overall genomic arrangement and contents were similar to those of other members of the Andhravirus, the predicted endolysin of vB_SurP-PSU3 distinctly differed from the other members of the genus. The bacteriolytic activity of vB_SurP-PSU3 was evaluated using S. ureilyticus ATCC 49330, and the phage could efficiently inhibit the planktonic growth of the bacteria. Moreover, the anti-biofilm analysis showed that vB_SurP-PSU3 could prevent the formation of bacterial biofilm and degrade the mature biofilm in vitro. In an additional cytotoxicity assay of vB_SurP-PSU3, no significant adverse effects were observed on the tested cell. Based on these findings, the newly isolated phage vB_SurP-PSU3 could be classified as a new member of Andhravirus and could be considered an alternative potential biocontrol agent against S. ureilyticus infections and its biofilm.
Collapse
Affiliation(s)
- Hyemin Kwon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seon Young Park
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Min-Soo Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
14
|
Ferreira R, Sousa C, Gonçalves RFS, Pinheiro AC, Oleastro M, Wagemans J, Lavigne R, Figueiredo C, Azeredo J, Melo LDR. Characterization and Genomic Analysis of a New Phage Infecting Helicobacter pylori. Int J Mol Sci 2022; 23:ijms23147885. [PMID: 35887231 PMCID: PMC9319048 DOI: 10.3390/ijms23147885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori, a significant human gastric pathogen, has been demonstrating increased antibiotic resistance, causing difficulties in infection treatment. It is therefore important to develop alternatives or complementary approaches to antibiotics to tackle H. pylori infections, and (bacterio)phages have proven to be effective antibacterial agents. In this work, prophage isolation was attempted using H. pylori strains and UV radiation. One phage was isolated and further characterized to assess potential phage-inspired therapeutic alternatives to H. pylori infections. HPy1R is a new podovirus prophage with a genome length of 31,162 bp, 37.1% GC, encoding 36 predicted proteins, of which 17 were identified as structural. Phage particles remained stable at 37 °C, from pH 3 to 11, for 24 h in standard assays. Moreover, when submitted to an in vitro gastric digestion model, only a small decrease was observed in the gastric phase, suggesting that it is adapted to the gastric tract environment. Together with its other characteristics, its capability to suppress H. pylori population levels for up to 24 h post-infection at multiplicities of infection of 0.01, 0.1, and 1 suggests that this newly isolated phage is a potential candidate for phage therapy in the absence of strictly lytic phages.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
| | - Cláudia Sousa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel F. S. Gonçalves
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cristina Pinheiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Ceu Figueiredo
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Azeredo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís D. R. Melo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
15
|
Fanaei Pirlar R, Wagemans J, Ponce Benavente L, Lavigne R, Trampuz A, Gonzalez Moreno M. Novel Bacteriophage Specific against Staphylococcus epidermidis and with Antibiofilm Activity. Viruses 2022; 14:1340. [PMID: 35746811 PMCID: PMC9230115 DOI: 10.3390/v14061340] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus epidermidis has emerged as the most important pathogen in infections related to indwelling medical devices, and although these infections are not life-threatening, their frequency and the fact that they are extremely difficult to treat represent a serious burden on the public health system. Treatment is complicated by specific antibiotic resistance genes and the formation of biofilms. Hence, novel therapeutic strategies are needed to fight these infections. A novel bacteriophage CUB-EPI_14 specific to the bacterial species S. epidermidis was isolated from sewage and characterized genomically and phenotypically. Its genome contains a total of 46,098 bp and 63 predicted genes, among which some have been associated with packaging and lysis-associated proteins, structural proteins, or DNA- and metabolism-associated proteins. No lysogeny-associated proteins or known virulence proteins were identified in the phage genome. CUB-EPI_14 showed stability over a wide range of temperatures (from -20 °C to 50 °C) and pH values (pH 3-pH 12) and a narrow host range against S. epidermidis. Potent antimicrobial and antibiofilm activities were observed when the phage was tested against a highly susceptible bacterial isolate. These encouraging results open the door to new therapeutic opportunities in the fight against resilient biofilm-associated infections caused by S. epidermidis.
