1
|
Lazarov NE, Atanasova DY. Mechanisms of Chemosensory Transduction in the Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:49-62. [PMID: 37946077 DOI: 10.1007/978-3-031-44757-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The mammalian carotid body (CB) is a polymodal chemoreceptor, which is activated by blood-borne stimuli, most notably hypoxia, hypercapnia and acidosis, thus ensuring an appropriate cellular response to changes in physical and chemical parameters of the blood. The glomus cells are considered the CB chemosensory cells and the initial site of chemoreceptor transduction. However, the molecular mechanisms by which they detect changes in blood chemical levels and how these changes lead to transmitter release are not yet well understood. Chemotransduction mechanisms are by far best described for oxygen and acid/carbon dioxide sensing. A few testable hypotheses have been postulated including a direct interaction of oxygen with ion channels in the glomus cells (membrane hypothesis), an indirect interface by a reversible ligand like a heme (metabolic hypothesis), or even a functional interaction between putative oxygen sensors (chemosome hypothesis) or the interaction of lactate with a highly expressed in the CB atypical olfactory receptor, Olfr78, (endocrine model). It is also suggested that sensory transduction in the CB is uniquely dependent on the actions and interactions of gaseous transmitters. Apparently, oxygen sensing does not utilize a single mechanism, and later observations have given strong support to a unified membrane model of chemotransduction.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
2
|
Ott EP, Jacob DW, Baker SE, Holbein WW, Scruggs ZM, Shoemaker JK, Limberg JK. Sympathetic neural recruitment strategies following acute intermittent hypoxia in humans. Am J Physiol Regul Integr Comp Physiol 2020; 318:R961-R971. [PMID: 32267729 DOI: 10.1152/ajpregu.00004.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We examined the effect of acute intermittent hypoxia (IH) on sympathetic neural firing patterns and the role of the carotid chemoreceptors. We hypothesized exposure to acute IH would increase muscle sympathetic nerve activity (MSNA) via an increase in action potential (AP) discharge rates and within-burst firing. We further hypothesized any change in discharge patterns would be attenuated during acute chemoreceptor deactivation (hyperoxia). MSNA (microneurography) was assessed in 17 healthy adults (11 male/6 female; 31 ± 1 yr) during normoxic rest before and after 30 min of experimental IH. Prior to and following IH, participants were exposed to 2 min of 100% oxygen (hyperoxia). AP patterns were studied from the filtered raw MSNA signal using wavelet-based methodology. Compared with baseline, multiunit MSNA burst incidence (P < 0.01), AP incidence (P = 0.01), and AP content per burst (P = 0.01) were increased following IH. There was an increase in the probability of a particular AP cluster firing once (P < 0.01) and more than once (P = 0.03) per burst following IH. There was no effect of hyperoxia on multiunit MSNA at baseline or following IH (P > 0.05); however, hyperoxia following IH attenuated the probability of particular AP clusters firing more than once per burst (P < 0.01). Acute IH increases MSNA by increasing AP discharge rates and within-burst firing. A portion of the increase in within-burst firing following IH can be attributed to the carotid chemoreceptors. These data advance the mechanistic understanding of sympathetic activation following acute IH in humans.
