1
|
Lin M, Liu M, Huang C, Shen S, Chen Z, Lai K. Multiple Neural Networks Originating from the Lateral Parabrachial Nucleus Modulate Cough-like Behavior and Coordinate Cough with Pain. Am J Respir Cell Mol Biol 2025; 72:272-284. [PMID: 39417744 DOI: 10.1165/rcmb.2024-0084oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
It has been reported that experimental pain can diminish cough sensitivity and that the lateral parabrachial nucleus (LPBN) coordinates pain with breathing, but whether the LPBN regulates cough-like behaviors and pain-induced changes in cough sensitivity remains elusive. We investigated the roles of LPBN γ-aminobutyric acidergic (GABAergic) and glutamatergic neurons in the regulation of cough sensitivity and its relationship with pain in mice via chemogenetic approaches. Adenovirus-associated virus tracing combined with chemogenetics was used to map the projections of LPBN GABAergic and glutamatergic neurons to the periaqueductal gray. LPBN neurons were activated by cough challenge, and nonspecific inhibition of LPBN neurons suppressed cough-like behavior. Chemogenetic suppression of LPBN GABAergic neurons reduced cough sensitivity in mice, whereas suppression of LPBN glutamatergic neurons counteracted the pain-driven decrease in cough sensitivity, and so did silencing LPBN glutamatergic neurons projecting to the periaqueductal gray. Our data suggest that GABAergic and glutamatergic neurons in the LPBN critically are involved in cough sensitivity and coordinate pain with cough through inhibitory or activating mechanisms at the midbrain level.
Collapse
Affiliation(s)
- Mingtong Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Mingzhe Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Chuqin Huang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Shuirong Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Zhe Chen
- Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Kefang Lai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| |
Collapse
|
2
|
Poliacek I, Veterník M, Martvon L, Simera M, Cibulkova L, Kotmanova Z, Berikova D, Bolser DC. Peripheral antitussives affect temporal features of tracheobronchial coughing in cats. J Appl Physiol (1985) 2025; 138:22-30. [PMID: 39561004 DOI: 10.1152/japplphysiol.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The influence of peripheral antitussive drugs on spatiotemporal features of coughing has not been reported. We hypothesized that this class of compounds would alter the cough motor pattern, in part, by lengthening cough phases. Peripherally acting antitussives, 3-aminopropylphosphinic acid (3APPi, 5 mg/kg) and levodropropizine (Levo, 3 mg/kg) were injected intravenously in anesthetized spontaneously breathing cats (13 males, 2 females; 4.38 ± 0.19 kg). Spatio-temporal analysis of cough induced by mechanical stimulation of the trachea showed significant reductions in cough number and expiratory cough efforts after the administration of each drug. A significant reduction in inspiratory cough efforts occurred after Levo. Both drugs induced temporal changes in the cough motor pattern, including prolongations of inspiratory phase, inspiratory-expiratory transition, total cough diaphragm activity, and total cough cycle duration. Levo also significantly lengthened the expiratory phase of cough. A shortening of the overlap between diaphragm and abdominal activity and cough abdominal electromyogram (EMG) activity was observed after the administration of 3APPi. No significant changes in cardiorespiratory data were seen, with the exception of prolonged expiratory phase after 3APPi and lower blood pressure after Levo. Peripherally induced cough suppression is accompanied with changes in cough temporal characteristics that are not observed after the administration of centrally acting antitussives. The motor output produced by the cough central pattern generator differs significantly when coughing is perturbed by peripherally and centrally acting antitussives.NEW & NOTEWORTHY In a study on anesthetized cats, peripherally acting antitussives 3-aminopropylphosphinic acid (3APPi) and levodropropizine (Levo) significantly reduced cough number and expiratory efforts, with Levo also reducing inspiratory efforts. Both antitussives altered the cough motor pattern, extending various cough phases. 3APPi shortened diaphragm-abdominal activity overlap, whereas Levo decreased the respiratory rate. These changes contrast with those induced by centrally acting antitussives.
Collapse
Affiliation(s)
- Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marcel Veterník
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lukas Martvon
- Medical Education Support Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lucia Cibulkova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Denisa Berikova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
3
|
Simera M, Berikova D, Hovengen OJ, Laheye M, Veternik M, Martvon L, Kotmanova Z, Cibulkova L, Poliacek I. Role of the pontine respiratory group in the suppression of cough by codeine in cats. Respir Physiol Neurobiol 2024; 330:104326. [PMID: 39209015 DOI: 10.1016/j.resp.2024.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Codeine was microinjected into the area of the Kölliker-Fuse nucleus and the adjacent lateral parabrachial nucleus, within the pontine respiratory group in 8 anesthetized cats. Electromyograms (EMGs) of the diaphragm (DIA) and abdominal muscles (ABD), esophageal pressures (EP), and blood pressure were recorded and analyzed during mechanically induced tracheobronchial cough. Unilateral microinjections of 3.3 mM codeine (3 injections, each 37 ± 1.2 nl) had no significant effect on the cough number. However, the amplitudes of the cough ABD EMG, expiratory EP and, to a lesser extent, DIA EMG were significantly reduced. There were no significant changes in the temporal parameters of the cough. Control microinjections of artificial cerebrospinal fluid in 6 cats did not show a significant effect on cough data compared to those after codeine microinjections. Codeine-sensitive neurons in the rostral dorsolateral pons contribute to controlling cough motor output, likely through the central pattern generator of cough.
Collapse
Affiliation(s)
- Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Denisa Berikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia.
| | - Ole-Jacob Hovengen
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Marek Laheye
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Lukas Martvon
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Lucia Cibulkova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, Martin 03601, Slovakia
| |
Collapse
|
4
|
John SR, Barnett WH, Abdala APL, Zoccal DB, Rubin JE, Molkov YI. Exploring the role of the Kölliker-Fuse nucleus in breathing variability by mathematical modelling. J Physiol 2024; 602:93-112. [PMID: 38063489 PMCID: PMC10847960 DOI: 10.1113/jp285158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
The Kölliker-Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnoea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apnoeas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities. In this study, we use a reduced computational model to consider several dynamical regimes of KF activity paired with different input sources to determine which combinations are compatible with known experimental observations. We further build on these findings to identify possible interactions between the KF and other components of the respiratory neural circuitry. Specifically, we present two models that both simulate eupnoeic as well as RTT-like breathing phenotypes. Using nullcline analysis, we identify the types of inhibitory inputs to the KF leading to RTT-like respiratory patterns and suggest possible KF local circuit organizations. When the identified properties are present, the two models also exhibit quantal acceleration of late-expiratory activity, a hallmark of active expiration featuring forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence, these models instantiate plausible hypotheses about possible KF dynamics and forms of local network interactions, thus providing a general framework as well as specific predictions for future experimental testing. KEY POINTS: The Kölliker-Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating normal breathing and controlling active abdominal expiration during increased ventilation. Dysfunction in KF neuronal activity is thought to contribute to respiratory abnormalities seen in Rett syndrome (RTT). This study utilizes computational modelling to explore different dynamical regimes of KF activity and their compatibility with experimental observations. By analysing different model configurations, the study identifies inhibitory inputs to the KF that lead to RTT-like respiratory patterns and proposes potential KF local circuit organizations. Two models are presented that simulate both normal breathing and RTT-like breathing patterns. These models provide testable hypotheses and specific predictions for future experimental investigations, offering a general framework for understanding KF dynamics and potential network interactions.