Collapse
Affiliation(s)
- Rima Fanaei Pirlar
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (R.F.P.); (L.P.B.); (A.T.)
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Jeroen Wagemans
- KU Leuven, Department of Biosystems, Kasteelpark Arenberg 21, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Luis Ponce Benavente
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (R.F.P.); (L.P.B.); (A.T.)
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Rob Lavigne
- KU Leuven, Department of Biosystems, Kasteelpark Arenberg 21, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Andrej Trampuz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (R.F.P.); (L.P.B.); (A.T.)
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Mercedes Gonzalez Moreno
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (R.F.P.); (L.P.B.); (A.T.)
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
16
|
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, Amri N, Khatchatourova E, Coutinho FH, Loessner MJ, Gómez-Sanz E. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 2021; 12:6965. [PMID: 34845206 PMCID: PMC8629997 DOI: 10.1038/s41467-021-27037-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
The host range of bacteriophages defines their impact on bacterial communities and genome diversity. Here, we characterize 94 novel staphylococcal phages from wastewater and establish their host range on a diversified panel of 117 staphylococci from 29 species. Using this high-resolution phage-bacteria interaction matrix, we unveil a multi-species host range as a dominant trait of the isolated staphylococcal phages. Phage genome sequencing shows this pattern to prevail irrespective of taxonomy. Network analysis between phage-infected bacteria reveals that hosts from multiple species, ecosystems, and drug-resistance phenotypes share numerous phages. Lastly, we show that phages throughout this network can package foreign genetic material enclosing an antibiotic resistance marker at various frequencies. Our findings indicate a weak host specialism of the tested phages, and therefore their potential to promote horizontal gene transfer in this environment.
Collapse
Affiliation(s)
- Pauline C. Göller
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Tabea Elsener
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Dominic Lorgé
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Natasa Radulovic
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Viona Bernardi
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annika Naumann
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Nesrine Amri
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Ekaterina Khatchatourova
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Felipe Hernandes Coutinho
- grid.26811.3c0000 0001 0586 4893Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J. Loessner
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland. .,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
17
|
Tetens J, Sprotte S, Thimm G, Wagner N, Brinks E, Neve H, Hölzel CS, Franz CMAP. First Molecular Characterization of Siphoviridae-Like Bacteriophages Infecting Staphylococcus hyicus in a Case of Exudative Epidermitis. Front Microbiol 2021; 12:653501. [PMID: 34305825 PMCID: PMC8299950 DOI: 10.3389/fmicb.2021.653501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/19/2021] [Indexed: 01/20/2023] Open
Abstract
Exudative epidermitis (EE), also known as greasy pig disease, is one of the most frequent skin diseases affecting piglets. Zoonotic infections in human occur. EE is primarily caused by virulent strains of Staphylococcus (S.) hyicus. Generally, antibiotic treatment of this pathogen is prone to decreasing success, due to the incremental development of multiple resistances of bacteria against antibiotics. Once approved, bacteriophages might offer interesting alternatives for environmental sanitation or individualized treatment, subject to the absence of virulence and antimicrobial resistance genes. However, genetic characterization of bacteriophages for S. hyicus has, so far, been missing. Therefore, we investigated a piglet raising farm with a stock problem due to EE. We isolated eleven phages from the environment and wash water of piglets diagnosed with the causative agent of EE, i.e., S. hyicus. The phages were morphologically characterized by electron microscopy, where they appeared Siphoviridae-like. The genomes of two phages were sequenced on a MiSeq instrument (Illumina), resulting in the identification of a new virulent phage, PITT-1 (PMBT8), and a temperate phage, PITT-5 (PMBT9). Sequencing of three host bacteria (S. hyicus) from one single farm revealed the presence of two different strains with genes coding for two different exfoliative toxin genes, i.e., exhA (2 strains) and exhC (1 strain). The exhC-positive S. hyicus strain was only weakly lysed by most lytic phages. The occurrence of different virulent S. hyicus strains in the same outbreak limits the prospects for successful phage treatment and argues for the simultaneous use of multiple and different phages attacking the same host.