Collapse
Affiliation(s)
- Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Association Between Systemic Inflammation, Carotid Arteriosclerosis, and Autonomic Dysfunction. Transl Stroke Res 2019; 11:50-59. [PMID: 31093927 DOI: 10.1007/s12975-019-00706-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Systemic inflammation is associated with arteriosclerotic disease progression and worse stroke outcome in patients with carotid arteriosclerotic disease. We hypothesize that systemic inflammation is mediated by impaired carotid baroreceptor and chemoreceptor function induced by carotid arteriosclerosis rather than by the generalized inflammatory arteriosclerotic process.Heart rate variability (HRV), serum levels of inflammatory markers, demographic and life style factors, and concomitant diseases with potential impact on systemic inflammation were determined in 105 patients with asymptomatic carotid stenosis of varying degree. Multivariate linear regression analyses were performed to ascertain independent determinants of carotid stenosis severity, autonomic function, and inflammation.Systemic inflammation (C-reactive protein, beta = .255; P = .014), age (beta = .232; P < .008), and arterial hypertension (beta = .206; P = .032) were associated with carotid stenosis severity. Only carotid stenosis severity and not generalized arteriosclerotic disease, concomitant diseases (arterial hypertension, diabetes mellitus, dyslipidemia, hypothyroidism), life style factors (smoking, obesity), or age was associated with a reduction in vagal tone (HRV HF band power beta = - .193; P < 0.049). Systemic inflammation was related to a reduction in vagal tone (HRV HF band power, beta = - .214; P = .031), and not to generalized arteriosclerotic disease, concomitant diseases (arterial hypertension, diabetes mellitus, dyslipidemia), life style factors (smoking, obesity), and age.In conclusion, systemic inflammation is associated with carotid rather than with generalized arteriosclerotic disease. The association between systemic inflammation and carotid arteriosclerosis is mediated by a reduction in vagal tone which indicates a major role of carotid arteriosclerosis-mediated autonomic dysfunction in the pathogenesis of systemic inflammation in arteriosclerotic disease.
Collapse
|
4
|
Jouett NP, Moralez G, Raven PB, Smith ML. Losartan reduces the immediate and sustained increases in muscle sympathetic nerve activity after hyperacute intermittent hypoxia. J Appl Physiol (1985) 2017; 122:884-892. [DOI: 10.1152/japplphysiol.00683.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/21/2016] [Accepted: 01/08/2017] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxemia, which produces elevations in sympathetic nerve activity (SNA) and associated hypertension in experimental models that persist beyond the initial exposure. We tested the hypotheses that angiotensin receptor blockade in humans using losartan attenuates the immediate and immediately persistent increases in 1) SNA discharge and 2) mean arterial pressure (MAP) after hyperacute intermittent hypoxia training (IHT) using a randomized, placebo-controlled, repeated-measures experimental design. We measured ECG and photoplethysmographic arterial pressure in nine healthy human subjects, while muscle SNA (MSNA) was recorded in seven subjects using microneurography. Subjects were exposed to a series of hypoxic apneas in which they inhaled two to three breaths of nitrogen, followed by a 20-s apnea and 40 s of room air breathing every minute for 20 min. Hyperacute IHT produced substantial and persistent elevations in MSNA burst frequency (baseline: 15.3 ± 1.8, IHT: 24 ± 1.5, post-IHT 20.0 ± 1.3 bursts/min, all P < 0.01) and MAP (baseline: 89.2 ± 3.3, IHT: 92.62 ± 3.1, post-IHT: 93.83 ± 3.1 mmHg, all P < 0.02). Losartan attenuated the immediate and sustained increases in MSNA (baseline: 17.3 ± 2.5, IHT: 18.6 ± 2.2, post-IHT 20.0 ± 1.3 bursts/min, all P < 0.001) and MAP (baseline: 81.9 ± 2.6, IHT: 81.1 ± 2.8, post-IHT: 81.3 ± 3.0 mmHg, all P > 0.70). This investigation confirms the role of angiotensin II type 1a receptors in the immediate and persistent sympathoexcitatory and pressor responses to IHT. NEW & NOTEWORTHY This study demonstrates for the first time in humans that losartan, an angiotensin receptor blocker (ARB), abrogates the acute and immediately persistent increases in muscle sympathetic nerve activity and arterial pressure in response to acute intermittent hypoxia. This investigation, along with others, provides important beginning translational evidence for using ARBs in treatment of the intermittent hypoxia observed in obstructive sleep apnea patients.