Collapse
Affiliation(s)
- S R John
- University of Pittsburgh, Pittsburgh, PA, USA
| | - W H Barnett
- Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - D B Zoccal
- São Paulo State University, Araraquara, Brazil
| | - J E Rubin
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Y I Molkov
- Georgia State University, Atlanta, GA, USA
| |
Collapse
|
5
|
John S, Barnett W, Abdala A, Zoccal D, Rubin J, Molkov Y. The role of Kölliker-Fuse nucleus in breathing variability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545086. [PMID: 37398197 PMCID: PMC10312726 DOI: 10.1101/2023.06.15.545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The Kölliker-Fuse nucleus (KF), which is part of the parabrachial complex, participates in the generation of eupnea under resting conditions and the control of active abdominal expiration when increased ventilation is required. Moreover, dysfunctions in KF neuronal activity are believed to play a role in the emergence of respiratory abnormalities seen in Rett syndrome (RTT), a progressive neurodevelopmental disorder associated with an irregular breathing pattern and frequent apneas. Relatively little is known, however, about the intrinsic dynamics of neurons within the KF and how their synaptic connections affect breathing pattern control and contribute to breathing irregularities. In this study, we use a reduced computational model to consider several dynamical regimes of KF activity paired with different input sources to determine which combinations are compatible with known experimental observations. We further build on these findings to identify possible interactions between the KF and other components of the respiratory neural circuitry. Specifically, we present two models that both simulate eupneic as well as RTT-like breathing phenotypes. Using nullcline analysis, we identify the types of inhibitory inputs to the KF leading to RTT-like respiratory patterns and suggest possible KF local circuit organizations. When the identified properties are present, the two models also exhibit quantal acceleration of late-expiratory activity, a hallmark of active expiration featuring forced exhalation, with increasing inhibition to KF, as reported experimentally. Hence, these models instantiate plausible hypotheses about possible KF dynamics and forms of local network interactions, thus providing a general framework as well as specific predictions for future experimental testing. Key points The Kölliker-Fuse nucleus (KF), a part of the parabrachial complex, is involved in regulating normal breathing and controlling active abdominal expiration during increased ventilation. Dysfunction in KF neuronal activity is thought to contribute to respiratory abnormalities seen in Rett syndrome (RTT). This study utilizes computational modeling to explore different dynamical regimes of KF activity and their compatibility with experimental observations. By analyzing different model configurations, the study identifies inhibitory inputs to the KF that lead to RTT-like respiratory patterns and proposes potential KF local circuit organizations. Two models are presented that simulate both normal breathing and RTT-like breathing patterns. These models provide plausible hypotheses and specific predictions for future experimental investigations, offering a general framework for understanding KF dynamics and potential network interactions.
Collapse
|
6
|
Musselwhite MN, Shen TY, Rose MJ, Iceman KE, Poliacek I, Pitts T, Bolser DC. THE INFLUENCE OF CO 2 ON SPATIOTEMPORAL FEATURES OF MECHANICALLY INDUCED COUGH IN ANESTHETIZED CATS. Respir Physiol Neurobiol 2022; 307:103964. [PMID: 36174962 DOI: 10.1016/j.resp.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Effective cough requires a significant increase in lung volume used to produce the shear forces on the airway to clear aspirated material. This increase in tidal volume during cough, along with an increase in tidal frequency during bouts of paroxysmal cough produces profound hyperventilation and thus reduces arterial CO2. While there are several reports in the literature regarding the effects of hypercapnia, hyperoxia, and hypoxia on cough, there is little research quantifying the effects of hypocapnia on the cough reflex. We hypothesized that decreased CO2 would enhance coughing. In 12 spontaneously breathing adult male cats, we compared bouts of prolonged mechanically stimulated cough, in which cough induced hyperventilation (CHV) was allowed to occur, with isocapnic cough trials where we maintained eupneic end-tidal CO2 by adding CO2 to the inspired gas. Isocapnia slightly increased cough number and decreased esophageal pressures with no change in EMG magnitudes or phase durations. The cough-to-eupnea transition was also analyzed between CHV, isocapnia, and a third group of animals that were mechanically hyperventilated to apnea. The transition to eupnea was highly sensitive to added CO2, and CHV apneas were much shorter than those produced by mechanical hyperventilation. We suggest that the cough pattern generator is relatively insensitive to CHV. In the immediate post-cough period, the appearance of breathing while CO2 is very low suggests a transient reduction in apneic threshold following a paroxysmal cough bout.
Collapse
Affiliation(s)
- M Nicholas Musselwhite
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America.
| | - Tabitha Y Shen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| | - Kimberly E Iceman
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville. 511 S Floyd St, MDR 616, Louisville, Kentucky, 40202, United States of America
| | - Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics. Malá hora 4A, 036 01 Martin-Záturčie, Slovakia
| | - Teresa Pitts
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville. 511 S Floyd St, MDR 616, Louisville, Kentucky, 40202, United States of America.
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida. 1333 Center Dr, Gainesville, Florida, 32603, United States of America
| |
Collapse
|
7
|
Chen Z, Lin MT, Zhan C, Zhong NS, Mu D, Lai KF, Liu MJ. A descending pathway emanating from the periaqueductal gray mediates the development of cough-like hypersensitivity. iScience 2022; 25:103641. [PMID: 35028531 PMCID: PMC8741493 DOI: 10.1016/j.isci.2021.103641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic cough is a common refractory symptom of various respiratory diseases. However, the neural mechanisms that modulate the cough sensitivity and mediate chronic cough remain elusive. Here, we report that GABAergic neurons in the lateral/ventrolateral periaqueductal gray (l/vlPAG) suppress cough processing via a descending pathway. We found that l/vlPAG neurons are activated by coughing-like behaviors and that tussive agent-evoked coughing-like behaviors are impaired after activation of l/vlPAG neurons. In addition, we showed that l/vlPAG neurons form inhibitory synapses with the nucleus of the solitary tract (NTS) neurons. The synaptic strength of these inhibitory projections is weaker in cough hypersensitivity model mice than in naïve mice. Important, activation of l/vlPAG GABAergic neurons projecting to the NTS decreases coughing-like behaviors. In contrast, suppressing these neurons enhances cough sensitivity. These results support the notion that l/vlPAG GABAergic neurons play important roles in cough hypersensitivity and chronic cough through disinhibition of cough processing at the medullary level. GABAergic neurons in the l/vlPAG inhibit coughing-like behaviors The l/vlPAG sends predominately inhibitory projections to the NTS l/vlPAG GABAergic neurons modulate coughing-like behaviors via descending projections l/vlPAG-NTS projections mediate cough hypersensitivity via disinhibitory mechanisms
Collapse
Affiliation(s)
- Zhe Chen
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China.,Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, China
| | - Ming-Tong Lin
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Ke-Fang Lai
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| | - Mingzhe J Liu
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yan Jiang Xi Road, Guangzhou 510120, China
| |
Collapse
|
8
|
Singh N, Driessen AK, McGovern AE, Moe AAK, Farrell MJ, Mazzone SB. Peripheral and central mechanisms of cough hypersensitivity. J Thorac Dis 2020; 12:5179-5193. [PMID: 33145095 PMCID: PMC7578480 DOI: 10.21037/jtd-2020-icc-007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic cough is a difficult to treat symptom of many respiratory and some non-respiratory diseases, indicating that varied pathologies can underpin the development of chronic cough. However, clinically and experimentally it has been useful to collate these different pathological processes into the single unifying concept of cough hypersensitivity. Cough hypersensitivity syndrome is reflected by troublesome cough often precipitated by levels of stimuli that ordinarily don't cause cough in healthy people, and this appears to be a hallmark feature in many patients with chronic cough. Accordingly, a strong argument has emerged that changes in the excitability and/or normal regulation of the peripheral and central neural circuits responsible for cough are instrumental in establishing cough hypersensitivity and for causing excessive cough in disease. In this review, we explore the current peripheral and central neural mechanisms that are believed to be involved in altered cough sensitivity and present possible links to the mechanism of action of novel therapies that are currently undergoing clinical trials for chronic cough.
Collapse
Affiliation(s)
- Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Alexandria K. Driessen
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Alice E. McGovern
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| | - Michael J. Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Neuroscience, School of Biomedical Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2020; 156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
The Kölliker-Fuse nucleus (KF) is a functionally distinct component of the parabrachial complex, located in the dorsolateral pons of mammals. The KF has a major role in respiration and upper airway control. A comprehensive understanding of the KF and its contributions to respiratory function and dysfunction requires an appreciation for its neurochemical characteristics. The goal of this review is to summarize the diverse neurochemical composition of the KF, focusing on the neurotransmitters, neuromodulators, and neuropeptides present. We also include a description of the receptors expressed on KF neurons and transporters involved in each system, as well as their putative roles in respiratory physiology. Finally, we provide a short section reviewing the literature regarding neurochemical changes in the KF in the context of respiratory dysfunction observed in SIDS and Rett syndrome. By over-viewing the current literature on the neurochemical composition of the KF, this review will serve to aid a wide range of topics in the future research into the neural control of respiration in health and disease.