Collapse
Affiliation(s)
- Julia Tetens
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
| | - Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Georg Thimm
- Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
| | - Natalia Wagner
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | | | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| |
Collapse
|
18
|
Ferreira R, Amado R, Padrão J, Ferreira V, Dias NM, Melo LDR, Santos SB, Nicolau A. The first sequenced Sphaerotilus natans bacteriophage- characterization and potential to control its filamentous bacterium host. FEMS Microbiol Ecol 2021; 97:6136272. [PMID: 33587121 DOI: 10.1093/femsec/fiab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteriophages (phages) are ubiquitous entities present in every conceivable habitat as a result of their bacterial parasitism. Their prevalence and impact in the ecology of bacterial communities and their ability to control pathogens make their characterization essential, particularly of new phages, improving knowledge and potential application. The isolation and characterization of a new lytic phage against Sphaerotilus natans strain DSM 6575, named vB_SnaP-R1 (SnaR1), is here described. Besides being the first sequenced genome of a Sphaerotilus natans infecting phage, 99% of its 41507 bp genome lacks homology with any other sequenced phage, revealing its uniqueness and previous lack of knowledge. Moreover, SnaR1 is the first Podoviridae phage described infecting this bacterium. Sphaerotilus natans is an important filamentous bacterium due to its deleterious effect on wastewater treatment plants (WWTP) and thus, phages may play a role as novel biotechnological tools against filamentous overgrowth in WWTP. The lytic spectrum of SnaR1 was restricted to its host strain, infecting only one out of three S. natans strains and infection assays revealed its ability to reduce bacterial loads. Results suggest SnaR1 as the prototype of a new phage genus and demonstrates its potential as a non-chemical alternative to reduce S. natans DSM 6575 cells.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Amado
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge Padrão
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vânia Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nicolina M Dias
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sílvio B Santos
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Nicolau
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
19
|
Valente LG, Pitton M, Fürholz M, Oberhaensli S, Bruggmann R, Leib SL, Jakob SM, Resch G, Que YA, Cameron DR. Isolation and characterization of bacteriophages from the human skin microbiome that infect Staphylococcus epidermidis. FEMS MICROBES 2021; 2:xtab003. [PMID: 37334235 PMCID: PMC10117716 DOI: 10.1093/femsmc/xtab003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 07/20/2023] Open
Abstract
Phage therapy might be a useful approach for the treatment of nosocomial infections; however, only few lytic phages suitable for this application are available for the opportunistic pathogen, Staphylococcus epidermidis. In the current study, we developed an efficient method to isolate bacteriophages present within the human skin microbiome, by using niche-specific S. epidermidis as the host for phage propagation. Staphylococcus epidermidis was identified on the forehead of 92% of human subjects tested. These isolates were then used to propagate phages present in the same skin sample. Plaques were observable on bacterial lawns in 46% of the cases where S. epidermidis was isolated. A total of eight phage genomes were genetically characterized, including the previously described phage 456. A total of six phage sequences were unique, and spanned each of the major staphylococcal phage families; Siphoviridae (n = 3), Podoviridae (n = 1) and Myoviridae (n = 2). One of the myoviruses (vB_SepM_BE06) was identified on the skin of three different humans. Comparative analysis identified novel genes including a putative N-acetylmuramoyl-L-alanine amidase gene. The host-range of each unique phage was characterized using a panel of diverse staphylococcal strains (n = 78). None of the newly isolated phages infected more than 52% of the S. epidermidis strains tested (n = 44), and non-S. epidermidis strains where rarely infected, highlighting the narrow host-range of the phages. One of the phages (vB_SepM_BE04) was capable of killing staphylococcal cells within biofilms formed on polyurethane catheters. Uncovering a richer diversity of available phages will likely improve our understanding of S. epidermidis-phage interactions, which will be important for future therapy.