Collapse
Affiliation(s)
- Noah P. Jouett
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Gilbert Moralez
- Institute for Environmental and Exercise Medicine, Texas Health Presbyterian Hospital, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peter B. Raven
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Michael L. Smith
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
5
|
Jouett NP, Moralez G, White DW, Eubank WL, Chen S, Tian J, Smith ML, Zimmerman MC, Raven PB. N-Acetylcysteine reduces hyperacute intermittent hypoxia-induced sympathoexcitation in human subjects. Exp Physiol 2016; 101:387-96. [PMID: 27027616 DOI: 10.1113/ep085546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/12/2016] [Indexed: 01/31/2023]
Abstract
NEW FINDINGS What is the central question of this study? This study evaluated the following central question: does N-acetylcysteine (N-AC), an antioxidant that readily penetrates the blood-brain barrier, have the capability to reduce the increase in sympathetic nerve activity observed during hyperacute intermittent hypoxia? What is the main finding and its importance? We demonstrate that N-AC decreases muscle sympathetic nerve activity in response to hyperacute intermittent hypoxia versus placebo control. This finding suggests that antioxidants, such as N-AC, have therapeutic potential in obstructive sleep apnoea. This investigation tested the following hypotheses: that (i) N-acetylcysteine (N-AC) attenuates hyperacute intermittent hypoxia-induced sympathoexcitation, (ii) without elevating superoxide measured in peripheral venous blood. Twenty-eight healthy human subjects were recruited to the study. One hour before experimentation, each subject randomly ingested either 70 mg kg(-1) of N-AC (n = 16) or vehicle placebo (n = 12). Three-lead ECG and arterial blood pressure, muscle sympathetic nerve activity (n = 17) and whole-blood superoxide concentration (using electron paramagnetic resonance spectroscopy; n = 12) were measured. Subjects underwent a 20 min hyperacute intermittent hypoxia training (hAIHT) protocol that consisted of cyclical end-expiratory apnoeas with 100% nitrogen. N-AC decreased muscle sympathetic nerve activity after hAIHT compared with placebo (P < 0.02). However, N-AC did not alter superoxide concentrations in venous blood compared with placebo (P > 0.05). Moreover, hAIHT did not increase superoxide concentrations in the peripheral circulation as measured by electron paramagnetic resonance (P > 0.05). Based on these findings, we contend that (i) hAIHT and (ii) the actions of N-AC in hAIHT are primarily mediated centrally rather than peripherally, although central measurements of reactive oxygen species are difficult to obtain in human subjects, thus making this assertion difficult to verify. This investigation suggests the possibility of developing a pharmaceutical therapy to inhibit the sympathoexcitation associated with obstructive sleep apnoea.
Collapse
Affiliation(s)
- Noah P Jouett
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gilbert Moralez
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel W White
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Wendy L Eubank
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Shande Chen
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael L Smith
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter B Raven
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
6
|
Gill LC, Mantilla CB, Sieck GC. Impact of unilateral denervation on transdiaphragmatic pressure. Respir Physiol Neurobiol 2015; 210:14-21. [PMID: 25641347 DOI: 10.1016/j.resp.2015.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
Abstract
The diaphragm muscle (DIAm) has a large reserve capacity for force generation such that in rats, the transdiaphragmatic pressure (Pdi) generated during ventilatory behaviors is less than 50% of maximal Pdi (Pd(imax)) elicited by bilateral phrenic nerve stimulation. Accordingly, we hypothesized that following unilateral denervation (DNV), the ability of the contralateral DIAm to generate sufficient Pdi to accomplish ventilatory behaviors will not be compromised and normal ventilation (as determined by arterial blood gas measurements) will not be impacted, although neural drive to the DIAm increases. In contrast, we hypothesized that higher force, non-ventilatory behaviors requiring Pdi generation greater than 50% of Pd(imax) will be compromised following DIAm hemiparalysis, i.e., increased neural drive cannot fully compensate for lack of force generating capacity. Pdi generated during ventilatory behaviors (eupnea and hypoxia (10% O2)-hypercapnia (5% CO2)) did not change after DNV and arterial blood gases were unaffected by DNV. However, neural drive to the contralateral DIAm, assessed by the rate of rise of root mean squared (RMS) EMG at 75 ms after onset of inspiratory activity (RMS75), increased after DNV (p<0.05). In contrast, Pdi generated during higher force, non-ventilatory behaviors was significantly reduced after DNV (p < 0.01), while RMS75 was unchanged. These findings support our hypothesis that only non-ventilatory behaviors requiring Pdi generation greater than 50% of Pd(imax) are impacted after DNV. Clinically, these results indicate that an evaluation of DIAm weakness requires examination of Pdi across multiple motor behaviors, not just ventilation.
