1
|
Broadfoot CK, Hoffmeister JD, Lechner SA, Krasko MN, Lambert E, Russell JA, Szot JC, Glass TJ, Connor NP, Kelm-Nelson CA, Ciucci MR. Tongue and laryngeal exercises improve tongue strength and vocal function outcomes in a Pink1-/- rat model of early Parkinson disease. Behav Brain Res 2024; 460:114754. [PMID: 37981125 PMCID: PMC10872343 DOI: 10.1016/j.bbr.2023.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Parkinson disease (PD) causes voice and swallow dysfunction even in early stages of the disease. Treatment of this dysfunction is limited, and the neuropathology underlying this dysfunction is poorly defined. Targeted exercise provides the greatest benefit for offsetting voice and swallow dysfunction, and previous data suggest the hypoglossal nucleus and noradrenergic-locus coeruleus (LC) may be involved in its early pathology. To investigate relationships between targeted exercise and neuropathology of voice and swallow dysfunction, we implemented a combined exercise paradigm that included tongue force and vocalization exercises early in the Pink1-/- rat model. We tested the hypotheses that (1) tongue and vocal exercise improves tongue force and timing behaviors and vocalization outcomes, and (2) exercise increases optical density of serotonin (5-HT) in the hypoglossal nucleus, and tyrosine hydroxylase immunoreactive (Th-ir) cell counts in the LC. At two months of age Pink1-/- rats were randomized to exercise or non-exercise treatment. Age-matched wildtype (WT) control rats were assigned to non-exercise treatment. Tongue force and timing behaviors and ultrasonic vocalizations were measured at baseline (two months) and final (four months) timepoints. Optical density of 5-HT in the hypoglossal nucleus and TH-ir cell counts in the LC were obtained. Pink1-/- rats produced greater tongue forces, faster tongue contraction, and higher-intensity vocalization following exercise. There were no differences in LC TH-ir. The non-exercised Pink1-/- group had reduced density of 5-HT in the hypoglossal nucleus compared to the WT control group. The changes to tongue function and vocalization after targeted exercise suggests exercise intervention may be beneficial in early PD.
Collapse
Affiliation(s)
- Courtney K Broadfoot
- University of South Alabama, Department of Speech Pathology & Audiology, 36688, USA.
| | | | - Sarah A Lechner
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Maryann N Krasko
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, 53706, USA
| | - Emily Lambert
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - John A Russell
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - John C Szot
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Tiffany J Glass
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Nadine P Connor
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, 53706, USA; University of Wisconsin-Madison, Neuroscience Training Program, 53706, USA
| | - Cynthia A Kelm-Nelson
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA
| | - Michelle R Ciucci
- University of Wisconsin-Madison Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, 53706, USA; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, 53706, USA; University of Wisconsin-Madison, Neuroscience Training Program, 53706, USA
| |
Collapse
|
2
|
Krasko MN, Szot J, Lungova K, Rowe LM, Leverson G, Kelm-Nelson CA, Ciucci MR. Pink1-/- Rats Demonstrate Swallowing and Gastrointestinal Dysfunction in a Model of Prodromal Parkinson Disease. Dysphagia 2023; 38:1382-1397. [PMID: 36949296 PMCID: PMC10514238 DOI: 10.1007/s00455-023-10567-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Early motor and non-motor signs of Parkinson disease (PD) include dysphagia, gastrointestinal dysmotility, and constipation. However, because these often manifest prior to formal diagnosis, the study of PD-related swallow and GI dysfunction in early stages is difficult. To overcome this limitation, we used the Pink1-/- rat, a well-established early-onset genetic rat model of PD to assay swallowing and GI motility deficits. Thirty male rats were tested at 4 months (Pink1-/- = 15, wildtype (WT) control = 15) and 6 months (Pink1-/- = 7, WT = 6) of age; analogous to early-stage PD in humans. Videofluoroscopy of rats ingesting a peanut-butter-barium mixture was used to measure mastication rate and oropharyngeal and pharyngoesophageal bolus speeds. Abnormal swallowing behaviors were also quantified. A second experiment tracked barium contents through the stomach, small intestine, caecum, and colon at hours 0-6 post-barium gavage. Number and weight of fecal emissions over 24 h were also collected. Compared to WTs, Pink1-/- rats showed slower mastication rates, slower pharyngoesophageal bolus speeds, and more abnormal swallowing behaviors. Pink1-/- rats demonstrated significantly delayed motility through the caecum and colon. Pink1-/- rats also had significantly lower fecal pellet count and higher fecal pellet weight after 24 h at 6 months of age. Results demonstrate that swallowing dysfunction occurs early in Pink1-/- rats. Delayed transit to the colon and constipation-like signs are also evident in this model. The presence of these early swallowing and GI deficits in Pink1-/- rats are analogous to those observed in human PD.
