1
|
Silverstein AL, Alilain WJ. Ethanol abolishes ventilatory long-term facilitation and blunts the ventilatory response to hypoxia in female rats. Respir Physiol Neurobiol 2025; 332:104373. [PMID: 39603312 PMCID: PMC11710997 DOI: 10.1016/j.resp.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Obstructive sleep apnea (OSA) is a breathing disorder in which airway obstruction during sleep leads to periodic bouts of inadequate (hypopneic) or absent (apneic) ventilation despite neurorespiratory effort. Repetitive apneic and hypopneic exposures can induce intermittent hypoxemia and lead to a host of maladaptive behavioral and physiological outcomes. Intermittent hypoxia treatment (IH), which consists of alternating exposure to hypoxic and normal air, can induce a long-lasting increase in breathing motor outputs called long term facilitation (LTF). IH models key aspects of the hypoxemia experienced during OSA and LTF might serve to prevent OSA or ameliorate its severity by stimulating ventilatory output during or after apnea/hypopnea. Ethanol consumption prior to sleep exacerbates existing OSA, but it is unknown how ethanol affects LTF expression. Thus, we hypothesized that ethanol treatment would attenuate LTF expression and the magnitude of the ventilatory response during acute hypoxic exposure. We administered either low-dose (0.8 g/kg) or high-dose (3 g/kg) ethanol or saline to adult female Sprague-Dawley rats through intraperitoneal injection and then measured subjects' ventilatory output by whole-body plethysmography during baseline, a 5 by 3-minute moderate IH protocol (hypoxia: FiO2 = 0.11, Normoxia: room air), and for one hour following the end of IH. Results indicate that low-dose ethanol abolishes LTF of respiratory rate and minute ventilation and trends suggest that low-dose ethanol might attenuate respiratory rate and minute ventilation during acute hypoxic exposure. While high-dose ethanol significantly diminished subjects' respiratory rate and minute ventilation during hypoxia, LTF expression was not significantly different between high-dose ethanol and saline-treated subjects. Overall, data indicate that ethanol exposure dramatically attenuates LTF expression following IH treatment and impairs ventilatory responses to hypoxia in a dose-dependent manner. Such findings inspire further consideration of ethanol's negative effects upon endogenous compensatory mechanisms for repeated hypoxic exposure, both in the context of OSA and beyond.
Collapse
Affiliation(s)
- Aaron L Silverstein
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, 741 S. Limestone St., Lexington, KY 40508, USA..
| | - Warren J Alilain
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, 741 S. Limestone St., Lexington, KY 40508, USA..
| |
Collapse
|
2
|
Johnson SM, Johnson SM, Watters JJ, Baker TL. Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations. Respir Physiol Neurobiol 2025; 331:104351. [PMID: 39303801 PMCID: PMC11614698 DOI: 10.1016/j.resp.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Substance P (SubP) and endomorphin-2 (Endo2) are co-localized presynaptically in vesicles of neurons adjacent to inspiratory rhythm-generating pre-Botzinger Complex (preBotC) neurons but the effects of co-released SubP and Endo2 on respiratory motor control are not known. To address this question, SubP alone or a combination of SubP and Endo2 (SubP/Endo2) were bath-applied in a sustained (15-min) or intermittent (5-min application, 5-min washout, x3) pattern at 10-100 nM to neonatal rat brainstem-spinal cord preparations. During neuropeptide application, SubP/Endo2 co-applications generally attenuated SubP-induced increases in burst frequency and decreases in burst amplitude. With respect to frequency plasticity (long-lasting increase in burst frequency 60 min post-neuropeptide application), SubP-induced frequency plasticity was increased with sustained SubP/Endo2 co-applications at 20 and 100 nM. Intermittent SubP/Endo2 co-applications tended to decrease the level of frequency plasticity induced by intermittent SubP alone applications. SubP/Endo2 co-applications revealed potentially new functions for neurokinin-1 (NK1R) and mu-opioid (MOR) receptors on respiratory rhythm-generating medullary neurons.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Saunders SE, Santin JM. Hibernation reduces GABA signaling in the brainstem to enhance motor activity of breathing at cool temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561534. [PMID: 37873475 PMCID: PMC10592683 DOI: 10.1101/2023.10.09.561534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Neural circuits produce reliable activity patterns despite disturbances in the environment. For this to occur, neurons elicit synaptic plasticity during perturbations. However, recent work suggests that plasticity not only regulates circuit activity during disturbances, but these modifications may also linger to stabilize circuits during future perturbations. The implementation of such a regulation scheme for real-life environmental challenges of animals remains unclear. Amphibians provide insight into this problem in a rather extreme way, as circuits that generate breathing are inactive for several months during underwater hibernation and use compensatory plasticity to promote ventilation upon emergence. Results Using ex vivo brainstem preparations and electrophysiology, we find that hibernation in American bullfrogs reduces GABAA receptor (GABAAR) inhibition in respiratory rhythm generating circuits and motor neurons, consistent with a compensatory response to chronic inactivity. Although GABAARs are normally critical for breathing, baseline network output at warm temperatures was not affected. However, when assessed across a range of temperatures, hibernators with reduced GABAAR signaling had greater activity at cooler temperatures, enhancing respiratory motor output under conditions that otherwise strongly depress breathing. Conclusions Hibernation reduces GABAAR signaling to promote robust respiratory output only at cooler temperatures. Although animals do not ventilate lungs during hibernation, we suggest this would be beneficial for stabilizing breathing when the animal passes through a large temperature range during emergence in the spring. More broadly, these results demonstrate that compensatory synaptic plasticity can increase the operating range of circuits in harsh environments, thereby promoting adaptive behavior in conditions that suppress activity.
Collapse
Affiliation(s)
- Sandy E. Saunders
- University of Missouri-Columbia, Division of Biological Sciences, Missouri, United States of America
| | - Joseph M. Santin
- University of Missouri-Columbia, Division of Biological Sciences, Missouri, United States of America
| |
Collapse
|
4
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Marciante AB, Mitchell GS. Increased spinal adenosine impairs phrenic long-term facilitation in aging rats. J Appl Physiol (1985) 2023; 134:1537-1548. [PMID: 37167263 PMCID: PMC10281789 DOI: 10.1152/japplphysiol.00197.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Moderate acute intermittent hypoxia (mAIH) elicits a form of spinal, respiratory motor plasticity known as phrenic long-term facilitation (pLTF). In middle-aged male and geriatric female rats, mAIH-induced pLTF is attenuated through unknown mechanisms. In young adults, mAIH activates competing intracellular signaling cascades, initiated by serotonin 2 and adenosine 2A (A2A) receptors, respectively. Spinal A2A receptor inhibition enhances mAIH-induced pLTF, meaning, serotonin dominates, and adenosine constrains mAIH-induced plasticity in the daily rest phase. Thus, we hypothesized elevated basal adenosine levels in the ventral cervical spinal cord of aged rats shifts this balance, undermining mAIH-induced pLTF. A selective A2A receptor antagonist (MSX-3) or vehicle was delivered intrathecally at C4 in anesthetized young (3-6 mo) and aged (20-22 mo) Sprague-Dawley rats before mAIH (3,5-min episodes; arterial Po2 = 45-55 mmHg). In young males, spinal A2A receptor inhibition enhanced pLTF (119 ± 5%) vs. vehicle (55 ± 9%), consistent with prior reports. In old males, pLTF was reduced to 25 ± 11%, but A2A receptor inhibition increased pLTF to levels greater than in young males (186 ± 19%). Basal adenosine levels in ventral C3-C5 homogenates are elevated two- to threefold in old vs. young males. These findings advance our understanding of age as a biological variable in phrenic motor plasticity and will help guide translation of mAIH as a therapeutic modality to restore respiratory and nonrespiratory movements in older populations afflicted with clinical disorders that compromise movement.NEW & NOTEWORTHY Advanced age undermines respiratory motor plasticity, specifically phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (mAIH). We report that spinal adenosine increases in aged male rats, undermining mAIH-induced pLTF via adenosine 2A (A2A) receptor activation, an effect reversed by selective spinal adenosine 2A receptor inhibition. These findings advance our understanding of mechanisms that impair neuroplasticity, and the ability to compensate for the onset of lung or neural injury with age, and may guide efforts to harness mAIH as a treatment for clinical disorders that compromise breathing and other movements.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Department of Physical Therapy & McKnight Brain Institute, Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
| | - Gordon S Mitchell
- Department of Physical Therapy & McKnight Brain Institute, Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
6
|
Marciante AB, Mitchell GS. Mild inflammation impairs acute intermittent hypoxia-induced phrenic long-term facilitation by a spinal adenosine-dependent mechanism. J Neurophysiol 2023; 129:799-806. [PMID: 36883762 PMCID: PMC10069977 DOI: 10.1152/jn.00035.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Inflammation undermines neuroplasticity, including serotonin-dependent phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (mAIH: 3, 5-min episodes, arterial Po2: 40-50 mmHg; 5-min intervals). Mild inflammation elicited by a low dose of the TLR-4 receptor agonist, lipopolysaccharide (LPS; 100 µg/kg, ip), abolishes mAIH-induced pLTF by unknown mechanisms. In the central nervous system, neuroinflammation primes glia, triggering ATP release and extracellular adenosine accumulation. As spinal adenosine 2 A (A2A) receptor activation impairs mAIH-induced pLTF, we hypothesized that spinal adenosine accumulation and A2A receptor activation are necessary in the mechanism whereby LPS impairs pLTF. We report that 24 h after LPS injection in adult male Sprague Dawley rats: 1) adenosine levels increase in ventral spinal segments containing the phrenic motor nucleus (C3-C5; P = 0.010; n = 7/group) and 2) cervical spinal A2A receptor inhibition (MSX-3, 10 µM, 12 µL intrathecal) rescues mAIH-induced pLTF. In LPS vehicle-treated rats (saline, ip), MSX-3 enhanced pLTF versus controls (LPS: 110 ± 16% baseline; controls: 53 ± 6%; P = 0.002; n = 6/group). In LPS-treated rats, pLTF was abolished as expected (4 ± 6% baseline; n = 6), but intrathecal MSX-3 restored pLTF to levels equivalent to MSX-3-treated control rats (120 ± 14% baseline; P < 0.001; n = 6; vs. LPS controls with MSX-3: P = 0.539). Thus, inflammation abolishes mAIH-induced pLTF by a mechanism that requires increased spinal adenosine levels and A2A receptor activation. As repetitive mAIH is emerging as a treatment to improve breathing and nonrespiratory movements in people with spinal cord injury or ALS, A2A inhibition may offset undermining effects of neuroinflammation associated with these neuromuscular disorders.NEW & NOTEWORTHY Mild inflammation undermines motor plasticity elicited by mAIH. In a model of mAIH-induced respiratory motor plasticity (phrenic long-term facilitation; pLTF), we report that inflammation induced by low-dose lipopolysaccharide undermines mAIH-induced pLTF by a mechanism requiring increased cervical spinal adenosine and adenosine 2 A receptor activation. This finding advances the understanding of mechanisms impairing neuroplasticity, potentially undermining the ability to compensate for the onset of lung/neural injury or to harness mAIH as a therapeutic modality.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
7
|
Borkowski LF, Smith CL, Keilholz AN, Nichols NL. Divergent receptor utilization is necessary for phrenic long-term facilitation over the course of motor neuron loss following CTB-SAP intrapleural injections. J Neurophysiol 2021; 126:709-722. [PMID: 34288779 DOI: 10.1152/jn.00236.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intrapleural injection of cholera toxin B conjugated to saporin (CTB-SAP) mimics respiratory motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. Seven-day CTB-SAP rats elicit enhanced phrenic long-term facilitation (pLTF) primarily through TrkB and PI3K/Akt-dependent mechanisms [i.e., Gs-pathway, which can be initiated by adenosine 2A (A2A) receptors in naïve rats], whereas 28-day CTB-SAP rats elicit moderate pLTF though BDNF- and MEK-/ERK-dependent mechanisms [i.e., Gq-pathway, which is typically initiated by serotonin (5-HT) receptors in naïve rats]. Here, we tested the hypothesis that pLTF following CTB-SAP is 1) A2A receptor-dependent at 7 days and 2) 5-HT receptor-dependent at 28 days. Adult Sprague-Dawley male rats were anesthetized, paralyzed, ventilated, and exposed to acute intermittent hypoxia (AIH; 3-, 5-min bouts of 10.5% O2) following bilateral, intrapleural injections at 7 days and 28 days of 1) CTB-SAP (25 µg) or 2) unconjugated CTB and SAP (control). Intrathecal C4 delivery included either the 1) A2A receptor antagonist (MSX-3; 10 µM; 12 µL) or 2) 5-HT receptor antagonist (methysergide; 20 mM; 15 µL). pLTF was abolished with A2A receptor inhibition in 7-day, not 28-day, CTB-SAP rats versus controls (P < 0.05), whereas pLTF was abolished following 5-HT receptor inhibition in 28-day, not 7-day, CTB-SAP rats versus controls (P < 0.05). In addition, 5-HT2A receptor expression was unchanged in CTB-SAP rats versus controls, whereas 5-HT2B receptor expression was decreased in CTB-SAP rats versus controls (P < 0.05). This study furthers our understanding of the contribution of differential receptor activation to pLTF and its implications for breathing following respiratory motor neuron death.NEW & NOTEWORTHY The current study investigates underlying receptor-dependent mechanisms contributing to phrenic long-term facilitation (pLTF) following CTB-SAP-induced respiratory motor neuron death at 7 days and 28 days. We found that A2A receptors are required for enhanced pLTF in 7-day CTB-SAP rats, whereas 5-HT receptors are required for moderate pLTF in 28-day CTB-SAP rats. Targeting these time-dependent mechanisms have implications for breathing maintenance over the course of many neuromuscular diseases.