Collapse
Affiliation(s)
- Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Sebastian N Maletz
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jordan T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Brandon T Reid
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Bautista TG, Leech J, Mazzone SB, Farrell MJ. Regional brain stem activations during capsaicin inhalation using functional magnetic resonance imaging in humans. J Neurophysiol 2019; 121:1171-1182. [DOI: 10.1152/jn.00547.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coughing is an airway protective behavior elicited by airway irritation. Animal studies show that airway sensory information is relayed via vagal sensory fibers to termination sites within dorsal caudal brain stem and thereafter relayed to more rostral sites. Using functional magnetic resonance imaging (fMRI) in humans, we previously reported that inhalation of the tussigenic stimulus capsaicin evokes a perception of airway irritation (“urge to cough”) accompanied by activations in a widely distributed brain network including the primary sensorimotor, insular, prefrontal, and posterior parietal cortices. Here we refine our imaging approach to provide a directed survey of brain stem areas activated by airway irritation. In 15 healthy participants, inhalation of capsaicin at a maximal dose that elicits a strong urge to cough without behavioral coughing was associated with activation of medullary regions overlapping with the nucleus of the solitary tract, paratrigeminal nucleus, spinal trigeminal nucleus and tract, cardiorespiratory regulatory areas homologous to the ventrolateral medulla in animals, and the midline raphe. Interestingly, the magnitude of activation within two cardiorespiratory regulatory areas was positively correlated ( r2 = 0.47, 0.48) with participants’ subjective ratings of their urge to cough. Capsaicin-related activations were also observed within the pons and midbrain. The current results add to knowledge of the representation and processing of information regarding airway irritation in the human brain, which is pertinent to the pursuit of novel cough therapies. NEW & NOTEWORTHY Functional brain imaging in humans was optimized for the brain stem. We provide the first detailed description of brain stem sites activated in response to airway irritation. The results are consistent with findings in animal studies and extend our foundational knowledge of brain processing of airway irritation in humans.
Collapse
Affiliation(s)
- Tara G. Bautista
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennifer Leech
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Stuart B. Mazzone
- The Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael J. Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Hu XB, Fu SH, Luo QI, He JZ, Qiu YF, Lai W, Zhong M. Down-regulation of microRNA-216a confers protection against yttrium aluminium garnet laser-induced retinal injury via the GDNF-mediated GDNF/GFRα1/RET signalling pathway. J Biosci 2018; 43:985-1000. [PMID: 30541958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Retinal injury plays a leading role in the onset of visual impairment. Current forms of treatment are not able to ameliorate scarring, cell death and tissue and axon regeneration. Recently, microRNA-216a (miR-216a) has been reported to regulate snx5, a novel notch signalling pathway component during retinal development. This study aims to elucidate the role of miR-216a in yttrium aluminium garnet (YAG) laser-induced retinal injury by targeting glial cell line-derived neurotrophic factor (GDNF) via GDNF/GDNF family neurotrophic factor receptor α1 (GFRα1)/rearranged during transfection (RET) signalling pathway. Wistar male rats were first randomly assigned into control and model groups. Immunohistochemistry was performed to detect the GDNF positive expression rate and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining for apoptotic index (AI) of retinal tissue. Retinal neurons were divided into normal, blank, negative control (NC), miR-216a mimic, miR-216a inhibitor, siRNA-GDNF and miR-216a inhibitor?siRNA-GDNF groups. Dual luciferase reporter assay was conducted in order to identify the targeting relationship between GDNF and miR-216a. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot were used for the analysis of mRNA and protein levels of miR-216a and related genes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell proliferation and flow cytometry was used to observe cell cycle and apoptosis. Results show that the model group had an increased GDNF positive rate, AI of retinal tissue and mRNA and protein levels of cellular oncogene fos (c-fos), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), GDNF, GFRα1 and bcl-2-associated X protein (bax), declined miR-216a level and mRNA and protein levels of RET and bcl-2 compared with the control group. GDNF was verified as the target gene for miR-216a. Compared with the blank and NC groups, the miR-216a mimic and siRNA-GDNF groups had higher mRNA and protein levels of c-fos, VEGF and bax, cell number in the G1 phase and increased cell apoptosis but reduced BDNF, GDNF, GFRα1, RET and bcl-2 expression, cell proliferation and cell numbers in the S phase, while the opposite trend was observed in the miR-216a inhibitor group. Taken together, our findings demonstrate that elevated GDNF levels can reduce the retinal injury, whereby down-regulated miR-216a aggravates the YAG laser-induced retinal injury by targeting the GDNF level through the GDNF/ GFRα1/RET signalling pathway.
Collapse
Affiliation(s)
- Xi-Bin Hu
- Department of Ophthalmology, Jiangxi Pingxiang People's Hospital, Pingxiang 337055, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen Z, Gu D, Fan L, Zhang W, Sun L, Chen H, Dong R, Lai K. Neuronal Activity of the Medulla Oblongata Revealed by Manganese-Enhanced Magnetic Resonance Imaging in a Rat Model of Gastroesophageal Reflux-Related Cough. Physiol Res 2018; 68:119-127. [PMID: 30433807 DOI: 10.33549/physiolres.933791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated neuronal activity of the medulla oblongata during gastroesophageal reflux-related cough (GERC). A rat model of GERC was generated by perfusing HCl into lower esophagus and inducing cough with citric acid. The HCl group rat was received HCl perfusion without citric acid-induced cough. The saline control rat was perfused with saline instead and cough was induced. Citric acid-induced cough rat was only induced by citric acid. Blank group rats were fed normally. Fos expressions were observed in medulla oblongata nuclei using immunohistochemistry. Manganese-enhanced magnetic resonance imaging (MEMRI) was performed to detect the Mn(2+) signal following intraperitoneal injection of MnCl(2). HCl perfusion and citric acid-induced cough caused Fos expressions in the nucleus of solitary tract (nTS), dorsal motor nucleus of the vagus (DMV), paratrigeminal nucleus (Pa5), and intermediate reticular nucleus (IRt), which was higher than HCl group, saline control group, citric acid-induced cough group, and blank group. A high Mn(2+) signal was also observed in most of these nuclei in model rats, compared with blank group animals. The Mn(2+) signal was also higher in the HCl, saline and citric acid-induced cough group animals, compared with blank group animals. The study showed medulla oblongata neurons were excited in a HCl perfusion and citric acid-induced cough rat model, and nTS, DMV, Pa5 and IRt neurons maybe involved in the cough process and signal integrate.
Collapse
Affiliation(s)
- Zhe Chen
- The First People's Hospital of Kunshan, Jiangsu University, Suzhou, China
| | - Dachuan Gu
- Fu Wai Hospital, Peking Union Medical College, Beijing, China
| | - Linfeng Fan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weitao Zhang
- Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lejia Sun
- Peking Union Medical College, Beijing, China
| | - Hui Chen
- First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rong Dong
- Medical School of Southeast University, Nanjing, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
13
|
Hu XB, Fu SH, Luo Q, He JZ, Qiu YF, Lai W, Zhong M. Down-regulation of microRNA-216a confers protection against yttrium aluminium garnet laser-induced retinal injury via the GDNF-mediated GDNF/GFRα1/RET signalling pathway. J Biosci 2018. [DOI: 10.1007/s12038-018-9795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Chen Z, Sun L, Chen H, Gu D, Zhang W, Yang Z, Peng T, Dong R, Lai K. Dorsal Vagal Complex Modulates Neurogenic Airway Inflammation in a Guinea Pig Model With Esophageal Perfusion of HCl. Front Physiol 2018; 9:536. [PMID: 29867575 PMCID: PMC5962767 DOI: 10.3389/fphys.2018.00536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
Neurogenic airway inflammation in chronic cough and bronchial asthma related to gastroesophageal reflux (GER) is involved in the esophageal–bronchial reflex, but it is unclear whether this reflex is mediated by central neurons. This study aimed to investigate the regulatory effects of the dorsal vagal complex (DVC) on airway inflammation induced by the esophageal perfusion of hydrochloric acid (HCl) following the microinjection of nuclei in the DVC in guinea pigs. Airway inflammation was evaluated by measuring the extravasation of Evans blue dye (EBD) and substance P (SP) expression in the airway. Neuronal activity was indicated by Fos expression in the DVC. The neural pathways from the lower esophagus to the DVC and the DVC to the airway were identified using DiI tracing and pseudorabies virus Bartha (PRV-Bartha) retrograde tracing, respectively. HCl perfusion significantly increased plasma extravasation, SP expression in the trachea, and the expression of SP and Fos in the medulla oblongata nuclei, including the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus (DMV). The microinjection of glutamic acid (Glu) or exogenous SP to enhance neuronal activity in the DVC significantly potentiated plasma extravasation and SP release induced by intra-esophageal perfusion. The microinjection of γ-aminobutyric acid (GABA), lidocaine to inhibit neuronal activity or anti-SP serum in the DVC alleviated plasma extravasation and SP release. In conclusion, airway inflammation induced by the esophageal perfusion of HCl is regulated by DVC. This study provides new insight for the mechanism of airway neurogenic inflammation related to GER.