Collapse
Affiliation(s)
- Luther C Gill
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Abstract
The main functions of the respiratory neural network are to produce a coordinated, efficient, rhythmic motor behavior and maintain homeostatic control over blood oxygen and CO2/pH levels. Purinergic (ATP) signaling features prominently in these homeostatic reflexes. The signaling actions of ATP are produced through its binding to a diversity of ionotropic P2X and metabotropic P2Y receptors. However, its net effect on neuronal and network excitability is determined by the interaction between the three limbs of a complex system comprising the signaling actions of ATP at P2Rs, the distribution of multiple ectonucleotidases that differentially metabolize ATP into ADP, AMP, and adenosine (ADO), and the signaling actions of ATP metabolites, especially ADP at P2YRs and ADO at P1Rs. Understanding the significance of purinergic signaling is further complicated by the fact that neurons, glia, and the vasculature differentially express P2 and P1Rs, and that both neurons and glia release ATP. This article reviews at cellular, synaptic, and network levels, current understanding and emerging concepts about the diverse roles played by this three-part signaling system in: mediating the chemosensitivity of respiratory networks to hypoxia and CO2/pH; modulating the activity of rhythm generating networks and inspiratory motoneurons, and; controlling blood flow through the cerebral vasculature.
Collapse
Affiliation(s)
- Gregory D Funk
- Department of Physiology, Centre for Neuroscience, Women & Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
9
|
Evans AM, Peers C, Wyatt CN, Kumar P, Hardie DG. Ion channel regulation by the LKB1-AMPK signalling pathway: the key to carotid body activation by hypoxia and metabolic homeostasis at the whole body level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:81-90. [PMID: 23080146 DOI: 10.1007/978-94-007-4584-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our recent investigations provide further support for the proposal that, consequent to inhibition of mitochondrial oxidative phosphorylation, activation of AMP-activated protein kinase (AMPK) mediates carotid body excitation by hypoxia. Consistent with the effects of hypoxia, intracellular dialysis from a patch pipette of an active (thiophosphorylated) recombinant AMPK heterotrimer (α2β2γ1) or application of the AMPK activators AICAR and A769662: (1) Inhibited BK(Ca) currents and TASK K(+) currents in rat carotid body type I cells; (2) Inhibited whole-cell currents carried by KCa1.1 and TASK3, but not TASK1 channels expressed in HEK293 cells; (3) Triggered carotid body activation. Furthermore, preliminary studies using mice with conditional knockout in type I cells of the primary upstream kinase that activates AMPK in response to metabolic stresses, LKB1, appear to confirm our working hypothesis. Studies on mice with knockout of the catalytic α1 subunit and α2 subunits of AMPK, respectively, have proved equally consistent. Accumulating evidence therefore suggests that the LKB1-AMPK signalling pathway is necessary for hypoxia-response coupling by the carotid body, and serves to regulate oxygen and therefore energy supply at the whole body level.