Collapse
Affiliation(s)
- Lauren F Borkowski
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Catherine L Smith
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Amy N Keilholz
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Nicole L Nichols
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Adenosine A2a receptors modulate TrkB receptor-dependent respiratory plasticity in neonatal rats. Respir Physiol Neurobiol 2021; 294:103743. [PMID: 34273553 DOI: 10.1016/j.resp.2021.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
Neuroplasticity is a fundamental property of the respiratory control system, enabling critical adaptations in breathing to meet the challenges, but little is known whether neonates express neuroplasticity similar to adults. We tested the hypothesis that, similar to adults, tyrosine receptor kinase B (TrkB) or adenosine A2a receptor activation in neonates are independently sufficient to elicit respiratory motor facilitation, and that co-induction of TrkB and A2a receptor-dependent plasticity undermines respiratory motor facilitation. TrkB receptor activation with 7,8-dihydroxyflavone (DHF) in neonatal brainstem-spinal cord preparations induced a long-lasting increase in respiratory motor output in 55 % of preparations, whereas adenosine A2a receptor activation with CGS21680 only sporadically induced respiratory motor plasticity. CGS21680 and DHF co-application prevented DHF-dependent respiratory motor facilitation, whereas co-application of MSX-3 (adenosine A2a receptor antagonist) and DHF more rapidly induced respiratory motor plasticity. Collectively, these data suggest that mechanisms underlying respiratory neuroplasticity may be only partially operational in early neonatal life, and that adenosine A2a receptor activation undermines TrkB-induced respiratory plasticity.
Collapse
|
9
|
Perim RR, Sunshine MD, Welch JF, Santiago J, Holland A, Ross A, Mitchell GS, Gonzalez-Rothi EJ. Daily acute intermittent hypoxia enhances phrenic motor output and stimulus-evoked phrenic responses in rats. J Neurophysiol 2021; 126:777-790. [PMID: 34260289 DOI: 10.1152/jn.00112.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity is a hallmark of the respiratory neural control system. Phrenic long-term facilitation (pLTF) is one form of respiratory plasticity characterized by persistent increases in phrenic nerve activity following acute intermittent hypoxia (AIH). Although there is evidence that key steps in the cellular pathway giving rise to pLTF are localized within phrenic motor neurons (PMNs), the impact of AIH on the strength of breathing-related synaptic inputs to PMNs remains unclear. Further, the functional impact of AIH is enhanced by repeated/daily exposure to AIH (dAIH). Here, we explored the effects of AIH vs. 2 weeks of dAIH preconditioning on spontaneous and evoked responses recorded in anesthetized, paralyzed (with pancuronium bromide) and mechanically ventilated rats. Evoked phrenic potentials were elicited by respiratory cycle-triggered lateral funiculus stimulation at C2 delivered prior to- and 60 min post-AIH (or an equivalent time in controls). Charge-balanced biphasic pulses (100 µs/phase) of progressively increasing intensity (100 to 700 µA) were delivered during the inspiratory and expiratory phases of the respiratory cycle. Although robust pLTF (~60% from baseline) was observed after a single exposure to moderate AIH (3 x 5 min; 5 min intervals), there was no effect on evoked phrenic responses, contrary to our initial hypothesis. However, in rats preconditioned with dAIH, baseline phrenic nerve activity and evoked responses were increased, suggesting that repeated exposure to AIH enhances functional synaptic strength when assessed using this technique. The impact of daily AIH preconditioning on synaptic inputs to PMNs raises interesting questions that require further exploration.
Collapse
Affiliation(s)
- Raphael Rodrigues Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Michael D Sunshine
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Juliet Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashley Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashley Ross
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Mo H, Zhao J, Wu X, Liu W, Hu K. The combination of intermittent electrical stimulation with acute intermittent hypoxia strengthens genioglossus muscle discharge in chronic intermittent hypoxia-pretreated rats. Respir Physiol Neurobiol 2021; 291:103680. [PMID: 33971311 DOI: 10.1016/j.resp.2021.103680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exploring whether the genioglossus discharge in chronic intermittent hypoxia(CIH) - pretreated rats could be enhanced by intermittent electrical stimulation combined with acute intermittent hypoxia(AIH). METHODS Rats were pretreated with CIH for 4 weeks and then were randomly divided into 6 groups: time control, intermittent electric stimulation, AIH, intermittent electric stimulation + AIH, continuous electric stimulation and continuous hypoxia exposure. The genioglossus discharges were recorded and compared before and after stimulation. Normoxic-treated rats were grouped and treated with the same stimulation protocols. RESULTS Intermittent electrical stimulation or AIH temporarily increased the activity of the genioglossus discharge, in which the degree of the increase was significantly higher in CIH-pretreated rats than in normoxic rats.After intermittent electrical stimulation, AIH evoked a sustained elevation of genioglossus discharge activities in CIH-pretreated rats, in which the degree of the increase was significantly higher than in rats induced by a single intermittent electric stimulation. CONCLUSION Intermittent electrical stimulation combined with AIH strengthens the genioglossus plasticity in CIH-pretreated rats.
Collapse
Affiliation(s)
- Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - JingJing Zhao
- Department of Respiratory and Critical Care Medicine, Zhumadian Central Hospital, Zhumadian 463000, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
11
|
Perim RR, El-Chami M, Gonzalez-Rothi EJ, Mitchell GS. Baseline Arterial CO 2 Pressure Regulates Acute Intermittent Hypoxia-Induced Phrenic Long-Term Facilitation in Rats. Front Physiol 2021; 12:573385. [PMID: 33716760 PMCID: PMC7943620 DOI: 10.3389/fphys.2021.573385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
Moderate acute intermittent hypoxia (mAIH) elicits a progressive increase in phrenic motor output lasting hours post-mAIH, a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF). mAIH-induced pLTF is initiated by activation of spinally-projecting raphe serotonergic neurons during hypoxia and subsequent serotonin release near phrenic motor neurons. Since raphe serotonergic neurons are also sensitive to pH and CO2, the prevailing arterial CO2 pressure (PaCO2) may modulate their activity (and serotonin release) during hypoxic episodes. Thus, we hypothesized that changes in background PaCO2 directly influence the magnitude of mAIH-induced pLTF. mAIH-induced pLTF was evaluated in anesthetized, vagotomized, paralyzed and ventilated rats, with end-tidal CO2 (i.e., a PaCO2 surrogate) maintained at: (1) ≤39 mmHg (hypocapnia); (2) ∼41 mmHg (normocapnia); or (3) ≥48 mmHg (hypercapnia) throughout experimental protocols. Although baseline phrenic nerve activity tended to be lower in hypocapnia, short-term hypoxic phrenic response, i.e., burst amplitude (Δ = 5.1 ± 1.1 μV) and frequency responses (Δ = 21 ± 4 bpm), was greater than in normocapnic (Δ = 3.6 ± 0.6 μV and 8 ± 4, respectively) or hypercapnic rats (Δ = 2.0 ± 0.6 μV and −2 ± 2, respectively), followed by a progressive increase in phrenic burst amplitude (i.e., pLTF) for at least 60 min post mAIH. pLTF in the hypocapnic group (Δ = 4.9 ± 0.6 μV) was significantly greater than in normocapnic (Δ = 2.8 ± 0.7 μV) or hypercapnic rats (Δ = 1.7 ± 0.4 μV). In contrast, although hypercapnic rats also exhibited significant pLTF, it was attenuated versus hypocapnic rats. When pLTF was expressed as percent change from maximal chemoreflex stimulation, all pairwise comparisons were found to be statistically significant (p < 0.05). We conclude that elevated PaCO2 undermines mAIH-induced pLTF in anesthetized rats. These findings contrast with well-documented effects of PaCO2 on ventilatory LTF in awake humans.