Collapse
Affiliation(s)
- Zhe Chen
- The First People's Hospital of Kunshan, Jiangsu University, Kunshan, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lejia Sun
- Department of Hepatobiliary Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hui Chen
- ICU, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dachuan Gu
- Department of Cardiothoracic Surgery, Fu Wai Hospital, Beijing, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Dong
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Inhibitory modulation of the cough reflex by acetylcholine in the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol 2018; 257:93-99. [PMID: 29369803 DOI: 10.1016/j.resp.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
A cholinergic system has been described in the nucleus tractus solitarii (NTS). However, no information is available on the role played by acetylcholine (ACh) in the modulation of the cough reflex within the caudal NTS that has an important function in cough regulation. We addressed this issue making use of bilateral microinjections (30-50 nl) of 10 mM ACh combined with 5 mM physostigmine as well as of 10 mM mecamylamine or 10 mM scopolamine into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Microinjections of ACh/physostigmine caused depressant effects on the cough reflex induced by mechanical and chemical stimulation of the tracheobronchial tree. They also elicited transient increases in respiratory frequency and decreases in abdominal activity. These effects were prevented by scopolamine, but not by mecamylamine. The results show for the first time that ACh exerts an inhibitory modulation of the cough reflex through muscarinic receptors within the caudal NTS. They also may provide hints for novel antitussive approaches.
Collapse
|
16
|
Sex differences in cough reflex. Respir Physiol Neurobiol 2017; 245:122-129. [DOI: 10.1016/j.resp.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022]
|
17
|
Brainstem mechanisms underlying the cough reflex and its regulation. Respir Physiol Neurobiol 2017; 243:60-76. [DOI: 10.1016/j.resp.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
|
18
|
Poliacek I, Simera M, Veternik M, Kotmanova Z, Bolser DC, Machac P, Jakus J. Role of the dorsomedial medulla in suppression of cough by codeine in cats. Respir Physiol Neurobiol 2017; 246:59-66. [PMID: 28778649 DOI: 10.1016/j.resp.2017.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
The modulation of cough by microinjections of codeine in 3 medullary regions, the solitary tract nucleus rostral to the obex (rNTS), caudal to the obex (cNTS) and the lateral tegmental field (FTL) was studied. Experiments were performed on 27 anesthetized spontaneously breathing cats. Electromyograms (EMG) were recorded from the sternal diaphragm and expiratory muscles (transversus abdominis and/or obliquus externus; ABD). Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Bilateral microinjections of codeine (3.3 or 33mM, 54±16nl per injection) in the cNTS had no effect on cough, while those in the rNTS and in the FTL reduced coughing. Bilateral microinjections into the rNTS (3.3mM codeine, 34±1 nl per injection) reduced the number of cough responses by 24% (P<0.05), amplitudes of diaphragm EMG by 19% (P<0.01), of ABD EMG by 49% (P<0.001) and of expiratory esophageal pressure by 56% (P<0.001). Bilateral microinjections into the FTL (33mM codeine, 33±3 nl per injection) induced reductions in cough expiratory as well as inspiratory EMG amplitudes (ABD by 60% and diaphragm by 34%; P<0.01) and esophageal pressure amplitudes (expiratory by 55% and inspiratory by 26%; P<0.001 and 0.01, respectively). Microinjections of vehicle did not significantly alter coughing. Breathing was not affected by microinjections of codeine. These results suggest that: 1) codeine acts within the rNTS and the FTL to reduce cough in the cat, 2) the neuronal circuits in these target areas have unequal sensitivity to codeine and/or they have differential effects on spatiotemporal control of cough, 3) the cNTS has a limited role in the cough suppression induced by codeine in cats.
Collapse
Affiliation(s)
- Ivan Poliacek
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Michal Simera
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Marcel Veternik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Zuzana Kotmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Donald C Bolser
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Peter Machac
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Jakus
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Mala Hora 4, 036 01, Martin, Slovakia
| |
Collapse
|
19
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
20
|
Poliacek I, Pitts T, Rose MJ, Davenport PW, Simera M, Veternik M, Kotmanova Z, Bolser DC. Microinjection of kynurenic acid in the rostral nucleus of the tractus solitarius disrupts spatiotemporal aspects of mechanically induced tracheobronchial cough. J Neurophysiol 2017; 117:2179-2187. [PMID: 28250153 DOI: 10.1152/jn.00935.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
The importance of neurons in the nucleus of the solitary tract (NTS) in the production of coughing was tested by microinjections of the nonspecific glutamate receptor antagonist kynurenic acid (kyn; 100 mM in artificial cerebrospinal fluid) in 15 adult spontaneously breathing anesthetized cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airway. Electromyograms (EMG) were recorded from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles. Bilateral microinjections of kyn into the NTS rostral to obex [55 ± 4 nl total in 2 locations (n = 6) or 110 ± 4 nl total in 4 locations (n = 5)], primarily the ventrolateral subnucleus, reduced cough number and expiratory cough efforts (amplitudes of ABD EMG and maxima of esophageal pressure) compared with control. These microinjections also markedly prolonged the inspiratory phase, all cough-related EMG activation, and the total cough cycle duration as well as some other cough-related time intervals. In response to microinjections of kyn into the NTS rostral to the obex respiratory rate decreased, and there were increases in the durations of the inspiratory and postinspiratory phases and mean blood pressure. However, bilateral microinjections of kyn into the NTS caudal to obex as well as control vehicle microinjections in the NTS location rostral to obex had no effect on coughing or cardiorespiratory variables. These results are consistent with the existence of a critical component of the cough rhythmogenic circuit located in the rostral ventral and lateral NTS. Neuronal structures of the rostral NTS are significantly involved specifically in the regulation of cough magnitude and phase timing.NEW & NOTEWORTHY The nucleus of the solitary tract contains significant neuronal structures responsible for control of 1) cough excitability, 2) motor drive during cough, 3) cough phase timing, and 4) cough rhythmicity. Significant elimination of neurons in the solitary tract nucleus results in cough apraxia (incomplete and/or disordered cough pattern). The mechanism of the cough impairment is different from that for the concomitant changes in breathing.
Collapse
Affiliation(s)
- Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Teresa Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Marcel Veternik
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Zuzana Kotmanova
- Institute of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; and
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida;
| |
Collapse
|
21
|
Haviv L, Friedman H, Bierman U, Glass I, Plotkin A, Weissbrod A, Shushan S, Bluvshtein V, Aidinoff E, Sobel N, Catz A. Using a Sniff Controller to Self-Trigger Abdominal Functional Electrical Stimulation for Assisted Coughing Following Cervical Spinal Cord Lesions. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1461-1471. [PMID: 28166501 DOI: 10.1109/tnsre.2016.2632754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Individuals with cervical spinal cord lesions (SCLs) typically depend on caregivers to manually assist in coughing by pressing against their abdominal wall. Coughing can also be assisted by functional electric stimulation (FES) applied to abdominal muscles via surface electrodes. Efficacy of FES, however, depends on precise temporal synchronization. The sniff controller is a trigger that enables paralyzed individuals to precisely control external devices through alterations in nasal airflow. We hypothesized that FES self-triggering by sniff controller may allow for effective cough timing. After optimizing parameters in 16 able-bodied subjects, we measured peak expiratory flow (PEF) in 14 subjects with SCL who coughed with or without assistance. Assistance was either manual assistance of a caregiver, caregiver activated FES, button self-activated FES (for SCL participants who could press a button), or sniff-controlled self-activated FES. We found that all assisted methods provided equally effective improvements, increasing PEF on average by 25 ± 27% (F[4,52] = 7.99, p = 0.00004 ). There was no difference in efficacy between methods of assistance ( F[3,39] = 0.41, p = 0.75 ). Notably, sniff-controlled FES was the only method of those tested that can be activated by all paralyzed patients alone. This provides for added independence that is a critical factor in quality of life following SCL.