Collapse
Affiliation(s)
- A Mark Evans
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
10
|
Canning BJ, Mori N. Encoding of the cough reflex in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 2010; 300:R369-77. [PMID: 20926760 DOI: 10.1152/ajpregu.00044.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously described the physiological and morphological properties of the cough receptors and their sites of termination in the airways and centrally in the nucleus tractus solitarius (nTS). In the present study, we have addressed the hypothesis that the primary central synapses of the cough receptors subserve an essential role in the encoding of cough. We found that cough requires sustained, high-frequency (≥8-Hz) afferent nerve activation. We also found evidence for processes that both facilitate (summation, sensitization) and inhibit the initiation of cough. Sensitization of cough occurs with repetitive subthreshold activation of the cough receptors or by coincident activation of C-fibers and/or nTS neurokinin receptor activation. Desensitization of cough evoked by repetitive and/or continuous afferent nerve activation has a rapid onset (<60 s) and does not differentiate between tussive stimuli, suggesting a central nervous system-dependent process. The cough reflex can also be actively inhibited upon activation of other airway afferent nerve subtypes, including slowly adapting receptors and pulmonary C-fibers. The sensitization and desensitization of cough are likely attributable to the prominent, primary, and unique role of N-methyl-d-aspartate receptor-dependent signaling at the central synapses of the cough receptors. These attributes may have direct relevance to the presentation of cough in disease and for the effectiveness of antitussive therapies.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
11
|
Abstract
Aerobic exercise capacity decreases with exposure to hypoxia. This article focuses on the effects of hypoxia on nervous system function and the potential consequences for the exercising human. Emphasis is put on somatosensory muscle afferents due to their crucial role in the reflex inhibition of muscle activation and in cardiorespiratory reflex control during exercise. We review the evidence of hypoxia influences on muscle afferents and discuss important consequences for exercise performance. Efferent (motor) nerves are less affected at altitude and are thought to stay fairly functional even in severe levels of arterial hypoxemia. Altitude also alters autonomic nervous system functions, which are thought to play an important role in the regulation of cardiac output and ventilation. Finally, the consequences of hypoxia-induced cortical adaptations and dysfunctions are evaluated in terms of neurotransmitter turnover, brain electrical activity, and cortical excitability. Even though the cessation of exercise or the reduction of exercise intensity, when reaching maximum performance, implies reduced motor recruitment by the nervous system, the mechanisms that lead to the de-recruitment of active muscle are still not well understood. In moderate hypoxia, muscle afferents appear to play an important role, whereas in severe hypoxia brain oxygenation may play a more important role.
Collapse
Affiliation(s)
- Markus Amann
- University of Zürich , Institute of Physiology, and ETH Zürich, Exercise Physiology, Zürich, Switzerland.
| | | |
Collapse
|
12
|
Soliz J, Thomsen JJ, Soulage C, Lundby C, Gassmann M. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1837-46. [PMID: 19321698 DOI: 10.1152/ajpregu.90967.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acclimatization to hypoxic exposure relies on an elevated ventilation and erythropoietic activity. We recently proposed that erythropoietin (Epo) links both responses: apart from red blood cell production, cerebral and plasma Epo interact with the central and peripheral respiratory centers. Knowing that women cope better than men with reduced oxygen supply (as observed at high altitude), we analyzed the hypoxic ventilatory response in Epo-overexpressing transgenic male and female mice with high Epo levels in brain and plasma (Tg6) or in wild-type animals injected with recombinant human Epo (rhEpo). Exposure to moderate and severe hypoxia as well as to hyperoxia and injection of domperidone, a potent peripheral ventilatory stimulant, revealed that the presence of transgenic or rhEpo extensively increased the hypoxic ventilatory response in female mice compared with their corresponding male siblings. Alterations of catecholamines in the brain stem's respiratory centers were also sex dependent. In a proof-of-concept study, human volunteers were intravenously injected with 5,000 units rhEpo and subsequently exposed to 10% oxygen. Compared with men, the hypoxic ventilatory response was significantly increased in women. We conclude that Epo exerts a sex-dependent impact on hypoxic ventilation improving the response in female mice and in women that most probably involves sexual hormones. Our data provides an explanation as to why women are less susceptible to hypoxia-associated syndromes than men.
Collapse
Affiliation(s)
- Jorge Soliz
- nstitute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Tyrosine hydroxylase deficit in the chemoafferent and the sympathoadrenergic pathways of the Mecp2 deficient mouse. Neurosci Lett 2008; 447:82-6. [DOI: 10.1016/j.neulet.2008.09.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 11/18/2022]
|