Collapse
Affiliation(s)
- Raphael R Perim
- Department of Physical Therapy, McKnight Brain Institute, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, United States
| | - Mohamed El-Chami
- Department of Physical Therapy, McKnight Brain Institute, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, United States
| | - Elisa J Gonzalez-Rothi
- Department of Physical Therapy, McKnight Brain Institute, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, United States
| | - Gordon S Mitchell
- Department of Physical Therapy, McKnight Brain Institute, Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Nichols NL, Mitchell GS. Mechanisms of severe acute intermittent hypoxia-induced phrenic long-term facilitation. J Neurophysiol 2021; 125:1146-1156. [PMID: 33566744 DOI: 10.1152/jn.00691.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Moderate acute intermittent hypoxia (mAIH; 35-55 mmHg PaO2) elicits phrenic long-term facilitation (pLTF) by a mechanism that requires activation of Gq protein-coupled serotonin type 2 receptors, MEK/ERK MAP kinase, and NADPH oxidase activity and is constrained by cAMP-PKA signaling. In contrast, severe AIH (sAIH; 25-35 mmHg PaO2) elicits Gs protein-coupled adenosine type 2 A receptor-dependent pLTF. Another Gs protein-coupled receptor, serotonin 7 receptors, elicits phrenic motor facilitation (pMF) by a mechanism that requires exchange protein activated by cyclic AMP (EPAC) and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and is constrained by NADPH oxidase activity. Here, we tested the hypothesis that the same downstream signaling mechanisms giving rise to serotonin 7 (vs. serotonin 2) receptor-induced pMF underlie sAIH-induced pLTF. In anesthetized rats, sAIH-induced pLTF was compared after pretreatment with intrathecal (C4) injections of inhibitors for: 1) EPAC (ESI-05); 2) MEK/ERK (UO126); 3) PKA (KT-5720); 4) PI3K/Akt (PI828); and 5) NADPH oxidase (apocynin). In partial agreement with our hypothesis, sAIH-induced pLTF was abolished by ESI-05 and PI828 and marginally enhanced by apocynin but, surprisingly, was abolished by UO126 and attenuated by KT-5720. Mechanisms of sAIH-induced pLTF reflect elements of both Gq and Gs pathways to pMF, likely as a consequence of the complex, cross-talk interactions between them.NEW & NOTEWORTHY Distinct mechanisms give rise to pLTF induced by moderate and severe AIH. We demonstrate that, unlike moderate AIH, severe AIH-induced pLTF requires EPAC and PI3K/Akt and is marginally constrained by NADPH oxidase activity. Surprisingly, sAIH-induced pLTF requires MEK/ERK activity similar to moderate AIH-induced pLTF and is reduced by PKA inhibition. We suggest sAIH-induced pLTF arises from complex interactions between dominant mechanisms characteristic of moderate versus severe AIH-induced pLTF.
Collapse
Affiliation(s)
- Nicole L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
13
|
Perim RR, Kubilis PS, Seven YB, Mitchell GS. Hypoxia-induced hypotension elicits adenosine-dependent phrenic long-term facilitation after carotid denervation. Exp Neurol 2020; 333:113429. [PMID: 32735873 DOI: 10.1016/j.expneurol.2020.113429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/25/2020] [Indexed: 11/19/2022]
Abstract
Moderate acute intermittent hypoxia (AIH) elicits a persistent, serotonin-dependent increase in phrenic amplitude, known as phrenic long-term facilitation (pLTF). Although pLTF was originally demonstrated by carotid sinus nerve stimulation, AIH still elicits residual pLTF in carotid denervated (CBX) rats via a distinct, but unknown mechanism. We hypothesized that exaggerated hypoxia-induced hypotension after carotid denervation leads to greater spinal tissue hypoxia and extracellular adenosine accumulation, thereby triggering adenosine 2A receptor (A2A)-dependent pLTF. Phrenic activity, arterial pressure and spinal tissue oxygen pressure were measured in anesthetized CBX rats. Exaggerated hypoxia-induced hypotension after CBX was prevented via intravenous phenylephrine; without the hypotension, spinal tissue hypoxia during AIH was normalized, and residual pLTF was no longer observed. Spinal A2A (MSX-3), but not serotonin 2 receptor (5-HT2) inhibition (ketanserin), abolished residual pLTF in CBX rats. Thus, pLTF regulation may be altered in conditions impairing sympathetic activity and arterial pressure regulation, such as spinal cord injury.
Collapse
Affiliation(s)
- Raphael R Perim
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Paul S Kubilis
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Yasin B Seven
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
14
|
Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020; 274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The respiratory control network in the central nervous system undergoes critical developmental events early in life to ensure adequate breathing at birth. There are at least three "critical windows" in development of respiratory control networks: 1) in utero, 2) newborn (postnatal day 0-4 in rodents), and 3) neonatal (P10-13 in rodents, 2-4 months in humans). During these critical windows, developmental processes required for normal maturation of the respiratory control network occur, thereby increasing vulnerability of the network to insults, such as inflammation. Early life inflammation (induced by LPS, chronic intermittent hypoxia, sustained hypoxia, or neonatal maternal separation) acutely impairs respiratory rhythm generation, chemoreception and increases neonatal risk of mortality. These early life impairments are also greater in young males, suggesting sex-specific impairments in respiratory control. Further, neonatal inflammation has a lasting impact on respiratory control by impairing adult respiratory plasticity. This review focuses on how inflammation alters respiratory rhythm generation, chemoreception and plasticity during each of the three critical windows. We also highlight the need for additional mechanistic studies and increased investigation into how glia (such as microglia and astrocytes) play a role in impaired respiratory control after inflammation. Understanding how inflammation during critical windows of development disrupt respiratory control networks is essential for developing better treatments for vulnerable neonates and preventing adult ventilatory control disorders.
Collapse
Affiliation(s)
- Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, United States.
| |
Collapse
|
15
|
Johnson SM, Randhawa KS, Baker TL, Watters JJ. Respiratory frequency plasticity during development. Respir Physiol Neurobiol 2019; 266:54-65. [PMID: 31055188 DOI: 10.1016/j.resp.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 01/20/2023]
Abstract
Respiratory frequency plasticity is a long-lasting increase in breathing frequency due to a perturbation. Mechanisms underlying respiratory frequency are poorly understood, and there is little evidence of frequency plasticity in neonates. This hybrid review/research article discusses available literature regarding frequency plasticity and highlights potential research opportunities. Also, we include data demonstrating a model of frequency plasticity using isolated neonatal rat brainstem-spinal cord preparations. Specifically, substance P (SubP) application induced a long-lasting (>60 min) increase in spontaneous respiratory motor burst frequency, particularly in brainstem-spinal cords with the pons attached; there were no male/female differences. SubP-induced frequency plasticity is dependent on the application pattern, such that intermittent (rather than sustained) SubP applications induce more frequency plasticity. SubP-induced frequency plasticity was blocked by a neurokinin-1 receptor antagonist. Thus, the newborn rat respiratory control system has the capacity to express frequency plasticity. Identifying mechanisms that induce frequency plasticity may lead to novel methods to safely treat breathing disorders in premature and newborn infants.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States.
| | - Karanbir S Randhawa
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
16
|
Hocker AD, Beyeler SA, Gardner AN, Johnson SM, Watters JJ, Huxtable AG. One bout of neonatal inflammation impairs adult respiratory motor plasticity in male and female rats. eLife 2019; 8:45399. [PMID: 30900989 PMCID: PMC6464604 DOI: 10.7554/elife.45399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Neonatal inflammation is common and has lasting consequences for adult health. We investigated the lasting effects of a single bout of neonatal inflammation on adult respiratory control in the form of respiratory motor plasticity induced by acute intermittent hypoxia, which likely compensates and stabilizes breathing during injury or disease and has significant therapeutic potential. Lipopolysaccharide-induced inflammation at postnatal day four induced lasting impairments in two distinct pathways to adult respiratory plasticity in male and female rats. Despite a lack of adult pro-inflammatory gene expression or alterations in glial morphology, one mechanistic pathway to plasticity was restored by acute, adult anti-inflammatory treatment, suggesting ongoing inflammatory signaling after neonatal inflammation. An alternative pathway to plasticity was not restored by anti-inflammatory treatment, but was evoked by exogenous adenosine receptor agonism, suggesting upstream impairment, likely astrocytic-dependent. Thus, the respiratory control network is vulnerable to early-life inflammation, limiting respiratory compensation to adult disease or injury.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, United States
| | - Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, United States
| | - Alyssa N Gardner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | - Stephen M Johnson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | | |
Collapse
|
17
|
Hocker AD, Huxtable AG. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation. J Appl Physiol (1985) 2018; 125:504-512. [PMID: 29565772 PMCID: PMC11774498 DOI: 10.1152/japplphysiol.01051.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammation undermines respiratory motor plasticity, yet we are just beginning to understand the inflammatory signaling involved. Because interleukin-1 (IL-1) signaling promotes or inhibits plasticity in other central nervous system regions, we tested the following hypotheses: 1) IL-1 receptor (IL-1R) activation after systemic inflammation is necessary to undermine phrenic long-term facilitation (pLTF), a model of respiratory motor plasticity induced by acute intermittent hypoxia (AIH), and 2) spinal IL-1β is sufficient to undermine pLTF. pLTF is significantly reduced 24 h after lipopolysaccharide (LPS; 100 μg/kg ip, 12 ± 18%, n = 5) compared with control (57 ± 25%, n = 6) and restored by peripheral IL-1R antagonism (63 ± 13%, n = 5, AF-12198, 0.5 mg/kg ip, 24 h). Furthermore, acute, spinal IL-1R antagonism (1 mM AF-12198, 15 μl it) restored pLTF (53 ± 15%, n = 4) compared with LPS-treated rats (11 ± 10%; n = 5), demonstrating IL-1R activation is necessary to undermine pLTF after systemic inflammation. However, in healthy animals, pLTF persisted after spinal, exogenous recombinant rat IL-1β (rIL-1β) (1 ng ± AIH; 66 ± 26%, n = 3, 10 ng ± AIH; 102 ± 49%, n = 4, 100 ng + AIH; 93 ± 51%, n = 3, 300 ng ± AIH; 37 ± 40%, n = 3; P < 0.05 from baseline). In the absence of AIH, spinal rIL-1β induced progressive, dose-dependent phrenic amplitude facilitation (1 ng; -3 ± 5%, n = 3, 10 ng; 8 ± 22%, n = 3, 100 ng; 31 ± 12%, P < 0.05, n = 4, 300 ng; 51 ± 17%, P < 0.01 from baseline, n = 4). In sum, IL-1R activation, both systemically and spinally, undermines pLTF after LPS-induced systemic inflammation, but IL-1R activation is not sufficient to abolish plasticity. Understanding the inflammatory signaling inhibiting respiratory plasticity is crucial to developing treatment strategies utilizing respiratory plasticity to promote breathing during ventilatory control disorders. NEW & NOTEWORTHY This study gives novel insights concerning mechanisms by which systemic inflammation undermines respiratory motor plasticity. We demonstrate that interleukin-1 signaling, both peripherally and centrally, undermines respiratory motor plasticity. However, acute, exogenous interleukin-1 signaling is not sufficient to undermine respiratory motor plasticity.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | | |
Collapse
|
18
|
Stipica Safic I, Pecotic R, Pavlinac Dodig I, Dogas Z, Valic Z, Valic M. Phrenic long-term depression evoked by intermittent hypercapnia is modulated by serotonergic and adrenergic receptors in raphe nuclei. J Neurophysiol 2018; 120:321-329. [DOI: 10.1152/jn.00776.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypercapnia evokes prolonged depression of phrenic nerve activity (phrenic long-term depression, pLTD). This study was undertaken to investigate the role of 5-HT and α2-adrenergic receptors in the initiation of pLTD. Adult male urethane-anesthetized, vagotomized, paralyzed, and mechanically ventilated Sprague-Dawley rats were exposed to a protocol of acute intermittent hypercapnia (AIHc; 5 episodes of 15% CO2in air, each episode lasting 3 min). The experimental group received microinjection of the selective 5-HT1Areceptor agonist 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT), the broad-spectrum 5-HT antagonist methysergide, or the α2-adrenergic antagonist yohimbine, whereas the control group received microinjection of 0.9% saline into the caudal raphe region. Peak phrenic nerve activity (pPNA) and burst frequency ( f) were analyzed during baseline (T0), during 5 hypercapnic episodes (THc1–THc5), and at 15, 30, and 60 min after the end of the last hypercapnic episode. In the control group, pPNA decreased 60 min after the end of the last hypercapnic episode compared with baseline values, i.e., pLTD developed ( P = 0.023). In the 8-OH-DPAT group, pPNA significantly decreased at T15, T30, and T60 compared with baseline values, i.e., pLTD developed ( P = 0.01). In the methysergide and yohimbine groups, AIHc did not evoke significant changes of the pPNA at T15, T30, and T60 compared with baseline values. In conclusion, activation of 5-HT1Areceptors accentuated induction of pLTD, whereas blockade of α2-adrenergic receptors prevented development of pLTD following AIHc in anesthetized rats. These results suggest that chemical modulation of 5-HT and α2-adrenergic receptors in raphe nuclei affects hypercapnia-induced pLTD, offering important insights in understanding the mechanisms involved in development of respiratory plasticity.NEW & NOTEWORTHY Hypercapnia is a concomitant feature of many breathing disorders, including obstructive sleep apnea. In this study, acute intermittent hypercapnia evoked development of phrenic long-term depression (pLTD) 60 min after the last hypercapnic episode that was preserved if the selective 5-HT1Areceptor agonist 8-hydroxy-2-(dipropylamino)tetralin hydrobromide was microinjected in the caudal raphe region before the hypercapnic stimulus. This study highlights that both 5-HT and adrenergic receptor activation is needed for induction of pLTD in urethane-anesthetized rats following intermittent hypercapnia exposure.