Collapse
|
22
|
Zhong S, Liu XD, Nie YC, Gan ZY, Yang LQ, Huang CQ, Lai KF, Zhong NS. Antitussive activity of the Schisandra chinensis fruit polysaccharide (SCFP-1) in guinea pigs models. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:378-385. [PMID: 27497637 DOI: 10.1016/j.jep.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/15/2016] [Accepted: 08/03/2016] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill. (S. chinensis), locally known as "Wuweizi", has been used in the treatment of chronic cough as prescription medications of Traditional Chinese Medicine for thousands of years. However, the components of antitussive activity of S. chinensis and the mechanism are poorly understood. AIM OF THE STUDY This study aims to investigate the antitussive activity of polysaccharides extracted from S. chinensis. MATERIALS AND METHODS S. chinensis fruit polysaccharide-1 (SCFP-1) was extracted by 95% ethanol and distilled water successively, and then the water extraction was isolated with chromatographic columns. The preliminary characterization of SCFP-1 was analyzed by gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS) and some other recognized chemical methods. Antitussive potential of SCFP-1 was estimated at dose of 250, 500, and 1000mg/kg respectively by peroral administration in a guinea pigs model with cough hypersensitivity induced by cigarette smoke (Chronic cough model) or acute cough guinea model induced by citric acid (Acute cough model). Also, the time-dependent antitussive effect of SCFP-1 were evaluated with acute cough model, and compared with codeine. RESULTS The molecular of SCFP-1 was 3.18×104Da, mainly being composed of glucose and arabinose (66.5% and 29.4%, respectively). Peroral administration of SCFP-1 at 250, 500, and 1000mg/kg showed remarkable suppressive effects respectively on cough in both of chronic cough model and acute cough model. Meanwhile, inflammatory cell in BALF and some typical characteristics of nonspecific airway inflammation in animals exposed to CS was significantly attenuated after pretreatment with SCFP-1. The cough suppression of SCFP-1 (500 mg/kg) stablly lasted during the whole 5 h of time-dependent experiment, while no positive effect was observed after 300 min of oral administration of codeine. CONCLUSIONS SCFP-1 is one of the antitussive components of S. chinensis.
Collapse
Affiliation(s)
- Shan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China
| | - Xiao-Dong Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China
| | - Yi-Chu Nie
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China
| | - Zhen-Yong Gan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China
| | - Li-Qi Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China
| | - Chu-Qin Huang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China
| | - Ke-Fang Lai
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, People's Republic of China
| |
Collapse
|
23
|
Ivan P, Jana P, Teresa P, Zuzana K, Jan J, Michal S. Cough modulation by upper airway stimuli in cat - potential clinical application? ACTA ACUST UNITED AC 2016; 6:35-43. [PMID: 28944100 DOI: 10.4236/ojmip.2016.63004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The modulation of mechanically induced tracheobronchial cough was tested by applying various stimuli and the elicitation of other airway protective behaviors in pentobarbital anesthetized cats. Capsaicin and histamine were injected in the nose, and mechanical nylon fiber and / or air puff stimulation was applied to the nose and nasopharynx. Reflex responses of cough, sneeze, aspiration reflex and expiration reflex were induced mechanically. Swallow was initiated by the injection of water into oropharynx. Subthreshold mechanical stimulation of nasopharyngeal and nasal mucosa, as well as water stimulation in the oropharynx and larynx, with no motor response, had no effect on rhythmic coughing. Cough responsiveness and excitability increased with capsaicin and air puff stimuli delivered to the nose. Vice versa, the number of cough responses was reduced and cough latency increased when aspiration reflexes (>1) occurred before the cough stimulus or within inter-cough intervals (passive E2 cough phase). The occurrence of swallows increased the cough latency as well. Cough inspiratory and / or expiratory motor drive was enhanced by the occurrence of expiration reflexes, swallows, and sneezes and also by aspiration reflex within the inspiratory phase of cough and by nasal air puff stimuli. Complex central interactions, ordering and sequencing of motor acts from the airways may result in the disruption of cough rhythmic sequence but also in the enhancement of cough. Our data confirm that number of peripheral stimuli and respiratory motor responses significantly alters cough performance. We propose developing and testing stimulation paradigms that modify coughing and could be employed in correcting of inappropriate or excessive coughing.
Collapse
Affiliation(s)
- Poliacek Ivan
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| | - Plevkova Jana
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Pathophysiology
| | - Pitts Teresa
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University of Louisville, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery
| | - Kotmanova Zuzana
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| | - Jakus Jan
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| | - Simera Michal
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| |
Collapse
|
24
|
The Kölliker-Fuse nucleus: a review of animal studies and the implications for cranial nerve function in humans. Eur Arch Otorhinolaryngol 2015; 273:3505-3510. [PMID: 26688431 DOI: 10.1007/s00405-015-3861-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
To review the scientific literature on the relationship between Kölliker-Fuse nucleus (KF) and cranial nerve function in animal models, with view to evaluating the potential role of KF maturation in explaining age-related normal physiologic parameters and developmental and acquired impairment of cranial nerve function in humans. Medical databases (Medline and PubMed). Studies investigating evidence of KF activity responsible for a specific cranial nerve function that were based on manipulation of KF activity or the use of neural markers were included. Twenty studies were identified that involved the trigeminal (6 studies), vagus (9), and hypoglossal nerves (5). These pertained specifically to a role of the KF in mediating the dive reflex, laryngeal adductor control, swallowing function and upper airway tone. The KF acts as a mediator of a number of important functions that relate primarily to laryngeal closure, upper airway tone and swallowing. These areas are characterized by a variety of disorders that may present to the otolaryngologist, and hence the importance of understanding the role played by the KF in maintaining normal function.
Collapse
|
25
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Sakaguchi H, Hisa Y. Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs. J Neurophysiol 2015. [PMID: 26203106 DOI: 10.1152/jn.00332.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consistently halted, we recorded extracellular activity from RTN/pFRG neurons during these fictive behaviors in decerebrate, paralyzed, and artificially ventilated guinea pigs. The activity of the majority of recorded respiratory neurons was changed in synchrony with coughing and swallowing. To further evaluate the contribution of RTN/pFRG neurons to these nonrespiratory behaviors, the motor output patterns during breathing, coughing, and swallowing were compared before and after brain stem transection at the caudal margin of RTN/pFRG region. In addition, the effects of transection at its rostral margin were also investigated to evaluate pontine contribution to these behaviors. During respiration, transection at the rostral margin attenuated the postinspiratory activity of the recurrent laryngeal nerve. Meanwhile, the late expiratory activity of the abdominal nerve was abolished after caudal transection. The caudal transection also decreased the amplitude of the coughing-related abdominal nerve discharge but did not abolish the activity. Swallowing could be elicited even after the caudal end transection. These findings raise the prospect that the RTN/pFRG contributes to expiratory regulation during normal respiration, although this region is not an essential element of the neuronal networks involved in coughing and swallowing.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan; and
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
26
|
Poliacek I, Rose MJ, Pitts TE, Mortensen A, Corrie LW, Davenport PW, Bolser DC. Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats. J Appl Physiol (1985) 2014; 118:265-72. [PMID: 25477349 DOI: 10.1152/japplphysiol.00075.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphragm, abdominal muscle, and laryngeal muscles EMGs; and several temporal characteristics of cough were analyzed after administration of nicotine and compared with those during control and recovery period. (-)Nicotine (ia) reduced cough number, cough expiratory efforts, blood pressure, and heart rate in a dose-dependent manner. (-)Nicotine did not alter temporal characteristics of the cough motor pattern. Pretreatment with mecamylamine prevented the effect of (-)nicotine on blood pressure and heart rate, but did not block the antitussive action of this drug. (+)Nicotine was less potent than (-)nicotine for inhibition of cough. Microinjections of (-)nicotine into the caudal ventral respiratory column produced similar inhibitory effects on cough as administration of this isomer by the ia route. Mecamylamine microinjected in the region just before nicotine did not significantly reduce the cough suppressant effect of nicotine. Nicotinic acetylcholine receptors significantly modulate functions of brain stem and in particular caudal ventral respiratory column neurons involved in expression of the tracheobronchial cough reflex by a mecamylamine-insensitive mechanism.