Collapse
Affiliation(s)
- Maryann N Krasko
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA.
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI, 53706, USA.
| | - John Szot
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Karolina Lungova
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Linda M Rowe
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI, 53706, USA
| | - Glen Leverson
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI, 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
3
|
Patrone LGA, Ferrari GD, da Silva RM, Alberici LC, Lopes NP, Stabile AM, Klein W, Bícego KC, Gargaglioni LH. Sex- and age-specific respiratory alterations induced by prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 in rats. Br J Pharmacol 2023. [PMID: 36710256 DOI: 10.1111/bph.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabis legalization has risen in many countries, and its use during pregnancy has increased. The endocannabinoid system is present in the CNS at early stages of embryonic development, and regulates functional brain maturation including areas responsible for respiratory control, data on the influence of external cannabinoids on the development of the respiratory system and possible consequences during postnatal life are limited. EXPERIMENTAL APPROACH We evaluated the effects of prenatal exposure to synthetic cannabinoid (WIN 55,212-2 [WIN], 0.5 mg·kg-1 ·day-1 ) on the respiratory control system in neonatal (P0, P6-7 and P12-13) and juvenile (P27-28) male and female rats. KEY RESULTS WIN administration to pregnant rats interfered sex-specifically with breathing regulation of offspring, promoting a greater sensitivity to CO2 at all ages in males (except P6-7) and in juvenile females. An altered hypoxic chemoreflex was observed in P0 (hyperventilation) and P6-7 (hypoventilation) males, which was absent in females. Along with breathing alterations, brainstem analysis showed an increase in the number of catecholaminergic neurons and cannabinoid receptor type 1 (CB1 ) and changes in tissue respiration in the early males. A reduction in pulmonary compliance was observed in juvenile male rats. Preexposure to WIN enhanced spontaneous apnoea and reduced the number of serotoninergic (5-HT) neurons in the raphe magnus nucleus of P0 females. CONCLUSIONS AND IMPLICATIONS These data demonstrate that excess stimulation of the endocannabinoid system during gestation has prolonged and sex-specific consequences for the respiratory control system.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| | - Gustavo D Ferrari
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Moreira da Silva
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Peporine Lopes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilfried Klein
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University - UNESP/FCAV, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
4
|
Biancardi V, Patrone LGA, Vicente MC, Marques DA, Bicego KC, Funk GD, Gargaglioni LH. Prenatal fluoxetine has long lasting, differential effects on respiratory control in male and female rats. J Appl Physiol (1985) 2022; 133:371-389. [PMID: 35708704 DOI: 10.1152/japplphysiol.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) is an important modulator of brain networks that control breathing. The selective serotonin reuptake inhibitor fluoxetine (FLX) is the first-line antidepressant drug prescribed during pregnancy. We investigated the effects of prenatal FLX on baseline breathing, ventilatory and metabolic responses to hypercapnia and hypoxia as well as number of brainstem 5-HT and tyrosine hydroxylase (TH) neurons of rats during postnatal development (P0-82). Prenatal FLX exposure of males showed a lower baseline that appeared in juveniles and remained in adulthood, with no sleep-wake state dependency. Prenatal FLX exposure of females did not affect baseline breathing. Juvenile male FLX rats showed increased CO2 and hypoxic ventilatory responses, normalizing by adulthood. Alterations in juvenile-FLX treated males were associated with greater number of 5-HT neurons in the ROB and RMAG. Adult FLX-exposed males showed greater number of 5-HT neurons in the RPA and TH neurons in the A5, while reduced number of TH neurons in A7. Prenatal FLX exposure of female rats was associated with greater hyperventilation induced by hypercapnia at P0-2 and juveniles whereas P12-14 and adult FLX (NREM sleep) rats showed an attenuation of the hypercapnic hyperventilation.FLX-exposed females had fewer 5-HT neurons in the RPA and reduced TH A6 density at P0-2; and greater number of TH neurons in the A7 at P12-14. These data indicate that prenatal FLX exposure affects the number of neurons of some monoaminergic regions in the brain and results in long lasting, sex specific changes in baseline breathing pattern and ventilatory responses to respiratory challenges.