Collapse
Affiliation(s)
| | | | - Monika Fürholz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David R Cameron
- Corresponding author: Department of Intensive Care Medicine, Inselspital; Bern University Hospital, 3010 Bern, Switzerland. Tel: +41 31 632 42 55; E-mail:
| |
Collapse
|
20
|
Barros JAR, Melo LDRD, Silva RARD, Ferraz MP, Azeredo JCVDR, Pinheiro VMDC, Colaço BJA, Fernandes MHR, Gomes PDS, Monteiro FJ. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102145. [PMID: 31857183 DOI: 10.1016/j.nano.2019.102145] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
An innovative delivery system based on bacteriophages-loaded alginate-nanohydroxyapatite hydrogel was developed as a multifunctional approach for local tissue regeneration and infection prevention and control. Bacteriophages were efficiently encapsulated, without jeopardizing phage viability and functionality, nor affecting hydrogel morphology and chemical composition. Bacteriophage delivery occurred by swelling-disintegration-degradation process of the alginate structure and was influenced by environmental pH. Good tissue response was observed following the implantation of bacteriophages-loaded hydrogels, sustaining their biosafety profile. Bacteriophages-loaded hydrogels did not affect osteoblastic cells' proliferation and morphology. A strong osteogenic and mineralization response was promoted through the implantation of hydrogels system with nanohydroxyapatite. Lastly, bacteriophages-loaded hydrogel showed excellent antimicrobial activity inhibiting the attachment and colonization of multidrug-resistant E. faecalis surrounding and within femoral tissues. This new local delivery approach could be a promising approach to prevent and control bacterial contamination during implantation and bone integration.
Collapse
Affiliation(s)
- Joana Alberta Ribeiro Barros
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| | - Luís Daniel Rodrigues de Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Center of Biological Engineering, University of Minho, Braga, Portugal
| | - Rita Araújo Reis da Silva
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Maria Pia Ferraz
- FP-ENAS/CEBIMED - University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto, Portugal
| | | | | | - Bruno Jorge Antunes Colaço
- Department of Animal Sciences, ECAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria Helena Raposo Fernandes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Fernando Jorge Monteiro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Wang J, Zhao F, Sun H, Wang Q, Zhang C, Liu W, Zou L, Pan Q, Ren H. Isolation and characterization of the Staphylococcus aureus bacteriophage vB_SauS_SA2. AIMS Microbiol 2019; 5:285-307. [PMID: 31663062 PMCID: PMC6787349 DOI: 10.3934/microbiol.2019.3.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022] Open
Abstract
A novel bacteriophage vB_SauS_SA2 (hereafter designated SA2) that infects Staphylococcus aureus was isolated. At a multiplicity of infection (MOI) of 0.1, phage SA2 had a latent period of about 10 min with a burst size of 293 PFUs/infected cell (PFU, plaque forming unit). Phage SA2 had a double-stranded DNA genome with a length of 89,055 bp and a G + C content of 31.9%. The genome contained 130 open reading frames (ORFs), 28 of which had assigned functions, and 18 were unique. One tRNA gene (tRNAAsn ) was discovered, and no virulence genes were identified. Its genome showed very low similarity with phage genomes deposited in public databases (75% nucleotide identity and 7% query coverage). The unique characteristics of phage SA2 led to the proposal of a new Siphoviridae genus named 'SA2likevirus'.