Collapse
Affiliation(s)
- I Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics, Martin, Slovak Republic
| | - M J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - T E Pitts
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - A Mortensen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - L W Corrie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - P W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - D C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| |
Collapse
|
27
|
Mutolo D, Cinelli E, Bongianni F, Pantaleo T. Inhibitory control of the cough reflex by galanin receptors in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1358-67. [DOI: 10.1152/ajpregu.00237.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The caudal nucleus tractus solitarii (NTS) is the main central station of cough-related afferents and a strategic site for the modulation of the cough reflex. The similarities between the characteristics of central processing of nociceptive and cough-related inputs led us to hypothesize that galanin, a neuropeptide implicated in the control of pain, could also be involved in the regulation of the cough reflex at the level of the NTS, where galanin receptors have been found. We investigated the effects of galanin and galnon, a nonpeptide agonist at galanin receptors, on cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. Drugs were microinjected (30–50 nl) into the caudal NTS of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Galnon antitussive effects on cough responses to the mechanical stimulation of the airway mucosa via a custom-built device were also investigated. Bilateral microinjections of 1 mM galanin markedly decreased cough number, peak abdominal activity, and increased cough-related total cycle duration. Bilateral microinjections of 1 mM galnon induced mild depressant effects on cough, whereas bilateral microinjections of 10 mM galnon caused marked antitussive effects consistent with those produced by galanin. Galnon effects were confirmed by using the cough-inducing device. The results indicate that galanin receptors play a role in the inhibitory control of the cough reflex at the level of the caudal NTS and provide hints for the development of novel antitussive strategies.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
28
|
Ando A, Farrell MJ, Mazzone SB. Cough-related neural processing in the brain: A roadmap for cough dysfunction? Neurosci Biobehav Rev 2014; 47:457-68. [DOI: 10.1016/j.neubiorev.2014.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/29/2014] [Accepted: 09/25/2014] [Indexed: 01/05/2023]
|
29
|
Raja W, Nosalova G, Ghosh K, Sivova V, Nosal S, Ray B. In vivo antitussive activity of a pectic arabinogalactan isolated from Solanum virginianum L. in Guinea pigs. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:41-46. [PMID: 25150526 DOI: 10.1016/j.jep.2014.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum virginianum L. is used for the management of fever, bronchial asthma and cough for thousands of years. While the link to a particular indication has been established in human, the active principle of the formulation remains unknown. Herein, we have investigated a polysaccharide isolated from its leaves. MATERIALS AND METHODS Utilizing traditional aqueous extraction protocol and using chemical, chromatographic, spectroscopic and biological methods we have analysed an antitussive pectic arabinogalactan isolated from its leaves. RESULTS The water extracted polymer (WEP) is a highly branched arabinogalactan containing, inter alia, (1,3)-, (1,6)- and (1,3,6)-linked β-Galp residues, terminal-, (1,5)- and (1,3,5)-linked units of α-Araf together with (1,2)- and (1,2,4)-linked Rhap. In vivo investigation on the citric-acid induced cough efforts in guinea pigs shows that the antitussive activity of the orally administered pectic arabinogalactan is greater than codeine phosphate. Remarkably, this macromolecule neither altered specific airway smooth muscle reactivity significantly nor it induced considerable change on levels of NO in expiratory flow in guinea pigs. CONCLUSIONS Thus, traditional aqueous extraction method provides a molecular entity, which induces antitussive activity without addiction: this could represent an attractive approach in phytotherapeutic management.
Collapse
Affiliation(s)
- Washim Raja
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Gabriela Nosalova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Sklabinska 26, 03601 Martin, Slovakia
| | - Kanika Ghosh
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India
| | - Veronika Sivova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Sklabinska 26, 03601 Martin, Slovakia
| | - Slavomir Nosal
- Clinic of Pediatric Anesthesiology and Intensive Medicine, Jessenius Faculty of Medicine and Martin University Hospital, Kollárova 2, 03601 Martin, Slovakia
| | - Bimalendu Ray
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713 104, India.
| |
Collapse
|
30
|
Interactions of mechanically induced coughing and sneezing in cat. Respir Physiol Neurobiol 2014; 205:21-7. [PMID: 25262583 DOI: 10.1016/j.resp.2014.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/10/2014] [Accepted: 09/19/2014] [Indexed: 11/21/2022]
Abstract
Mutual interactions of cough and sneeze were studied in 12 spontaneously breathing pentobarbitone anesthetized cats. Reflexes were induced by mechanical stimulation of the tracheobronchial and nasal airways, respectively. The amplitude of the styloglossus muscle EMG moving average during the sneeze expulsion was 16-fold higher than that during cough (p<0.01). Larger inspiratory efforts occurred during coughing (p<0.01) vs. those in sneeze. The number of reflexes during simultaneous mechanical stimulation of the nasal and tracheal airways was not altered significantly compared to controls (p>0.05) and there was no modulation in temporal characteristics of the behaviors. When both reflexes occurred during simultaneous stimuli the responses were classified as either sneeze or cough (no hybrid responses occurred). During simultaneous stimulation of both airway sites, peak diaphragm EMG and inspiratory esophageal pressures during sneezes were significantly increased. The expiratory maxima of esophageal pressure and amplitudes of abdominal EMGs were increased in coughs and sneezes during simultaneous mechanical stimulation trials compared to control reflexes.
Collapse
|
31
|
Antitussive arabinogalactan of Andrographis paniculata demonstrates synergistic effect with andrographolide. Int J Biol Macromol 2014; 69:151-7. [DOI: 10.1016/j.ijbiomac.2014.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/17/2014] [Accepted: 05/14/2014] [Indexed: 12/18/2022]
|
32
|
Farmer DGS, Bautista TG, Jones SE, Stanic D, Dutschmann M. The midbrain periaqueductal grey has no role in the generation of the respiratory motor pattern, but provides command function for the modulation of respiratory activity. Respir Physiol Neurobiol 2014; 204:14-20. [PMID: 25058161 DOI: 10.1016/j.resp.2014.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/02/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023]
Abstract
It has previously been shown that stimulation of cell-columns in the periaqueductal grey (PAG) triggers site-specific cardiorespiratory effects. These are believed to facilitate changes in behaviour through coordinated changes in autonomic outflow. Here, we investigated whether PAG-evoked respiratory commands can be studied in situ using the decerebrate perfused brainstem preparation. Phrenic, vagus and abdominal iliohypogastric nerves were recorded before and after microinjection of L-glutamate (30-50 nl, 10 mM) or isoguvacine (GABA-receptor agonist, 30-50 nl, 10 mM) into the PAG. L-glutamate microinjection triggered a range of site-specific respiratory modulations (n = 17 preparations). Subsequent microinjection of isoguvacine into the same PAG sites had no effect on the baseline respiratory motor pattern or rhythm. We conclude that while the PAG has no function in respiratory pattern generation, PAG-evoked respiratory modulations can be evoked in situ in the absence of higher brain centres and while homeostatic parameters that may affect respiratory drive are held static.
Collapse
Affiliation(s)
- David G S Farmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Gate 11, Royal Parade, Victoria 3052, Australia
| | - Tara G Bautista
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Gate 11, Royal Parade, Victoria 3052, Australia
| | - Sarah E Jones
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Gate 11, Royal Parade, Victoria 3052, Australia
| | - Davor Stanic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Gate 11, Royal Parade, Victoria 3052, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Gate 11, Royal Parade, Victoria 3052, Australia.
| |
Collapse
|
33
|
Holstege G. The periaqueductal gray controls brainstem emotional motor systems including respiration. PROGRESS IN BRAIN RESEARCH 2014; 209:379-405. [PMID: 24746059 DOI: 10.1016/b978-0-444-63274-6.00020-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respiration is a motor system essential for the survival of the individual and of the species. Because of its vital significance, studies on respiration often assume that breathing takes place independent of other motor systems. However, motor systems generating vocalization, coughing, sneezing, vomiting, as well as parturition, ejaculation, and defecation encompass abdominal pressure control, which involves changes in the respiratory pattern. The mesencephalic periaqueductal gray (PAG) controls all these motor systems. It determines the level setting of the whole body by means of its very strong projections to the ventromedial medullary tegmentum, but it also controls the cell groups that generate vocalization, coughing, sneezing, vomiting, as well as respiration. For this control, the PAG maintains very strong connections with the nucleus retroambiguus, which enables it to control abdominal and intrathoracic pressure. In this same context, the PAG also runs the pelvic organs, bladder, uterus, prostate, seminal vesicles, and the distal colon and rectum via its projections to the pelvic organ stimulating center and the pelvic floor stimulating center. These cell groups, via long descending projections, have direct control of the parasympathetic motoneurons in the sacral cord as well as of the somatic motoneurons in the nucleus of Onuf, innervating the pelvic floor. Respiration, therefore, is not a motor system that functions by itself, but is strongly regulated by the same systems that also control the other motor output systems.