Collapse
Affiliation(s)
- Ivona Stipica Safic
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| | - Renata Pecotic
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| | - Ivana Pavlinac Dodig
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| | - Zoran Dogas
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| | - Zoran Valic
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Maja Valic
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
19
|
Agosto-Marlin IM, Nichols NL, Mitchell GS. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling. J Neurophysiol 2018. [PMID: 29513151 DOI: 10.1152/jn.00378.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although systemic inflammation induced by even a low dose of lipopolysaccharide (LPS, 100 μg/kg) impairs respiratory motor plasticity, little is known concerning cellular mechanisms giving rise to this inhibition. Phrenic motor facilitation (pMF) is a form of respiratory motor plasticity elicited by pharmacological agents applied to the cervical spinal cord, or by acute intermittent hypoxia (AIH; 3, 5-min hypoxic episodes); when elicited by AIH, pMF is known as phrenic long-term facilitation (pLTF). AIH consisting of moderate hypoxic episodes (mAIH, arterial Po2 = 35-55 mmHg) elicits pLTF via the Q pathway to pMF, a mechanism that requires spinal serotonin (5HT2) receptor activation and new brain-derived neurotrophic factor (BDNF) protein synthesis. Although mild systemic inflammation attenuates mAIH-induced pLTF via spinal p38 MAP kinase activation, little is known concerning how p38 MAP kinase activity inhibits the Q pathway. Here, we confirmed that 24 h after a low LPS dose (100 μg/kg ip), mAIH-induced pLTF is greatly attenuated. Similarly, pMF elicited by intrathecal cervical injections of 5HT2A (DOI; 100 μM; 3 × 6 μl) or 5HT2B receptor agonists (BW723C86; 100 μM; 3 × 6 μl) is blocked 24 h post-LPS. When pMF was elicited by intrathecal BDNF (100 ng, 12 μl), pMF was actually enhanced 24 h post-LPS. Thus 5HT2A/2B receptor-induced pMF is impaired downstream from 5HT2 receptor activation, but upstream from BDNF/TrkB signaling. Mechanisms whereby LPS augments BDNF-induced pMF are not yet known. NEW & NOTEWORTHY These experiments give novel insights concerning mechanisms whereby systemic inflammation undermines serotonin-dependent, spinal respiratory motor plasticity, yet enhances brain-derived neurotrophic factor (BDNF)/TrkB signaling in phrenic motor neurons. These insights may guide development of new strategies to elicit functional recovery of breathing capacity in patients with respiratory impairment by reducing (or bypassing) the impact of systemic inflammation characteristic of clinical disorders that compromise breathing.
Collapse
Affiliation(s)
- Ibis M Agosto-Marlin
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Nicole L Nichols
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
20
|
Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia. Respir Physiol Neurobiol 2017; 256:21-28. [PMID: 29233741 DOI: 10.1016/j.resp.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 11/21/2022]
Abstract
Although inflammation is prevalent in many clinical disorders challenging breathing, we are only beginning to understand the impact of inflammation on neural mechanisms of respiratory control. We recently demonstrated one form of respiratory motor plasticity is extremely sensitive to even mild inflammation induced by a single night (8 h) of intermittent hypoxia (IH-1), mimicking aspects of obstructive sleep apnea. Specifically, phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (AIH) is abolished by IH-1, but restored by high doses of the non-steroidal anti-inflammatory drug, ketoprofen. Since a major target of ketoprofen is cyclooxygenase (COX) enzymes, we tested the involvement of COX in IH-1 suppression of pLTF using the selective COX inhibitor NS-398. Systemic COX inhibition (3 mg/kg, i.p., 3 h before AIH) had no effect on pLTF in normoxia treated rats (76 ± 40% change from baseline, n = 6), and did not restore pLTF in IH-1 treated rats (-9 ± 7% baseline, n = 6). Similarly, spinal COX inhibition (27 mM, 12 μl, i.t.) had no effect on pLTF in normoxic rats (76 ± 34% baseline, n = 7), and did not significantly restore pLTF after IH-1 (37 ± 18% baseline, n = 7). COX-2 protein is expressed in identified phrenic motor neurons of both normoxia and IH-1 exposed rats, but immunolabeling was minimal in surrounding microglia; IH-1 had no discernable effect on COX-2 immunoreactivity. We conclude that the inflammatory impairment of pLTF by IH-1 is independent of COX enzyme activity or upregulated COX-2 expression.
Collapse
|
21
|
Devinney MJ, Mitchell GS. Spinal activation of protein kinase C elicits phrenic motor facilitation. Respir Physiol Neurobiol 2017; 256:36-42. [PMID: 29081358 DOI: 10.1016/j.resp.2017.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
The protein kinase C family regulates many cellular functions, including multiple forms of neuroplasticity. The novel PKCθ and atypical PKCζ isoforms have been implicated in distinct forms of spinal, respiratory motor plasticity, including phrenic motor facilitation (pMF) following acute intermittent hypoxia or inactivity, respectively. Although these PKC isoforms are critical in regulating spinal motor plasticity, other isoforms may be important for phrenic motor plasticity. We tested the impact of conventional/novel PKC activator, phorbol 12-myristate 13-acetate (PMA) on pMF. Rats given cervical intrathecal injections of PMA exhibited pMF, which was abolished by pretreatment of broad-spectrum PKC inhibitors bisindolymalemide 1 (BIS) or NPC-15437 (NPC). Because PMA fails to activate atypical PKC isoforms, and NPC does not block PKCθ, this finding demonstrates that classical/novel PKC isoforms besides PKCθ are sufficient to elicit pMF. These results advance our understanding of mechanisms producing respiratory motor plasticity, and may inspire new treatments for disorders that compromise breathing, such as ALS, spinal injury and obstructive sleep apnea.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, 53706, United States
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, United States.
| |
Collapse
|
22
|
Baertsch NA, Baker TL. Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway. J Neurophysiol 2017; 118:2702-2710. [PMID: 28814632 DOI: 10.1152/jn.00212.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Respiratory motoneuron pools must provide rhythmic inspiratory drive that is robust and reliable, yet dynamic enough to respond to respiratory challenges. One form of plasticity that is hypothesized to contribute to motor output stability by sensing and responding to inadequate respiratory neural activity is inactivity-induced phrenic motor facilitation (iPMF), an increase in inspiratory output triggered by a reduction in phrenic synaptic inputs. Evidence suggests that mechanisms giving rise to iPMF differ depending on the pattern of reduced respiratory neural activity (i.e., neural apnea). A prolonged neural apnea elicits iPMF via a spinal TNF-α-induced increase in atypical PKC activity, but little is known regarding mechanisms that elicit iPMF following intermittent neural apnea. We tested the hypothesis that iPMF triggered by intermittent neural apnea requires retinoic acid and protein synthesis. Phrenic nerve activity was recorded in urethane-anesthetized and -ventilated rats treated intrathecally with an inhibitor of retinoic acid synthesis (4-diethlyaminobenzaldehyde, DEAB), a protein synthesis inhibitor (emetine), or vehicle (artificial cerebrospinal fluid) before intermittent (5 episodes, ~1.25 min each) or prolonged (30 min) neural apnea. Both DEAB and emetine abolished iPMF elicited by intermittent neural apnea but had no effect on iPMF elicited by a prolonged neural apnea. Thus different patterns of reduced respiratory neural activity elicit phenotypically similar iPMF via distinct spinal mechanisms. Understanding mechanisms that allow respiratory motoneurons to dynamically tune their output may have important implications in the context of respiratory control disorders that involve varied patterns of reduced respiratory neural activity, such as central sleep apnea and spinal cord injury.NEW & NOTEWORTHY We identify spinal retinoic acid and protein synthesis as critical components in the cellular cascade whereby repetitive reductions in respiratory neural activity elicit rebound increases in phrenic inspiratory activity.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Tracy L Baker
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
23
|
Nichols NL, Craig TA, Tanner MA. Phrenic long-term facilitation following intrapleural CTB-SAP-induced respiratory motor neuron death. Respir Physiol Neurobiol 2017; 256:43-49. [PMID: 28822818 DOI: 10.1016/j.resp.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/04/2017] [Indexed: 01/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to progressive motor neuron degeneration and death by ventilatory failure. In a rat model of ALS (SOD1G93A), phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is enhanced greater than expected at disease end-stage but the mechanism is unknown. We suggest that one trigger for this enhancement is motor neuron death itself. Intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) selectively kill respiratory motor neurons and mimic motor neuron death observed in SOD1G93A rats. This CTB-SAP model allows us to study the impact of respiratory motor neuron death on breathing without many complications attendant to ALS. Here, we tested the hypothesis that phrenic motor neuron death is sufficient to enhance pLTF. pLTF was assessed in anesthetized, paralyzed and ventilated Sprague Dawley rats 7 and 28 days following bilateral intrapleural injections of: 1) CTB-SAP (25 μg), or 2) un-conjugated CTB and SAP (control). CTB-SAP enhanced pLTF at 7 (CTB-SAP: 162 ± 18%, n = 8 vs. Control: 63 ± 3%; n = 8; p < 0.05), but not 28 days post-injection (CTB-SAP: 64 ± 10%, n = 10 vs. Control: 60 ± 13; n = 8; p > 0.05). Thus, pLTF at 7 (not 28) days post-CTB-SAP closely resembles pLTF in end-stage ALS rats, suggesting that processes unique to the early period of motor neuron death enhance pLTF. This project increases our understanding of respiratory plasticity and its implications for breathing in motor neuron disease.