Collapse
Affiliation(s)
- Jia Wang
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong 266109, China
| | - Feiyang Zhao
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong 266109, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong 266109, China
| | - Qian Wang
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong 266109, China
| | - Can Zhang
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong 266109, China
| | - Wenhua Liu
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong 266109, China
| | - Ling Zou
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong 266109, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong 266109, China
| | - Huiying Ren
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong 266109, China
| |
Collapse
|
22
|
Oliveira H, Sampaio M, Melo LDR, Dias O, Pope WH, Hatfull GF, Azeredo J. Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics 2019; 20:357. [PMID: 31072320 PMCID: PMC6507118 DOI: 10.1186/s12864-019-5647-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Background Bacteriophages are the most abundant and diverse entities in the biosphere, and this diversity is driven by constant predator–prey evolutionary dynamics and horizontal gene transfer. Phage genome sequences are under-sampled and therefore present an untapped and uncharacterized source of genetic diversity, typically characterized by highly mosaic genomes and no universal genes. To better understand the diversity and relationships among phages infecting human pathogens, we have analysed the complete genome sequences of 205 phages of Staphylococcus sp. Results These are predicted to encode 20,579 proteins, which can be sorted into 2139 phamilies (phams) of related sequences; 745 of these are orphams and possess only a single gene. Based on shared gene content, these phages were grouped into four clusters (A, B, C and D), 27 subclusters (A1-A2, B1-B17, C1-C6 and D1-D2) and one singleton. However, the genomes have mosaic architectures and individual genes with common ancestors are positioned in distinct genomic contexts in different clusters. The staphylococcal Cluster B siphoviridae are predicted to be temperate, and the integration cassettes are often closely-linked to genes implicated in bacterial virulence determinants. There are four unusual endolysin organization strategies found in Staphylococcus phage genomes, with endolysins predicted to be encoded as single genes, two genes spliced, two genes adjacent and as a single gene with inter-lytic-domain secondary translational start site. Comparison of the endolysins reveals multi-domain modularity, with conservation of the SH3 cell wall binding domain. Conclusions This study provides a high-resolution view of staphylococcal viral genetic diversity, and insights into their gene flux patterns within and across different phage groups (cluster and subclusters) providing insights into their evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5647-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Welkin H Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
23
|
Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci Rep 2019; 9:6643. [PMID: 31040333 PMCID: PMC6491613 DOI: 10.1038/s41598-019-43115-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/18/2019] [Indexed: 01/22/2023] Open
Abstract
Chronic wounds affect thousands of people worldwide, causing pain and discomfort to patients and represent significant economical burdens to health care systems. The treatment of chronic wounds is very difficult and complex, particularly when wounds are colonized by bacterial biofilms which are highly tolerant to antibiotics. Enterococcus faecium and Enterococcus faecalis are within the most frequent bacteria present in chronic wounds. Bacteriophages (phages) have been proposed as an efficient and alternative against antibiotic-resistant infections, as those found in chronic wounds. We have isolated and characterized two novel enterococci phages, the siphovirus vB_EfaS-Zip (Zip) and the podovirus vB_EfaP-Max (Max) to be applied during wound treatment. Both phages demonstrated lytic behavior against E. faecalis and E. faecium. Genome analysis of both phages suggests the absence of genes associated with lysogeny. A phage cocktail containing both phages was tested against biofilms formed in wound simulated conditions at a multiplicity of infection of 1.0 and a 2.5 log CFU.mL−1 reduction in the bacterial load after at 3 h of treatment was observed. Phages were also tested in epithelial cells colonized by these bacterial species and a 3 log CFU.mL−1 reduction was observed using both phages. The high efficacy of these new isolated phages against multi-species biofilms, their stability at different temperatures and pH ranges, short latent periods and non-cytotoxicity to epithelial cells suggest their therapeutic use to control infectious biofilms present in chronic wounds.