Collapse
Affiliation(s)
- Gert Holstege
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
34
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
35
|
Nosalova G, Fleskova D, Jurecek L, Sadlonova V, Ray B. Herbal polysaccharides and cough reflex. Respir Physiol Neurobiol 2013; 187:47-51. [DOI: 10.1016/j.resp.2013.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 02/05/2023]
|
36
|
Simera M, Veternik M, Poliacek I. Naloxone Blocks Suppression of Cough by Codeine in Anesthetized Rabbits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 756:65-71. [DOI: 10.1007/978-94-007-4549-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
37
|
Nosalova G, Jurecek L, Hromadkova Z, Kostalova Z, Sadlonova V. Antioxidant activity of herbal polysaccharides and cough reflex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 788:51-7. [PMID: 23835958 DOI: 10.1007/978-94-007-6627-3_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extraction of Fallopia sachalinensis leaves resulted in two fractions (FS-1 and FS-2). Chemical and spectral analyses of samples revealed the prevalence of pectic polysaccharides with high galacturonic acid, arabinose, galactose, and rhamnose content. Arabinogalactan with a higher content of phenolic prevailed in the FS-1, whereas rhamnogalacturonan predominated in the FS-2 fraction. Both polysaccharides showed significant antioxidant activity according to DPPH and FRAP assays. Evaluation of antitussive activity in healthy adult conscious guinea pigs after oral application of 50 and 75 mg/kg of the FS-2 polysaccharide extracts showed a significant suppression of cough reflex, without an influence on specific airway resistance. The suppression of cough was comparable with that of codeine.
Collapse
Affiliation(s)
- G Nosalova
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, 26 Sklabinska St., 036 01, Martin, Slovakia,
| | | | | | | | | |
Collapse
|
38
|
Abstract
The airways and lungs are innervated by both sympathetic and parasympathetic nerves. Cholinergic parasympathetic innervation is well conserved in the airways while the distribution of noncholinergic parasympathetic and adrenergic sympathetic nerves varies considerably amongst species. Autonomic nerve function is regulated primarily through reflexes initiated upon bronchopulmonary vagal afferent nerves. Central regulation of autonomic tone is poorly described but some key elements have been defined.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | | |
Collapse
|
39
|
Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Modulation of the cough reflex by GABA(A) receptors in the caudal ventral respiratory group of the rabbit. Front Physiol 2012; 3:403. [PMID: 23087651 PMCID: PMC3475209 DOI: 10.3389/fphys.2012.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/01/2012] [Indexed: 11/16/2022] Open
Abstract
We have previously shown that the caudal ventral respiratory group (cVRG) is a possible site of action of some antitussive drugs and plays a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. In addition, it has been reported that medullary expiratory neurons of the cVRG are subject to potent GABAergic gain modulation. This study was devoted to investigate the role of cVRG GABAA receptors in the control of baseline respiratory activity and cough responses to mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. To this purpose, bilateral microinjections (30–50 nl) of bicuculline or muscimol were performed into the cVRG of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bicuculline (1 mM) increased peak abdominal activity and respiratory frequency due to decreases in TE. Cough responses were potentiated mainly owing to increases in the cough number. The recovery was observed within ~2 h. On the contrary, muscimol (0.3 mM) abolished abdominal activity and decreased respiratory frequency due to increases in TE. In addition, cough responses were progressively reduced and completely suppressed within ~20 min. Partial recovery of cough responses was achieved after ~3 h or within ~5 min following bicuculline microinjections at the same locations. The sneeze reflex induced by mechanical stimulation of the nasal mucosa persisted following bicuculline and muscimol microinjections. However, the number and intensity of expiratory thrusts were enhanced by bicuculline and suppressed by muscimol. The results provide evidence that a potent GABAA-mediated inhibitory modulation is exerted at the level of the cVRG not only on respiratory activity, but also on cough and sneeze reflex responses.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze Firenze, Italy
| | | | | | | |
Collapse
|
40
|
Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience 2012; 218:100-9. [DOI: 10.1016/j.neuroscience.2012.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 01/09/2023]
|
41
|
Mutolo D, Bongianni F, Cinelli E, Giovannini MG, Pantaleo T. Suppression of the cough reflex by inhibition of ERK1/2 activation in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Regul Integr Comp Physiol 2012; 302:R976-83. [DOI: 10.1152/ajpregu.00629.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The caudal nucleus tractus solitarii (cNTS), the predominant site of termination of cough-related afferents, has been shown to be a site of action of some centrally acting antitussive agents. A role of ERK1/2 has been suggested in acute central processing of nociceptive inputs. Because pain and cough share similar features, we investigated whether ERK1/2 activation could also be involved in the central transduction of tussive inputs. For this purpose, we undertook the present research on pentobarbital sodium-anesthetized, spontaneously breathing rabbits by using microinjections (30–50 nl) of an inhibitor of ERK1/2 activation (U0126) into the cNTS. Bilateral microinjections of 25 mM U0126 caused rapid and reversible reductions in the cough responses induced by both mechanical and chemical (citric acid) stimulation of the tracheobronchial tree. In particular, the cough number and peak abdominal activity decreased. Bilateral microinjections of 50 mM U0126 completely suppressed the cough reflex without affecting the Breuer-Hering inflation reflex, the pulmonary chemoreflex, and the sneeze reflex. These U0126-induced effects were, to a large extent, reversible. Bilateral microinjections of 50 mM U0124, the inactive analog of U0126, at the same cNTS sites had no effect. This is the first study that provides evidence that ERK1/2 activation within the cNTS is required for the mediation of cough reflex responses in the anesthetized rabbit. These results suggest a role for ERK1/2 in the observed effects via nontranscriptional mechanisms, given the short time involved. They also may provide hints for the development of novel antitussive strategies.
Collapse
Affiliation(s)
| | | | | | - Maria Grazia Giovannini
- Dipartimento di Farmacologia Preclinica e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | | |
Collapse
|
42
|
Poliacek I, Morris KF, Lindsey BG, Segers LS, Rose MJ, Corrie LWC, Wang C, Pitts TE, Davenport PW, Bolser DC. Blood pressure changes alter tracheobronchial cough: computational model of the respiratory-cough network and in vivo experiments in anesthetized cats. J Appl Physiol (1985) 2011; 111:861-73. [PMID: 21719729 PMCID: PMC3174787 DOI: 10.1152/japplphysiol.00458.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/27/2011] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis, motivated in part by a coordinated computational cough network model, that alterations of mean systemic arterial blood pressure (BP) influence the excitability and motor pattern of cough. Model simulations predicted suppression of coughing by stimulation of arterial baroreceptors. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) of inspiratory parasternal, expiratory abdominal, laryngeal posterior cricoarytenoid (PCA), and thyroarytenoid muscles along with esophageal pressure (EP) and BP were recorded. Transiently elevated BP significantly reduced cough number, cough-related inspiratory, and expiratory amplitudes of EP, peak parasternal and abdominal EMG, and maximum of PCA EMG during the expulsive phase of cough, and prolonged the cough inspiratory and expiratory phases as well as cough cycle duration compared with control coughs. Latencies from the beginning of stimulation to the onset of cough-related diaphragm and abdominal activities were increased. Increases in BP also elicited bradycardia and isocapnic bradypnea. Reductions in BP increased cough number; elevated inspiratory EP amplitude and parasternal, abdominal, and inspiratory PCA EMG amplitudes; decreased total cough cycle duration; shortened the durations of the cough expiratory phase and cough-related abdominal discharge; and shortened cough latency compared with control coughs. Reduced BP also produced tachycardia, tachypnea, and hypocapnic hyperventilation. These effects of BP on coughing likely originate from interactions between barosensitive and respiratory brainstem neuronal networks, particularly by modulation of respiratory neurons within multiple respiration/cough-related brainstem areas by baroreceptor input.