Collapse
Affiliation(s)
- Nicole L Nichols
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, United States.
| | - Taylor A Craig
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, United States
| | - Miles A Tanner
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, United States
| |
Collapse
|
24
|
Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats. J Neurosci 2017; 37:5834-5845. [PMID: 28500219 DOI: 10.1523/jneurosci.3680-16.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/08/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A ), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p < 0.001), BDNF and phosphorylated ERK expression were increased in spared phrenic motor neurons (p < 0.05), consistent with increased Q-pathway contributions to pLTF. Our results increase understanding of respiratory plasticity and its potential to preserve/restore breathing capacity in ALS.SIGNIFICANCE STATEMENT Since neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), end life via respiratory failure, the ability to harness respiratory motor plasticity to improve breathing capacity could increase the quality and duration of life. In a rat ALS model (SOD1G93A ) we previously demonstrated that spinal respiratory motor plasticity elicited by acute intermittent hypoxia is enhanced at disease end-stage, suggesting greater potential to preserve/restore breathing capacity. Here we demonstrate that enhanced intermittent hypoxia-induced phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients.
Collapse
|
25
|
Hocker AD, Stokes JA, Powell FL, Huxtable AG. The impact of inflammation on respiratory plasticity. Exp Neurol 2017; 287:243-253. [PMID: 27476100 PMCID: PMC5121034 DOI: 10.1016/j.expneurol.2016.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity. Yet, we have only recently begun to understand the effects of inflammation on respiratory plasticity. Here, we review some of common models used to investigate the effects of inflammation and discuss the impact of inflammation on nociception, chemosensory plasticity, medullary respiratory centers, motor plasticity in motor neurons and respiratory frequency, and adaptation to high altitude. We provide new data suggesting glial cells contribute to CNS inflammatory gene expression after 24h of sustained hypoxia and inflammation induced by 8h of intermittent hypoxia inhibits long-term facilitation of respiratory frequency. We also discuss how inflammation can have opposite effects on the capacity for plasticity, whereby it is necessary for increases in the hypoxic ventilatory response with sustained hypoxia, but inhibits phrenic long term facilitation after intermittent hypoxia. This review highlights gaps in our knowledge about the effects of inflammation on respiratory control (development, age, and sex differences). In summary, data to date suggest plasticity can be either adaptive or maladaptive and understanding how inflammation alters the respiratory system is crucial for development of better therapeutic interventions to promote breathing and for utilization of plasticity as a clinical treatment.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jennifer A Stokes
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States
| | - Adrianne G Huxtable
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.
| |
Collapse
|
26
|
Agosto-Marlin IM, Nichols NL, Mitchell GS. Adenosine-dependent phrenic motor facilitation is inflammation resistant. J Neurophysiol 2016; 117:836-845. [PMID: 27927784 DOI: 10.1152/jn.00619.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023] Open
Abstract
Phrenic motor facilitation (pMF), a form of respiratory plasticity, can be elicited by acute intermittent hypoxia (i.e., phrenic long-term facilitation, pLTF) or direct application of drugs to the cervical spinal cord. Moderate acute intermittent hypoxia (mAIH; 3 × 5-min episodes of 35-50 mmHg arterial Po2, 5-min normoxic intervals) induces pLTF by a serotonin-dependent mechanism; mAIH-induced pLTF is abolished by mild systemic inflammation induced by a low dose of lipopolysaccharide (LPS; 100 μg/kg ip). In contrast, severe acute intermittent hypoxia (sAIH; 3 × 5-min episodes of 25-30 mmHg arterial Po2, 5-min normoxic intervals) elicits pLTF by a distinct, adenosine-dependent mechanism. Since it is not known if systemic LPS blocks the mechanism giving rise to sAIH-induced pLTF, we tested the hypothesis that sAIH-induced pLTF and adenosine 2A (A2A) receptor-induced pMF are insensitive to mild systemic inflammation elicited by the same low dose of LPS. In agreement with our hypothesis, neither sAIH-induced pLTF nor cervical intrathecal A2A receptor agonist (CGS-21680; 200 μM, 10 μl × 3)-induced pMF were affected 24 h post-LPS. Pretreatment with intrathecal A2A receptor antagonist injections (MSX-3; 10 μM, 12 μl) blocked sAIH-induced pLTF 24 h post LPS, confirming that pLTF was adenosine dependent. Our results give insights concerning the differential impact of systemic inflammation and the functional significance of multiple cascades capable of giving rise to phrenic motor plasticity. The relative resistance of adenosine-dependent pMF to inflammation suggests that it provides a "backup" system in animals lacking serotonin-dependent pMF due to ongoing inflammation associated with systemic infections and/or neural injury.NEW & NOTEWORTHY This study gives novel insights concerning how a mild systemic inflammation impacts phrenic motor plasticity (pMF), particularly adenosine-dependent pMF. We suggest that since this adenosine-dependent pathway is insensitive to systemic inflammation, it represents an alternative or "backup" mechanism of pMF when other mechanisms are suppressed.
Collapse
Affiliation(s)
- Ibis M Agosto-Marlin
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin; and
| | - Nicole L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin; and
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin; and .,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Devinney MJ, Nichols NL, Mitchell GS. Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation. J Neurosci 2016; 36:7877-85. [PMID: 27466333 PMCID: PMC4961775 DOI: 10.1523/jneurosci.4122-15.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 05/03/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal motor plasticity. Competing mechanisms give rise to phrenic motor facilitation (pMF; a general term including pLTF) depending on the severity of hypoxia within episodes. In contrast, moderate acute sustained hypoxia (mASH) does not elicit pMF. By varying the severity of ASH and targeting competing mechanisms of pMF, we sought to illustrate why moderate AIH (mAIH) elicits pMF but mASH does not. Although mAIH elicits serotonin-dependent pLTF, mASH does not; thus, mAIH-induced pLTF is pattern sensitive. In contrast, severe AIH (sAIH) elicits pLTF through adenosine-dependent mechanisms, likely from greater extracellular adenosine accumulation. Because serotonin- and adenosine-dependent pMF interact via cross talk inhibition, we hypothesized that pMF is obscured because the competing mechanisms of pMF are balanced and offsetting during mASH. Here, we demonstrate the following: (1) blocking spinal A2A receptors with MSX-3 reveals mASH-induced pMF; and (2) sASH elicits A2A-dependent pMF. In anesthetized rats pretreated with intrathecal A2A receptor antagonist injections before mASH (PaO2 = 40-54 mmHg) or sASH (PaO2 = 25-36 mmHg), (1) mASH induced a serotonin-dependent pMF and (2) sASH induced an adenosine-dependent pMF, which was enhanced by spinal serotonin receptor inhibition. Thus, competing adenosine- and serotonin-dependent mechanisms contribute differentially to pMF depending on the pattern/severity of hypoxia. Understanding interactions between these mechanisms has clinical relevance as we develop therapies to treat severe neuromuscular disorders that compromise somatic motor behaviors, including breathing. Moreover, these results demonstrate how competing mechanisms of plasticity can give rise to pattern sensitivity in pLTF. SIGNIFICANCE STATEMENT Intermittent hypoxia elicits pattern-sensitive spinal plasticity and improves motor function after spinal injury or during neuromuscular disease. Specific mechanisms of pattern sensitivity in this form of plasticity are unknown. We provide evidence that competing mechanisms of phrenic motor facilitation mediated by adenosine 2A and serotonin 2 receptors are differentially expressed, depending on the pattern/severity of hypoxia. Understanding how these distinct mechanisms interact during hypoxic exposures differing in severity and duration will help explain interesting properties of plasticity, such as pattern sensitivity, and may help optimize therapies to restore motor function in patients with neuromuscular disorders that compromise movement.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Nicole L Nichols
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and Department of Physical Therapy, Center for Respiratory Research and Rehabilitation and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
28
|
Dale EA, Fields DP, Devinney MJ, Mitchell GS. Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation. Exp Neurol 2016; 287:130-136. [PMID: 27185271 DOI: 10.1016/j.expneurol.2016.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Phrenic long-term facilitation (pLTF) is a form of hypoxia-induced spinal respiratory motor plasticity that requires new synthesis of brain derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, tropomyosin receptor kinase B (TrkB). Since the cellular location of relevant TrkB receptors is not known, we utilized intrapleural siRNA injections to selectively knock down TrkB receptor protein within phrenic motor neurons. TrkB receptors within phrenic motor neurons are necessary for BDNF-dependent acute intermittent hypoxia-induced pLTF, demonstrating that phrenic motor neurons are a critical site of respiratory motor plasticity.
Collapse
Affiliation(s)
- Erica A Dale
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States
| | - Daryl P Fields
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States; Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Michael J Devinney
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States; Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
29
|
STIPICA I, PAVLINAC DODIG I, PECOTIC R, DOGAS Z, VALIC Z, VALIC M. Periodicity During Hypercapnic and Hypoxic Stimulus Is Crucial in Distinct Aspects of Phrenic Nerve Plasticity. Physiol Res 2016; 65:133-43. [DOI: 10.33549/physiolres.933012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was undertaken to determine pattern sensitivity of phrenic nerve plasticity in respect to different respiratory challenges. We compared long-term effects of intermittent and continuous hypercapnic and hypoxic stimuli, and combined intermittent hypercapnia and hypoxia on phrenic nerve plasticity. Adult, male, urethane-anesthetized, vagotomized, paralyzed, mechanically ventilated Sprague-Dawley rats were exposed to: acute intermittent hypercapnia (AIHc or AIHcO2), acute intermittent hypoxia (AIH), combined intermittent hypercapnia and hypoxia (AIHcH), continuous hypercapnia (CHc), or continuous hypoxia (CH). Peak phrenic nerve activity (pPNA) and burst frequency were analyzed during baseline (T0), hypercapnia or hypoxia exposures, at 15, 30, and 60 min (T60) after the end of the stimulus. Exposure to acute intermittent hypercapnia elicited decrease of phrenic nerve frequency from 44.25±4.06 at T0 to 35.29±5.21 at T60, (P=0.038, AIHc) and from 45.5±2.62 to 37.17±3.68 breaths/min (P=0.049, AIHcO2), i.e. frequency phrenic long term depression was induced. Exposure to AIH elicited increase of pPNA at T60 by 141.0±28.2 % compared to baseline (P=0.015), i.e. phrenic long-term facilitation was induced. Exposure to AIHcH, CHc, or CH protocols failed to induce long-term plasticity of the phrenic nerve. Thus, we conclude that intermittency of the hypercapnic or hypoxic stimuli is needed to evoke phrenic nerve plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | - M. VALIC
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
30
|
Valic M, Pecotic R, Pavlinac Dodig I, Valic Z, Stipica I, Dogas Z. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats. Exp Physiol 2015; 101:319-31. [DOI: 10.1113/ep085161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 11/20/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Maja Valic
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Renata Pecotic
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Ivana Pavlinac Dodig
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Zoran Valic
- Department of Physiology; University of Split School of Medicine; Split Croatia
| | - Ivona Stipica
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| | - Zoran Dogas
- Department of Neuroscience; University of Split School of Medicine; Split Croatia
| |
Collapse
|
31
|
ElMallah MK, Stanley DA, Lee KZ, Turner SMF, Streeter KA, Baekey DM, Fuller DD. Power spectral analysis of hypoglossal nerve activity during intermittent hypoxia-induced long-term facilitation in mice. J Neurophysiol 2015; 115:1372-80. [PMID: 26683067 DOI: 10.1152/jn.00479.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/15/2015] [Indexed: 11/22/2022] Open
Abstract
Power spectral analyses of electrical signals from respiratory nerves reveal prominent oscillations above the primary rate of breathing. Acute exposure to intermittent hypoxia can induce a form of neuroplasticity known as long-term facilitation (LTF), in which inspiratory burst amplitude is persistently elevated. Most evidence indicates that the mechanisms of LTF are postsynaptic and also that high-frequency oscillations within the power spectrum show coherence across different respiratory nerves. Since the most logical interpretation of this coherence is that a shared presynaptic mechanism is responsible, we hypothesized that high-frequency spectral content would be unchanged during LTF. Recordings of inspiratory hypoglossal (XII) activity were made from anesthetized, vagotomized, and ventilated 129/SVE mice. When arterial O2 saturation (SaO2) was maintained >96%, the XII power spectrum and burst amplitude were unchanged for 90 min. Three, 1-min hypoxic episodes (SaO2 = 50 ± 10%), however, caused a persistent (>60 min) and robust (>400% baseline) increase in burst amplitude. Spectral analyses revealed a rightward shift of the signal content during LTF, with sustained increases in content above ∼125 Hz following intermittent hypoxia and reductions in power at lower frequencies. Changes in the spectral content during LTF were qualitatively similar to what occurred during the acute hypoxic response. We conclude that high-frequency content increases during XII LTF in this experimental preparation; this may indicate that intermittent hypoxia-induced plasticity in the premotor network contributes to expression of XII LTF.