Collapse
|
24
|
Melo LDR, Brandão A, Akturk E, Santos SB, Azeredo J. Characterization of a New Staphylococcus aureus Kayvirus Harboring a Lysin Active against Biofilms. Viruses 2018; 10:v10040182. [PMID: 29642449 PMCID: PMC5923476 DOI: 10.3390/v10040182] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most relevant opportunistic pathogens involved in many biofilm-associated diseases, and is a major cause of nosocomial infections, mainly due to the increasing prevalence of multidrug-resistant strains. Consequently, alternative methods to eradicate the pathogen are urgent. It has been previously shown that polyvalent staphylococcal kayviruses and their derived endolysins are excellent candidates for therapy. Here we present the characterization of a new bacteriophage: vB_SauM-LM12 (LM12). LM12 has a broad host range (>90%; 56 strains tested), and is active against several MRSA strains. The genome of LM12 is composed of a dsDNA molecule with 143,625 bp, with average GC content of 30.25% and codes for 227 Coding Sequences (CDSs). Bioinformatics analysis did not identify any gene encoding virulence factors, toxins, or antibiotic resistance determinants. Antibiofilm assays have shown that this phage significantly reduced the number of viable cells (less than one order of magnitude). Moreover, the encoded endolysin also showed activity against biofilms, with a consistent biomass reduction during prolonged periods of treatment (of about one order of magnitude). Interestingly, the endolysin was shown to be much more active against stationary-phase cells and suspended biofilm cells than against intact and scraped biofilms, suggesting that cellular aggregates protected by the biofilm matrix reduced protein activity. Both phage LM12 and its endolysin seem to have a strong antimicrobial effect and broad host range against S. aureus, suggesting their potential to treat S. aureus biofilm infections.
Collapse
Affiliation(s)
- Luís D R Melo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Ana Brandão
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Ergun Akturk
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Silvio B Santos
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Joana Azeredo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| |
Collapse
|
25
|
Zeman M, Mašlaňová I, Indráková A, Šiborová M, Mikulášek K, Bendíčková K, Plevka P, Vrbovská V, Zdráhal Z, Doškař J, Pantůček R. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci Rep 2017; 7:46319. [PMID: 28406168 PMCID: PMC5390265 DOI: 10.1038/srep46319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/14/2017] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.
Collapse
Affiliation(s)
- M Zeman
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - I Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - A Indráková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - M Šiborová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - K Mikulášek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - K Bendíčková
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - P Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - V Vrbovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.,Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Z Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - J Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - R Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
26
|
Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Łobocka M. Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Res Microbiol 2016; 168:194-207. [PMID: 27818282 DOI: 10.1016/j.resmic.2016.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 01/21/2023]
Abstract
Pseudomonas aeruginosa is frequently identified as a cause of diverse infections and chronic diseases. It forms biofilms and has natural resistance to several antibiotics. Strains of this pathogen resistant to new-generation beta-lactams have emerged. Due to the difficulties associated with treating chronic P. aeruginosa infections, bacteriophages are amongst the alternative therapeutic options being actively researched. Two obligatorily lytic P. aeruginosa phages, vB_PaeM_MAG1 (MAG1) and vB_PaeP_MAG4 (MAG4), have been isolated and characterized. These phages belong to the PAK_P1likevirus genus of the Myoviridae family and the LIT1virus genus of the Podoviridae family, respectively. They adsorb quickly to their hosts (∼90% in 5 min), have a short latent period (15 min), and are stable during storage. Each individual phage propagated in approximately 50% of P. aeruginosa strains tested, which increased to 72.9% when phages were combined into a cocktail. While MAG4 reduced biofilm more effectively after a short time of treatment, MAG1 was more effective after a longer time and selected less for phage-resistant clones. A MAG1-encoded homolog of YefM antitoxin of the bacterial toxin-antitoxin system may contribute to the superiority of MAG1 over MAG4.