Collapse
Affiliation(s)
- Ivan Poliacek
- Dept. of Physiological Sciences, College of Veterinary Medicine, Univ. of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mazzone SB, McGovern AE, Cole LJ, Farrell MJ. Central nervous system control of cough: pharmacological implications. Curr Opin Pharmacol 2011; 11:265-71. [DOI: 10.1016/j.coph.2011.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/19/2011] [Indexed: 02/06/2023]
|
44
|
Simera M, Poliacek I, Jakus J. Central antitussive effect of codeine in the anesthetized rabbit. Eur J Med Res 2011; 15 Suppl 2:184-8. [PMID: 21147648 PMCID: PMC4360299 DOI: 10.1186/2047-783x-15-s2-184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Codeine represents a commonly used drug to suppress cough. Central antitussive effect of codeine has been confirmed in a number of animal studies. However, available data related to antitussive activity of codeine in rabbits are very limited. Objective We investigated the effects of codeine on cough, single expiratory responses (expiration-like reflex) induced by mechanical tracheo-bronchial stimulation, and on the sneeze reflex in the anesthetized rabbit. Materials and methods Twenty pentobarbitone anesthetized spontaneously breathing rabbits were used for the study. Increasing doses of codeine (codeinum dihydrogenphosphate, Interpharm) were injected intravenously (iv); 0, 0.15, 0.76, and 3.78 mg/kg of codeine dissolved in saline, 0.25 ml/kg) or intracerebroventricularly (icv); 0, 0.015, 0.076, and 0.378 mg/kg of codeine dissolved in artificial cerebrospinal fluid, 0.033 ml/kg. Results Both iv and icv injections of codeine led to a dose-dependent reduction of coughing provoked by tracheo-bronchial stimulation; however, the doses differed substantially. The effective cumulative dose for a 50% reduction in the number of coughs was 3.9 and 0.11 mg/kg after iv and icv administration of codeine, respectively; representing about 35-fold higher efficacy of the icv route. The numbers of expiration-like responses and sneeze reflex responses remained unchanged. Conclusions The study confirmed the central antitussive effect of codeine, but showed a low sensitivity of sneeze and expiration reflex to codeine. We validated the experimental model of an anesthetized rabbit for studies on central antitussive action.
Collapse
Affiliation(s)
- Michal Simera
- Institute of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | | | |
Collapse
|
45
|
Canning BJ, Mori N. Encoding of the cough reflex in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 2010; 300:R369-77. [PMID: 20926760 DOI: 10.1152/ajpregu.00044.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously described the physiological and morphological properties of the cough receptors and their sites of termination in the airways and centrally in the nucleus tractus solitarius (nTS). In the present study, we have addressed the hypothesis that the primary central synapses of the cough receptors subserve an essential role in the encoding of cough. We found that cough requires sustained, high-frequency (≥8-Hz) afferent nerve activation. We also found evidence for processes that both facilitate (summation, sensitization) and inhibit the initiation of cough. Sensitization of cough occurs with repetitive subthreshold activation of the cough receptors or by coincident activation of C-fibers and/or nTS neurokinin receptor activation. Desensitization of cough evoked by repetitive and/or continuous afferent nerve activation has a rapid onset (<60 s) and does not differentiate between tussive stimuli, suggesting a central nervous system-dependent process. The cough reflex can also be actively inhibited upon activation of other airway afferent nerve subtypes, including slowly adapting receptors and pulmonary C-fibers. The sensitization and desensitization of cough are likely attributable to the prominent, primary, and unique role of N-methyl-d-aspartate receptor-dependent signaling at the central synapses of the cough receptors. These attributes may have direct relevance to the presentation of cough in disease and for the effectiveness of antitussive therapies.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
46
|
Mutolo D, Bongianni F, Cinelli E, Pantaleo T. Depression of cough reflex by microinjections of antitussive agents into caudal ventral respiratory group of the rabbit. J Appl Physiol (1985) 2010; 109:1002-10. [PMID: 20651222 DOI: 10.1152/japplphysiol.00406.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that the caudal nucleus tractus solitarii is a site of action of some antitussive drugs and that the caudal ventral respiratory group (cVRG) region has a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. These findings led us to suggest that the cVRG region, and possibly other neural substrates involved in cough regulation, may be sites of action of antitussive drugs. To address this issue, we investigated changes in baseline respiratory activity and cough responses to tracheobronchial mechanical stimulation following microinjections (30-50 nl) of some antitussive drugs into the cVRG of pentobarbital-anesthetized, spontaneously breathing rabbits. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and baclofen at the lower concentrations (0.5 mM and 0.1 mM, respectively) decreased cough number, peak abdominal activity, and peak tracheal pressure and increased cough-related total cycle duration (Tt). At the higher concentrations (5 mM and 1 mM, respectively), both drugs abolished the cough reflex. DAMGO and baclofen also affected baseline respiratory activity. Both drugs reduced peak abdominal activity, while only DAMGO increased Tt, owing to increases in expiratory time. The neurokinin-1 (NK(1)) receptor antagonist CP-99,994 (10 mM) decreased cough number, peak abdominal activity, and peak tracheal pressure, without affecting baseline respiration. The NK(2) receptor antagonist MEN 10376 (5 mM) had no effect. The results indicate that the cVRG is a site of action of some antitussive agents and support the hypothesis that several neural substrates involved in cough regulation may share this characteristic.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Scienze Fisiologiche, Viale G. B. Morgagni 63, 50134 Florence, Italy
| | | | | | | |
Collapse
|
47
|
Canning BJ, Mori N. An essential component to brainstem cough gating identified in anesthetized guinea pigs. FASEB J 2010; 24:3916-26. [PMID: 20581226 DOI: 10.1096/fj.09-151068] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Coughing protects and clears the airways and lungs of inhaled irritants, particulates, pathogens, and accumulated secretions. An initial urge to cough, and an almost binary output suggests gating mechanisms that encode and modulate this defensive reflex. Whether this "gate" has a physical location for the physiological barrier it poses to cough is unknown. Here we describe a critical component to cough gating, the central terminations of the cough receptors. A novel microinjection strategy defined coordinates for microinjection of glutamate receptor antagonists that nearly abolished cough evoked from the trachea and larynx in anesthetized guinea pigs while having no effect on basal respiratory rate and little or no effect on reflexes attributed to activating other afferent nerve subtypes. Comparable microinjections in adjacent brainstem locations (0.5-2 mm distal) were without effect on coughing. Subsequent transganglionic and dual tracing studies confirmed that the central terminations of the cough receptors and their primary relay neurons are found bilaterally within nucleus tractus solitarius (nTS), lateral to the commissural subnucleus and perhaps in the medial subnuclei. These synapses possess the physiological characteristics of a cough gate. Their localization should facilitate more mechanistic studies of the encoding and gating of cough.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
48
|
Poliacek I, Wang C, Corrie LWC, Rose MJ, Bolser DC. Microinjection of codeine into the region of the caudal ventral respiratory column suppresses cough in anesthetized cats. J Appl Physiol (1985) 2010; 108:858-65. [PMID: 20093669 DOI: 10.1152/japplphysiol.00783.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the influence of microinjection of codeine into the caudal ventral respiratory column (cVRC) on the cough reflex. Experiments were performed on 36 anesthetized spontaneously breathing cats. Electromyograms (EMGs) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. The unilateral microinjection of codeine (3.3 mM, 20-32 nl) in the cVRC reduced cough number by 29% (P < 0.01) and expiratory cough amplitudes of esophageal pressure by 33% (P < 0.05) as well as both ipsilateral and contralateral ABD EMGs by 35% and 48% (P < 0.01 and P < 0.01, respectively). No cough depression was observed after microinjections of vehicle. There was no significant effect of microinjection of codeine in the cVRC (3.3 mM, 30-40 nl) on ABD activity induced by a microinjection of D,L-homocysteic acid (30 mM, 27-40 nl) in the same location. However, a cumulative dose of codeine (0.1 mg/kg, 330 nmol/kg) applied into the brain stem circulation through the vertebral artery reduced the ABD motor response to cVRC D,L-homocysteic acid microinjection (30 mM, 28-32 nl) by 47% (P < 0.01). These results suggest that 1) codeine can act within the cVRC to suppress cough and 2) expiratory premotoneurons within the cVRC are relatively insensitive to this opioid.
Collapse
Affiliation(s)
- Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
The lung, like many other organs, is innervated by a variety of sensory nerves and by nerves of the parasympathetic and sympathetic nervous systems that regulate the function of cells within the respiratory tract. Activation of sensory nerves by both mechanical and chemical stimuli elicits a number of defensive reflexes, including cough, altered breathing pattern, and altered autonomic drive, which are important for normal lung homeostasis. However, diseases that afflict the lung are associated with altered reflexes, resulting in a variety of symptoms, including increased cough, dyspnea, airways obstruction, and bronchial hyperresponsiveness. This review summarizes the current knowledge concerning the physiological role of different sensory nerve subtypes that innervate the lung, the factors which lead to their activation, and pharmacological approaches that have been used to interrogate the function of these nerves. This information may potentially facilitate the identification of novel drug targets for the treatment of respiratory disorders such as cough, asthma, and chronic obstructive pulmonary disease.
Collapse
|
50
|
Bianchi AL, Gestreau C. The brainstem respiratory network: An overview of a half century of research. Respir Physiol Neurobiol 2009; 168:4-12. [DOI: 10.1016/j.resp.2009.04.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 12/01/2022]
|