Collapse
Affiliation(s)
- Mai K ElMallah
- Department of Pediatrics, Division of Pulmonary Medicine, University of Florida, Gainesville, Florida
| | - David A Stanley
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sara M F Turner
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Kristi A Streeter
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - David M Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida; and
| | - David D Fuller
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Nichols NL, Satriotomo I, Harrigan DJ, Mitchell GS. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS. Exp Neurol 2015; 273:138-50. [PMID: 26287750 DOI: 10.1016/j.expneurol.2015.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms preserving/enhancing the capacity for pLTF in MT rats are not known.
Collapse
Affiliation(s)
- Nicole L Nichols
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Irawan Satriotomo
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel J Harrigan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
33
|
Tani M, Yazawa I, Ikeda K, Kawakami K, Onimaru H. Long-lasting facilitation of respiratory rhythm by treatment with TRPA1 agonist, cinnamaldehyde. J Neurophysiol 2015; 114:989-98. [PMID: 26108952 PMCID: PMC4725117 DOI: 10.1152/jn.00282.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/11/2015] [Indexed: 11/22/2022] Open
Abstract
The transient receptor potential (TRP) channels are widely distributed in the central nervous system (CNS) and peripheral nervous system. We examined the effects of TRP ankyrin 1 (TRPA1) agonists (cinnamaldehyde and allyl isothiocyanate) on respiratory rhythm generation in brainstem-spinal cord preparations from newborn rats [postnatal days 0-3 (P0-P3)] and in in situ-perfused preparations from juvenile rats (P11-P13). Preparations were superfused with modified Krebs solution at 25-26°C, and activity of inspiratory C4 ventral root (or phrenic nerve) was monitored. In the newborn rat, an in vitro preparation of cinnamaldehyde (0.5 mM) induced typically biphasic responses in C4 rate: an initial short increase and subsequent decrease, then a gradual recovery of rhythm during 15 min of bath application. After washout, the respiratory rhythm rate further increased, remaining 200% of control for >120 min, indicating long-lasting facilitation. Allyl isothiocyanate induced effects similar to those of cinnamaldehyde. The long-lasting facilitation of respiratory rhythm was partially antagonized by the TRPA1 antagonist HC-030031 (10 μM). We obtained similar long-lasting facilitation in an in situ-perfused reparation from P11-P13 rats. On the basis of results from transection experiments of the rostral medulla and whole-cell recordings from preinspiratory neurons in the parafacial respiratory group (pFRG), we suggest that the rostral medulla, including the pFRG, is important to the induction of long-lasting facilitation. A histochemical analysis demonstrated a wide distribution of TRPA1 channel-positive cells in the reticular formation of the medulla, including the pFRG. Our findings suggest that TRPA1 channel activation could induce long-lasting facilitation of respiratory rhythm and provide grounds for future study on the roles of TRPA1 channels in the CNS.
Collapse
Affiliation(s)
- Mariho Tani
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Itaru Yazawa
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Keiko Ikeda
- Division of Biology, Hyogo College of Medicine, Hyogo, Japan; and
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan;
| |
Collapse
|
34
|
Dougherty BJ, Fields DP, Mitchell GS. Mammalian target of rapamycin is required for phrenic long-term facilitation following severe but not moderate acute intermittent hypoxia. J Neurophysiol 2015. [PMID: 26224775 DOI: 10.1152/jn.00539.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phrenic long-term facilitation (pLTF) is a persistent increase in phrenic nerve activity after acute intermittent hypoxia (AIH). Distinct cell-signaling cascades give rise to pLTF depending on the severity of hypoxemia within hypoxic episodes. Moderate AIH (mAIH; three 5-min episodes, PaO2 ∼35-55 mmHG) elicits pLTF by a serotonin (5-HT)-dependent mechanism that requires new synthesis of brain-derived neurotrophic factor (BDNF), activation of its high-affinity receptor (TrkB), and ERK MAPK signaling. In contrast, severe AIH (sAIH; three 5-min episodes, PaO2 ∼25-30 mmHG) elicits pLTF by an adenosine-dependent mechanism that requires new TrkB synthesis and Akt signaling. Although both mechanisms require spinal protein synthesis, the newly synthesized proteins are distinct, as are the neurochemicals inducing plasticity (serotonin vs. adenosine). In many forms of neuroplasticity, new protein synthesis requires translational regulation via mammalian target of rapamycin (mTOR) signaling. Since Akt regulates mTOR activity, we hypothesized that mTOR activity is necessary for sAIH- but not mAIH-induced pLTF. Phrenic nerve activity in anesthetized, paralyzed, and ventilated rats was recorded before, during, and 60 min after mAIH or sAIH. Rats were pretreated with intrathecal injections of 20% DMSO (vehicle controls) or rapamycin (0.1 mM, 12 μl), a selective mTOR complex 1 inhibitor. Consistent with our hypothesis, rapamycin blocked sAIH- but not mAIH-induced pLTF. Thus spinal mTOR activity is required for adenosine-dependent (sAIH) but not serotonin-dependent (mAIH) pLTF, suggesting that distinct mechanisms regulate new protein synthesis in these forms of spinal neuroplasticity.
Collapse
Affiliation(s)
- Brendan J Dougherty
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Daryl P Fields
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin; and Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin; and Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
35
|
Beaudin AE, Waltz X, Pun M, Wynne-Edwards KE, Ahmed SB, Anderson TJ, Hanly PJ, Poulin MJ. Human intermittent hypoxia-induced respiratory plasticity is not caused by inflammation. Eur Respir J 2015; 46:1072-83. [PMID: 26065565 DOI: 10.1183/09031936.00007415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/19/2015] [Indexed: 11/05/2022]
Abstract
Ventilatory instability, reflected by enhanced acute hypoxic (AHVR) and hypercapnic (AHCVR) ventilatory responses is a fundamental component of obstructive sleep apnoea (OSA) pathogenesis. Intermittent hypoxia-induced inflammation is postulated to promote AHVR enhancement in OSA, although the role of inflammation in intermittent hypoxia-induced respiratory changes in humans has not been examined. Thus, this study assessed the role of inflammation in intermittent hypoxia-induced respiratory plasticity in healthy humans.In a double-blind, placebo-controlled, randomised crossover study design, 12 males were exposed to 6 h of intermittent hypoxia on three occasions. Prior to intermittent hypoxia exposures, participants ingested (for 4 days) either placebo or the nonsteroidal anti-inflammatory drugs indomethacin (nonselective cyclooxygenase (COX) inhibitor) and celecoxib (selective COX-2 inhibitor). Pre- and post-intermittent hypoxia resting ventilation, AHVR, AHCVR and serum concentration of the pro-inflammatory cytokine tumour necrosis factor (TNF)-α were assessed.Pre-intermittent hypoxia resting ventilation, AHVR, AHCVR and TNF-α concentrations were similar across all three conditions (p≥0.093). Intermittent hypoxia increased resting ventilation and the AHVR similarly across all conditions (p=0.827), while the AHCVR was increased (p=0.003) and TNF-α was decreased (p=0.006) with only selective COX-2 inhibition.These findings indicate that inflammation does not contribute to human intermittent hypoxia-induced respiratory plasticity. Moreover, selective COX-2 inhibition augmented the AHCVR following intermittent hypoxia exposure, suggesting that selective COX-2 inhibition could exacerbate OSA severity by increasing ventilatory instability.
Collapse
Affiliation(s)
- Andrew E Beaudin
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xavier Waltz
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matiram Pun
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katherine E Wynne-Edwards
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sofia B Ahmed
- Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Todd J Anderson
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Dept of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Dept of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Marc J Poulin
- Dept of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Dept of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Chronic Intermittent Hypoxia Blunts the Expression of Ventilatory Long Term Facilitation in Sleeping Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:335-42. [PMID: 26303498 DOI: 10.1007/978-3-319-18440-1_38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously reported that chronic intermittent hypoxia (CIH), a central feature of human sleep-disordered breathing, causes respiratory instability in sleeping rats (Edge D, Bradford A, O'halloran KD. Adv Exp Med Biol 758:359-363, 2012). Long term facilitation (LTF) of respiratory motor outputs following exposure to episodic, but not sustained, hypoxia has been described. We hypothesized that CIH would enhance ventilatory LTF during sleep. We examined the effects of 3 and 7 days of CIH exposure on the expression of ventilatory LTF in sleeping rats. Adult male Wistar rats were exposed to 20 cycles of normoxia and hypoxia (5 % O(2) at nadir; SaO(2) ~ 80 %) per hour, 8 h per day for 3 or 7 consecutive days (CIH, N = 7 per group). Corresponding sham groups (N = 7 per group) were subjected to alternating cycles of air under identical experimental conditions in parallel. Following gas exposures, breathing during sleep was assessed in unrestrained, unanaesthetized animals using the technique of whole-body plethysmography. Rats were exposed to room air (baseline) and then to an acute IH (AIH) protocol consisting of alternating periods of normoxia (7 min) and hypoxia (FiO(2) 0.1, 5 min) for 10 cycles. Breathing was monitored during the AIH exposure and for 1 h in normoxia following AIH exposure. Baseline ventilation was elevated after 3 but not 7 days of CIH exposure. The hypoxic ventilatory response was equivalent in sham and CIH animals after 3 days but ventilatory responses to repeated hypoxic challenges were significantly blunted following 7 days of CIH. Minute ventilation was significantly elevated following AIH exposure compared to baseline in sham but not in CIH exposed animals. LTF, determined as the % increase in minute ventilation from baseline following AIH exposure, was significantly blunted in CIH exposed rats. In summary, CIH leads to impaired ventilatory responsiveness to AIH. Moreover, CIH blunts ventilatory LTF. The physiological significance of ventilatory LTF is context-dependent but it is reasonable to consider that it can potentially destabilize respiratory control, in view of the potential for LTF to give rise to hypocapnia. CIH-induced blunting of LTF may represent a compensatory mechanism subserving respiratory homeostasis. Our results suggest that CIH-induced increase in apnoea index (Edge D, Bradford A, O'halloran KD. Adv Exp Med Biol 758:359-363, 2012) is not related to enhanced ventilatory LTF. We conclude that the mature adult respiratory system exhibits plasticity and metaplasticity with potential consequences for the control of respiratory homeostasis. Our results may have implications for human sleep apnoea.