Collapse
Affiliation(s)
- Magdalena Kwiatek
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Sylwia Parasion
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Paweł Rutyna
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Lidia Mizak
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Romuald Gryko
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Marcin Niemcewicz
- Military Institute of Hygiene and Epidemiology, Lubelska Str. 2, 24-100 Puławy, Poland.
| | - Alina Olender
- Medical University of Lublin, Chair and Department of Medical Microbiology, dr W. Chodźki 1, 20-093 Lublin, Poland.
| | - Małgorzata Łobocka
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland.
| |
Collapse
|
27
|
Parmar KM, Hathi ZJ, Dafale NA. Control of Multidrug-Resistant Gene Flow in the Environment Through Bacteriophage Intervention. Appl Biochem Biotechnol 2016; 181:1007-1029. [PMID: 27723009 DOI: 10.1007/s12010-016-2265-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
The spread of multidrug-resistant (MDR) bacteria is an emerging threat to the environment and public wellness. Inappropriate use and indiscriminate release of antibiotics in the environment through un-metabolized form create a scenario for the emergence of virulent pathogens and MDR bugs in the surroundings. Mechanisms underlying the spread of resistance include horizontal and vertical gene transfers causing the transmittance of MDR genes packed in different host, which pass across different food webs. Several controlling agents have been used for combating pathogens; however, the use of lytic bacteriophages proves to be one of the most eco-friendly due to their specificity, killing only target bacteria without damaging the indigenous beneficial flora of the habitat. Phages are part of the natural microflora present in different environmental niches and are remarkably stable in the environment. Diverse range of phage products, such as phage enzymes, phage peptides having antimicrobial properties, and phage cocktails also have been used to eradicate pathogens along with whole phages. Recently, the ability of phages to control pathogens has extended from the different areas of medicine, agriculture, aquaculture, food industry, and into the environment. To avoid the arrival of pre-antibiotic epoch, phage intervention proves to be a potential option to eradicate harmful pathogens generated by the MDR gene flow which are uneasy to cure by conventional treatments.
Collapse
Affiliation(s)
- Krupa M Parmar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Zubeen J Hathi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| |
Collapse
|
28
|
Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, Sillankorva S. Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections. Front Microbiol 2016; 7:1024. [PMID: 27446059 PMCID: PMC4923195 DOI: 10.3389/fmicb.2016.01024] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/16/2016] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is an enterobacterium that causes catheter-associated urinary tract infections (CAUTIs) due to its ability to colonize and form crystalline biofilms on the catheters surface. CAUTIs are very difficult to treat, since biofilm structures are highly tolerant to antibiotics. Phages have been used widely to control a diversity of bacterial species, however, a limited number of phages for P. mirabilis have been isolated and studied. Here we report the isolation of two novel virulent phages, the podovirus vB_PmiP_5460 and the myovirus vB_PmiM_5461, which are able to target, respectively, 16 of the 26 and all the Proteus strains tested in this study. Both phages have been characterized thoroughly and sequencing data revealed no traces of genes associated with lysogeny. To further evaluate the phages’ ability to prevent catheter’s colonization by Proteus, the phages adherence to silicone surfaces was assessed. Further tests in phage-coated catheters using a dynamic biofilm model simulating CAUTIs, have shown a significant reduction of P. mirabilis biofilm formation up to 168 h of catheterization. These results highlight the potential usefulness of the two isolated phages for the prevention of surface colonization by this bacterium.
Collapse
Affiliation(s)
- Luís D R Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Patrícia Veiga
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Nuno Cerca
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Andrew M Kropinski
- Departments of Food Science, Molecular and Cellular Biology, and Pathobiology, University of Guelph, Guelph ON, Canada
| | - Carina Almeida
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Joana Azeredo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| | - Sanna Sillankorva
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho Braga Braga, Portugal
| |
Collapse
|
29
|
Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 2016; 100:2141-51. [PMID: 26767986 DOI: 10.1007/s00253-015-7247-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023]
Abstract
Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.
Collapse
|