Collapse
Affiliation(s)
- Vivian Biancardi
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Danuzia A Marques
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil.,Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Kênia C Bicego
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| | - Gregory D Funk
- Department of Physiology, Faculty of Medicine and Dentistry, Women and Children's Health Research Institute, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, Jaboticabal, Sao Paulo, Brazil
| |
Collapse
|
5
|
Guedes Linhares SS, da Silva Rodrigues Meurer Y, Aquino A, Aquino Câmara D, Mateus Brandão LE, Dierschnabel AL, Porto Fiuza F, Hypólito Lima R, Engelberth RC, Cavalcante JS. Effects of prenatal exposure to fluoxetine on circadian rhythmicity in the locomotor activity and neuropeptide Y and 5-HT expression in male and female adult Wistar rats. Int J Dev Neurosci 2022; 82:407-422. [PMID: 35481929 DOI: 10.1002/jdn.10189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
Serotonin (5-HT) reuptake inhibitors, such as fluoxetine, are the most prescribed antidepressant for maternal depression. In this sense, it exposes mothers and the brains of infants to increased modulatory and trophic effects of serotonergic neurotransmission. 5-HT promotes essential brain changes throughout its development, which include neuron migration, differentiation, and organization of neural circuitries related to emotional, cognitive, and circadian behavior. Early exposure to the SSRIs induces long-term effects on behavioral and neural serotonergic signalization. We have aimed to evaluate the circadian rhythm of locomotor activity and the neurochemical content, neuropeptide Y (NPY) and 5-HT in three brain areas: intergeniculate leaflet (IGL), suprachiasmatic nuclei (SCN) and raphe nuclei (RN), at two zeitgebers (ZT6 and ZT18), in male and female rat's offspring early exposed (developmental period GD13-GD21) to fluoxetine (20mg/kg). First, we have conducted daily records of the locomotor activity rhythm using activity sensors coupled to individual cages over four weeks. We have lastly evaluated the immunoreactivity of NPY in both SCN and IGL, and as well the 5-HT expression in the dorsal and medial RN. In summary, our results showed that (1) prenatal fluoxetine affects phase entrainment of the rest/activity rhythm at ZT6 and ZT18, more in male than female specimens, and (2) modulates the NPY and 5-HT expression. Here, we show male rats are more susceptible to phase entrainment and the NPY and 5-HT misexpression compared to female ones. The sex differences induced by early exposure to fluoxetine in both the circadian rhythm of locomotor activity and the neurochemical expression into SCN, IGL, and midbrain raphe are an important highlight in the present work. Thus, our results may help to improve the knowledge on neurobiological mechanisms of circadian rhythms and are relevant to understanding the "broken brains" and behavioral abnormalities of offspring early exposed to antidepressants.
Collapse
Affiliation(s)
- Sara Sophia Guedes Linhares
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Antonio Aquino
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Aquino Câmara
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Aline Lima Dierschnabel
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Ramon Hypólito Lima
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
6
|
Su J, Meng Y, Fang Y, Sun L, Wang M, Liu Y, Zhao C, Dai L, Ouyang S. Role of raphe magnus 5-HT 1A receptor in increased ventilatory responses induced by intermittent hypoxia in rats. Respir Res 2022; 23:42. [PMID: 35241072 PMCID: PMC8892800 DOI: 10.1186/s12931-022-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022] Open
Abstract
Background Intermittent hypoxia induces increased ventilatory responses in a 5-HT-dependent manner. This study aimed to explore that effect of raphe magnus serotonin 1A receptor (5-HT1A) receptor on the increased ventilatory responses induced by intermittent hypoxia. Methods Stereotaxic surgery was performed in adult male rats, and acute and chronic intermittent hypoxia models were established after recovery from surgery. The experimental group received microinjections of 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) into the raphe magnus nucleus (RMg). Meanwhile, the control group received microinjections of artificial cerebrospinal fluid instead of 8-OH-DPAT. Ventilatory responses were compared among the different groups of oxygen status. 5-HT expressions in the RMg region were assessed by immunohistochemistry after chronic intermittent hypoxia. Results Compared with the normoxia group, the acute intermittent hypoxia group exhibited higher ventilatory responses (e.g., shorter inspiratory time and higher tidal volume, frequency of breathing, minute ventilation, and mean inspiratory flow) (P < 0.05). 8-OH-DPAT microinjection partly weakened these changes in the acute intermittent hypoxia group. Further, compared with the acute intermittent hypoxia group, rats in chronic intermittent hypoxia group exhibited higher measures of ventilatory responses after 1 day of intermittent hypoxia (P < 0.05). These effects peaked after 3 days of intermittent hypoxia treatment and then decreased gradually. Moreover, these changes were diminished in the experimental group. 5-HT expression in the RMg region increased after chronic intermittent hypoxia, which was consistent with the changing trend of ventilatory responses. While activation of the 5-HT1A receptor in the RMg region alleviated this phenomenon. Conclusions The results indicate that RMg 5-HT1A receptor, via changing the expression level of 5-HT in the RMg region, is involved in the modulation of the increased ventilatory responses induced by intermittent hypoxia. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01970-6.