Collapse
|
37
|
Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1181-97. [PMID: 25231353 DOI: 10.1152/ajpregu.00208.2014] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia (IH) has been the subject of considerable research in recent years, and triggers a bewildering array of both detrimental and beneficial effects in multiple physiological systems. Here, we review the extensive literature concerning IH and its impact on the respiratory, cardiovascular, immune, metabolic, bone, and nervous systems. One major goal is to define relevant IH characteristics leading to safe, protective, and/or therapeutic effects vs. pathogenesis. To understand the impact of IH, it is essential to define critical characteristics of the IH protocol under investigation, including potentially the severity of hypoxia within episodes, the duration of hypoxic episodes, the number of hypoxic episodes per day, the pattern of presentation across time (e.g., within vs. consecutive vs. alternating days), and the cumulative time of exposure. Not surprisingly, severe/chronic IH protocols tend to be pathogenic, whereas any beneficial effects are more likely to arise from modest/acute IH exposures. Features of the IH protocol most highly associated with beneficial vs. pathogenic outcomes include the level of hypoxemia within episodes and the number of episodes per day. Modest hypoxia (9-16% inspired O2) and low cycle numbers (3-15 episodes per day) most often lead to beneficial effects without pathology, whereas severe hypoxia (2-8% inspired O2) and more episodes per day (48-2,400 episodes/day) elicit progressively greater pathology. Accumulating evidence suggests that "low dose" IH (modest hypoxia, few episodes) may be a simple, safe, and effective treatment with considerable therapeutic potential for multiple clinical disorders.
Collapse
Affiliation(s)
- Angela Navarrete-Opazo
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
38
|
Streeter KA, Baker-Herman TL. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats. J Appl Physiol (1985) 2014; 117:682-93. [PMID: 25103979 DOI: 10.1152/japplphysiol.00342.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population.
Collapse
Affiliation(s)
- K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - T L Baker-Herman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
39
|
Streeter KA, Baker-Herman TL. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation. Exp Neurol 2014; 256:46-56. [PMID: 24681155 DOI: 10.1016/j.expneurol.2014.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022]
Abstract
Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life.
Collapse
Affiliation(s)
- K A Streeter
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - T L Baker-Herman
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
40
|
Huxtable AG, MacFarlane PM, Vinit S, Nichols NL, Dale EA, Mitchell GS. Adrenergic α₁ receptor activation is sufficient, but not necessary for phrenic long-term facilitation. J Appl Physiol (1985) 2014; 116:1345-52. [PMID: 24526581 DOI: 10.1152/japplphysiol.00904.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute intermittent hypoxia (AIH; three 5-min hypoxic episodes) causes a form of phrenic motor facilitation (pMF) known as phrenic long-term facilitation (pLTF); pLTF is initiated by spinal activation of Gq protein-coupled 5-HT2 receptors. Because α1 adrenergic receptors are expressed in the phrenic motor nucleus and are also Gq protein-coupled, we hypothesized that α1 receptors are sufficient, but not necessary for AIH-induced pLTF. In anesthetized, paralyzed, and ventilated rats, episodic spinal application of the α1 receptor agonist phenylephrine (PE) elicited dose-dependent pMF (10 and 100 μM, P < 0.05; but not 1 μM). PE-induced pMF was blocked by the α1 receptor antagonist prazosin (1 mM; -20 ± 20% at 60 min, -5 ± 21% at 90 min; n = 6). Although α1 receptor activation is sufficient to induce pMF, it was not necessary for AIH-induced pLTF because intrathecal prazosin (1 mM) did not alter AIH-induced pLTF (56 ± 9% at 60 min, 78 ± 12% at 90 min; n = 9). Intravenous (iv) prazosin (150 μg/kg) appeared to reduce pLTF (21 ± 9% at 60 min, 26 ± 8% at 90 min), but this effect was not significant. Hypoglossal long-term facilitation was unaffected by intrathecal prazosin, but was blocked by iv prazosin (-4 ± 14% at 60 min, -13 ± 18% at 90 min), suggesting different LTF mechanisms in different motor neuron pools. In conclusion, Gq protein-coupled α1 adrenergic receptors evoke pMF, but they are not necessary for AIH-induced pLTF.
Collapse
Affiliation(s)
- A G Huxtable
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - P M MacFarlane
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - S Vinit
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - N L Nichols
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - E A Dale
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - G S Mitchell
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
41
|
Reid IM, Solomon IC. Intermittent hypoxia-induced respiratory long-term facilitation is dominated by enhanced burst frequency, not amplitude, in spontaneously breathing urethane-anesthetized neonatal rats. PROGRESS IN BRAIN RESEARCH 2014; 212:221-35. [PMID: 25194200 DOI: 10.1016/b978-0-444-63488-7.00011-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute intermittent hypoxia (AIH) triggers a form of respiratory plasticity known as long-term facilitation (LTF), which is manifested as a progressive increase in respiratory motor activity that lasts for minutes to hours after the hypoxic stimulus is removed. Respiratory LTF has been reported in numerous animal models, but it appears to be influenced by a variety of factors (e.g., species, age, and gender). While most studies focusing on respiratory LTF have been conducted in adult (including young adult) rat preparations, little is known about the influence of postnatal maturation on AIH-induced respiratory LTF. To begin to address this issue, we examined diaphragm EMG activity in response to and at 5-min intervals for 60 min following three 5-min episodes of hypoxia (8% O2) in urethane-anesthetized spontaneously breathing P14-P15 neonatal rats (n=15). For these experiments, the hypoxic episodes were separated by hyperoxia (40% O2), and all rats were continuously supplied with ~4% CO2. During the AIH trials, burst frequency was increased by ~20-90% above baseline in each of the rats examined while changes in burst amplitude were highly variable. Following the AIH episodes, respiratory LTF was characterized by predominantly an increase in burst frequency (fLTF) ranging from ~10% to 55%, with most rats exhibiting a 20-40% increase. In seven rats, however, an increase in amplitude (ampLTF) (~10%, n=3; ~20%, n=3; ~30%, n=1) was also noted. These data suggest that in contrast to observations in anesthetized ventilated adult rats, in anesthetized spontaneously breathing P14-P15 neonatal rats, respiratory LTF is dominated by fLTF, not ampLTF.
Collapse
Affiliation(s)
- Inefta M Reid
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Irene C Solomon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
42
|
Marinov V, Valic M, Pecotic R, Karanovic N, Dodig IP, Carev M, Valic Z, Dogas Z. Sevoflurane and isoflurane monoanesthesia abolished the phrenic long-term facilitation in rats. Respir Physiol Neurobiol 2013; 189:607-13. [DOI: 10.1016/j.resp.2013.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
|
43
|
Broytman O, Baertsch NA, Baker-Herman TL. Spinal TNF is necessary for inactivity-induced phrenic motor facilitation. J Physiol 2013; 591:5585-98. [PMID: 23878370 DOI: 10.1113/jphysiol.2013.256644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A prolonged reduction in central neural respiratory activity elicits a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF), a 'rebound' increase in phrenic burst amplitude apparent once respiratory neural activity is restored. iPMF requires atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize an early transient increase in phrenic burst amplitude and to form long-lasting iPMF following reduced respiratory neural activity. Upstream signal(s) leading to spinal aPKC activation are unknown. We tested the hypothesis that spinal tumour necrosis factor-α (TNFα) is necessary for iPMF via an aPKC-dependent mechanism. Anaesthetized, ventilated rats were exposed to a 30 min neural apnoea; upon resumption of respiratory neural activity, a prolonged increase in phrenic burst amplitude (42 ± 9% baseline; P < 0.05) was apparent, indicating long-lasting iPMF. Pretreatment with recombinant human soluble TNF receptor 1 (sTNFR1) in the intrathecal space at the level of the phrenic motor nucleus prior to neural apnoea blocked long-lasting iPMF (2 ± 8% baseline; P > 0.05). Intrathecal TNFα without neural apnoea was sufficient to elicit long-lasting phrenic motor facilitation (pMF; 62 ± 7% baseline; P < 0.05). Similar to iPMF, TNFα-induced pMF required spinal aPKC activity, as intrathecal delivery of a ζ-pseudosubstrate inhibitory peptide (PKCζ-PS) 35 min following intrathecal TNFα arrested TNFα-induced pMF (28 ± 8% baseline; P < 0.05). These data demonstrate that: (1) spinal TNFα is necessary for iPMF; and (2) spinal TNFα is sufficient to elicit pMF via a similar aPKC-dependent mechanism. These data are consistent with the hypothesis that reduced respiratory neural activity elicits iPMF via a TNFα-dependent increase in spinal aPKC activity.
