1
|
Jia K, Yang N, Zhang X, Cai R, Zhang Y, Tian J, Raza SHA, Kang Y, Qian A, Li Y, Sun W, Shen J, Yao J, Shan X, Zhang L, Wang G. Genomic, Morphological and Functional Characterization of Virulent Bacteriophage IME-JL8 Targeting Citrobacter freundii. Front Microbiol 2020; 11:585261. [PMID: 33329451 PMCID: PMC7717962 DOI: 10.3389/fmicb.2020.585261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/30/2020] [Indexed: 01/01/2023] Open
Abstract
Citrobacter freundii refers to a fish pathogen extensively reported to be able to cause injury and high mortality. Phage therapy is considered a process to alternatively control bacterial infections and contaminations. In the present study, the isolation of a virulent bacteriophage IME-JL8 isolated from sewage was presented, and such bacteriophage was characterized to be able to infect Citrobacter freundii specifically. Phage IME-JL8 has been classified as the member of the Siphoviridae family, which exhibits the latent period of 30–40 min. The pH and thermal stability of phage IME-JL8 demonstrated that this bacteriophage achieved a pH range of 4–10 as well as a temperature range of 4, 25, and 37°C. As revealed from the results of whole genomic sequence analysis, IME-JL8 covers a double-stranded genome of 49,838 bp (exhibiting 47.96% G+C content), with 80 putative coding sequences contained. No bacterial virulence- or lysogenesis-related ORF was identified in the IME-JL8 genome, so it could be applicable to phage therapy. As indicated by the in vitro experiments, phage IME-JL8 is capable of effectively removing bacteria (the colony count decreased by 6.8 log units at 20 min), and biofilm can be formed in 24 h. According to the in vivo experiments, administrating IME-JL8 (1 × 107 PFU) was demonstrated to effectively protect the fish exhibiting a double median lethal dose (2 × 109 CFU/carp). Moreover, the phage treatment led to the decline of pro-inflammatory cytokines in carp with lethal infections. IME-JL8 was reported to induce efficient lysis of Citrobacter freundii both in vitro and in vivo, thereby demonstrating its potential as an alternative treatment strategy for infections attributed to Citrobacter freundii.
Collapse
Affiliation(s)
- Kaixiang Jia
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nuo Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiuwen Zhang
- Research Management Office, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ruopeng Cai
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yang Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiaxin Tian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | | | - Yuanhuan Kang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ying Li
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wuwen Sun
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jinyu Shen
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jiayun Yao
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Lei Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Gibson SB, Green SI, Liu CG, Salazar KC, Clark JR, Terwilliger AL, Kaplan HB, Maresso AW, Trautner BW, Ramig RF. Constructing and Characterizing Bacteriophage Libraries for Phage Therapy of Human Infections. Front Microbiol 2019; 10:2537. [PMID: 31781060 PMCID: PMC6861333 DOI: 10.3389/fmicb.2019.02537] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Phage therapy requires libraries of well-characterized phages. Here we describe the generation of phage libraries for three target species: Escherichia coli, Pseudomonas aeruginosa, and Enterobacter cloacae. The basic phage characteristics on the isolation host, sequence analysis, growth properties, and host range and virulence on a number of contemporary clinical isolates are presented. This information is required before phages can be added to a phage library for potential human use or sharing between laboratories for use in compassionate use protocols in humans under eIND (emergency investigational new drug). Clinical scenarios in which these phages can potentially be used are discussed. The phages presented here are currently being characterized in animal models and are available for eINDs.
Collapse
Affiliation(s)
- Shelley B. Gibson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Sabrina I. Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Keiko C. Salazar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Austen L. Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Barbara W. Trautner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Robert F. Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|