Collapse
Affiliation(s)
- Oleg Broytman
- T. Baker-Herman: Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI, USA.
| | | | | |
Collapse
|
44
|
Devinney MJ, Huxtable AG, Nichols NL, Mitchell GS. Hypoxia-induced phrenic long-term facilitation: emergent properties. Ann N Y Acad Sci 2013; 1279:143-53. [PMID: 23531012 DOI: 10.1111/nyas.12085] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As in other neural systems, plasticity is a hallmark of the neural system controlling breathing. One spinal mechanism of respiratory plasticity is phrenic long-term facilitation (pLTF) following acute intermittent hypoxia. Although cellular mechanisms giving rise to pLTF occur within the phrenic motor nucleus, different signaling cascades elicit pLTF under different conditions. These cascades, referred to as Q and S pathways to phrenic motor facilitation (pMF), interact via cross-talk inhibition. Whereas the Q pathway dominates pLTF after mild to moderate hypoxic episodes, the S pathway dominates after severe hypoxic episodes. The biological significance of multiple pathways to pMF is unknown. This review will discuss the possibility that interactions between pathways confer emergent properties to pLTF, including pattern sensitivity and metaplasticity. Understanding these mechanisms and their interactions may enable us to optimize intermittent hypoxia-induced plasticity as a treatment for patients that suffer from ventilatory impairment or other motor deficits.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
45
|
Baertsch NA, Baker-Herman TL. Inactivity-induced phrenic and hypoglossal motor facilitation are differentially expressed following intermittent vs. sustained neural apnea. J Appl Physiol (1985) 2013; 114:1388-95. [PMID: 23493368 DOI: 10.1152/japplphysiol.00018.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reduced respiratory neural activity elicits a rebound increase in phrenic and hypoglossal motor output known as inactivity-induced phrenic and hypoglossal motor facilitation (iPMF and iHMF, respectively). We hypothesized that, similar to other forms of respiratory plasticity, iPMF and iHMF are pattern sensitive. Central respiratory neural activity was reversibly reduced in ventilated rats by hyperventilating below the CO2 apneic threshold to create brief intermittent neural apneas (5, ∼1.5 min each, separated by 5 min), a single brief massed neural apnea (7.5 min), or a single prolonged neural apnea (30 min). Upon restoration of respiratory neural activity, long-lasting (>60 min) iPMF was apparent following brief intermittent and prolonged, but not brief massed, neural apnea. Further, brief intermittent and prolonged neural apnea elicited an increase in the maximum phrenic response to high CO2, suggesting that iPMF is associated with an increase in phrenic dynamic range. By contrast, only prolonged neural apnea elicited iHMF, which was transient in duration (<15 min). Intermittent, massed, and prolonged neural apnea all elicited a modest transient facilitation of respiratory frequency. These results indicate that iPMF, but not iHMF, is pattern sensitive, and that the response to respiratory neural inactivity is motor pool specific.
Collapse
Affiliation(s)
- N A Baertsch
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
46
|
Huxtable AG, Smith SMC, Vinit S, Watters JJ, Mitchell GS. Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia. J Appl Physiol (1985) 2013; 114:879-87. [PMID: 23329821 DOI: 10.1152/japplphysiol.01347.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although systemic inflammation occurs in most pathological conditions that challenge the neural control of breathing, little is known concerning the impact of inflammation on respiratory motor plasticity. Here, we tested the hypothesis that low-grade systemic inflammation induced by lipopolysaccharide (LPS, 100 μg/kg ip; 3 and 24 h postinjection) elicits spinal inflammatory gene expression and attenuates a form of spinal, respiratory motor plasticity: phrenic long-term facilitation (pLTF) induced by acute intermittent hypoxia (AIH; 3, 5 min hypoxic episodes, 5 min intervals). pLTF was abolished 3 h (vehicle control: 67.1 ± 27.9% baseline; LPS: 3.7 ± 4.2%) and 24 h post-LPS injection (vehicle: 58.3 ± 17.1% baseline; LPS: 3.5 ± 4.3%). Pretreatment with the nonsteroidal anti-inflammatory drug ketoprofen (12.5 mg/kg ip) restored pLTF 24 h post-LPS (55.1 ± 12.3%). LPS increased inflammatory gene expression in the spleen and cervical spinal cord (homogenates and isolated microglia) 3 h postinjection; however, all molecules assessed had returned to baseline by 24 h postinjection. At 3 h post-LPS, cervical spinal iNOS and COX-2 mRNA were differentially increased in microglia and homogenates, suggesting differential contributions from spinal cells. Thus LPS-induced systemic inflammation impairs AIH-induced pLTF, even after measured inflammatory genes returned to normal. Since ketoprofen restores pLTF even without detectable inflammatory gene expression, "downstream" inflammatory molecules most likely impair pLTF. These findings have important implications for many disease states where acute systemic inflammation may undermine the capacity for compensatory respiratory plasticity.
Collapse
Affiliation(s)
- A G Huxtable
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
47
|
Spinal vascular endothelial growth factor (VEGF) and erythropoietin (EPO) induced phrenic motor facilitation after repetitive acute intermittent hypoxia. Respir Physiol Neurobiol 2012; 185:481-8. [PMID: 23128070 DOI: 10.1016/j.resp.2012.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/21/2022]
Abstract
Vascular endothelial growth factor (VEGF) and erythropoietin (EPO) exert neurotrophic and neuroprotective effects in the CNS. We recently demonstrated that VEGF, EPO and their receptors (VEGF-R2, EPO-R) are expressed in phrenic motor neurons, and that cervical spinal VEGF-R2 and EPO-R activation elicit long-lasting phrenic motor facilitation (pMF). Since VEGF, VEGF-R, EPO, and EPO-R are hypoxia-regulated genes, and repetitive exposure to acute intermittent hypoxia (rAIH) up-regulates these molecules in phrenic motor neurons, we tested the hypothesis that 4 weeks of rAIH (10 episodes per day, 3 days per week) enhances VEGF- or EPO-induced pMF. We confirm that cervical spinal VEGF and EPO injections elicit pMF. However, neither VEGF- nor EPO-induced pMF was affected by rAIH pre-conditioning (4 wks). Although our data confirm that spinal VEGF and EPO may play an important role in respiratory plasticity, we provide no evidence that rAIH amplifies their impact. Further experiments with more robust protocols are warranted.
Collapse
|
48
|
Hoffman MS, Nichols NL, Macfarlane PM, Mitchell GS. Phrenic long-term facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis. J Appl Physiol (1985) 2012; 113:1184-93. [PMID: 22961271 DOI: 10.1152/japplphysiol.00098.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Acute intermittent hypoxia (AIH) elicits a form of spinal respiratory plasticity known as phrenic long-term facilitation (pLTF). pLTF requires spinal serotonin receptor-2 activation, the synthesis of new brain-derived neurotrophic factor (BDNF), and the activation of its high-affinity receptor tyrosine kinase, TrkB. Spinal adenosine 2A receptor activation elicits a distinct pathway to phrenic motor facilitation (pMF); this BDNF synthesis-independent pathway instead requires new synthesis of an immature TrkB isoform. Since hypoxia increases extracellular adenosine levels, we tested the hypothesis that new synthesis of TrkB and BDNF contribute to AIH-induced pLTF. Furthermore, given that signaling mechanisms "downstream" from TrkB are unknown in either mechanism, we tested the hypothesis that pLTF requires MEK/ERK and/or phosphatidylinositol 3-kinase (PI3K)/Akt activation. In anesthetized Sprague-Dawley rats, an intrathecal catheter at cervical level 4 was used to deliver drugs near the phrenic motor nucleus. Since pLTF was blocked by spinal injections of small interfering RNAs targeting BDNF mRNA but not TrkB mRNA, only new BDNF synthesis is required for AIH-induced pLTF. Pretreatment with a MEK inhibitor (U0126) blocked pLTF, whereas a PI3K inhibitor (PI-828) had no effect. Thus, AIH-induced pLTF requires MEK/ERK (not PI3K/AKT) signaling pathways. When U0126 was injected post-AIH, pLTF development was halted but not reversed, suggesting that ERK is critical for the development but not maintenance of pLTF. Thus, there are clear mechanistic distinctions between AIH-induced pLTF (i.e., BDNF synthesis and MEK/ERK dependent) versus adenosine 2A receptor-induced pMF (i.e., TrkB synthesis and PI3K/Akt dependent).
Collapse
Affiliation(s)
- M S Hoffman
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | | | |
Collapse
|
49
|
Cervical spinal erythropoietin induces phrenic motor facilitation via extracellular signal-regulated protein kinase and Akt signaling. J Neurosci 2012; 32:5973-83. [PMID: 22539857 DOI: 10.1523/jneurosci.3873-11.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is typically known for its role in erythropoiesis but is also a potent neurotrophic/neuroprotective factor for spinal motor neurons. Another trophic factor regulated by hypoxia-inducible factor-1, vascular endothelial growth factor (VEGF), signals via ERK and Akt activation to elicit long-lasting phrenic motor facilitation (pMF). Because EPO also signals via ERK and Akt activation, we tested the hypothesis that EPO elicits similar pMF. Using retrograde labeling and immunohistochemical techniques, we demonstrate in adult, male, Sprague Dawley rats that EPO and its receptor, EPO-R, are expressed in identified phrenic motor neurons. Intrathecal EPO at C4 elicits long-lasting pMF; integrated phrenic nerve burst amplitude increased >90 min after injection (63 ± 12% baseline 90 min after injection; p < 0.001). EPO increased phosphorylation (and presumed activation) of ERK (1.6-fold vs controls; p < 0.05) in phrenic motor neurons; EPO also increased pAkt (1.6-fold vs controls; p < 0.05). EPO-induced pMF was abolished by the MEK/ERK inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene] and the phosphatidylinositol 3-kinase/Akt inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one], demonstrating that ERK MAP kinases and Akt are both required for EPO-induced pMF. Pretreatment with U0126 and LY294002 decreased both pERK and pAkt in phrenic motor neurons (p < 0.05), indicating a complex interaction between these kinases. We conclude that EPO elicits spinal plasticity in respiratory motor control. Because EPO expression is hypoxia sensitive, it may play a role in respiratory plasticity in conditions of prolonged or recurrent low oxygen.
Collapse
|
50
|
Bautista TG, Xing T, Fong AY, Pilowsky PM. Recurrent laryngeal nerve activity exhibits a 5-HT-mediated long-term facilitation and enhanced response to hypoxia following acute intermittent hypoxia in rat. J Appl Physiol (1985) 2012; 112:1144-56. [DOI: 10.1152/japplphysiol.01356.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A progressive and sustained increase in inspiratory-related motor output (“long-term facilitation”) and an augmented ventilatory response to hypoxia occur following acute intermittent hypoxia (AIH). To date, acute plasticity in respiratory motor outputs active in the postinspiratory and expiratory phases has not been studied. The recurrent laryngeal nerve (RLN) innervates laryngeal abductor muscles that widen the glottic aperture during inspiration. Other efferent fibers in the RLN innervate adductor muscles that partially narrow the glottic aperture during postinspiration. The aim of this study was to investigate whether or not AIH elicits a serotonin-mediated long-term facilitation of laryngeal abductor muscles, and if recruitment of adductor muscle activity occurs following AIH. Urethane anesthetized, paralyzed, unilaterally vagotomized, and artificially ventilated adult male Sprague-Dawley rats were subjected to 10 exposures of hypoxia (10% O2 in N2, 45 s, separated by 5 min, n = 7). At 60 min post-AIH, phrenic nerve activity and inspiratory RLN activity were elevated (39 ± 11 and 23 ± 6% above baseline, respectively). These responses were abolished by pretreatment with the serotonin-receptor antagonist, methysergide ( n = 4). No increase occurred in time control animals ( n = 7). Animals that did not exhibit postinspiratory RLN activity at baseline did not show recruitment of this activity post-AIH ( n = 6). A repeat hypoxia 60 min after AIH produced a significantly greater peak response in both phrenic and RLN activity, accompanied by a prolonged recovery time that was also prevented by pretreatment with methysergide. We conclude that AIH induces neural plasticity in laryngeal motoneurons, via serotonin-mediated mechanisms similar to that observed in phrenic motoneurons: the so-called “Q-pathway”. We also provide evidence that the augmented responsiveness to repeat hypoxia following AIH also involves a serotonergic mechanism.
Collapse
Affiliation(s)
- Tara G. Bautista
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Tao Xing
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Angelina Y. Fong
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Paul M. Pilowsky
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|