Collapse
Affiliation(s)
- Jiao Su
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yang Meng
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yifei Fang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Linge Sun
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Mengge Wang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yanjun Liu
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chunling Zhao
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Henan, 450052, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
7
|
Knutson AO, Watters JJ. All roads lead to inflammation: Is maternal immune activation a common culprit behind environmental factors impacting offspring neural control of breathing? Respir Physiol Neurobiol 2019; 274:103361. [PMID: 31874263 DOI: 10.1016/j.resp.2019.103361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Despite numerous studies investigating how prenatal exposures impact the developing brain, there remains very little known about how these in utero exposures impact the life-sustaining function of breathing. While some exposures such as alcohol and drugs of abuse are well-known to alter respiratory function, few studies have evaluated other common maternal environmental stimuli, such as maternal infection, inhalation of diesel exhaust particles prevalent in urban areas, or obstructive sleep apnea during pregnancy, just to name a few. The goals of this review article are thus to: 1) highlight data on gestational exposures that impair respiratory function, 2) discuss what is known about the potential role of inflammation in the effects of these maternal exposures, and 3) identify less studied but potential in utero exposures that could negatively impact CNS regions important in respiratory motor control, perhaps by impacting maternal or fetal inflammation. We highlight gaps in knowledge, summarize evidence related to the possible contributions of inflammation, and discuss the need for further studies of life-long offspring respiratory function both at baseline and after respiratory challenge.
Collapse
Affiliation(s)
- Andrew O Knutson
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jyoti J Watters
- Molecular and Environmental Toxicology Training Program and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
8
|
Sex differences in breathing. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110543. [PMID: 31445081 DOI: 10.1016/j.cbpa.2019.110543] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/15/2023]
Abstract
Breathing is a vital behavior that ensures both the adequate supply of oxygen and the elimination of CO2, and it is influenced by many factors. Despite that most of the studies in respiratory physiology rely heavily on male subjects, there is much evidence to suggest that sex is an important factor in the respiratory control system, including the susceptibility for some diseases. These different respiratory responses in males and females may be related to the actions of sex hormones, especially in adulthood. These hormones affect neuromodulatory systems that influence the central medullary rhythm/pontine pattern generator and integrator, sensory inputs to the integrator and motor output to the respiratory muscles. In this article, we will first review the sex dependence on the prevalence of some respiratory-related diseases. Then, we will discuss the role of sex and gonadal hormones in respiratory control under resting conditions and during respiratory challenges, such as hypoxia and hypercapnia, and whether hormonal fluctuations during the estrous/menstrual cycle affect breathing control. We will then discuss the role of the locus coeruleus, a sexually dimorphic CO2/pH-chemosensitive nucleus, on breathing regulation in males and females. Next, we will highlight the studies that exist regarding sex differences in respiratory control during development. Finally, the few existing studies regarding the influence of sex on breathing control in non-mammalian vertebrates will be discussed.
Collapse
|
9
|
Tadjalli A, Mitchell GS. Cervical spinal 5-HT 2A and 5-HT 2B receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation. J Appl Physiol (1985) 2019; 127:432-443. [PMID: 31219768 DOI: 10.1152/japplphysiol.01113.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) is a key regulator of spinal respiratory motor plasticity. For example, spinal 5-HT receptor activation is necessary for the induction of phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity triggered by moderate acute intermittent hypoxia (mAIH). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum 5-HT-receptor antagonist, methysergide. However, methysergide does not allow distinctions between the relative contributions of different 5-HT receptor subtypes. Intravenous administration of the Gq protein-coupled 5-HT2A/2C receptor antagonist ketanserin blocks mAIH-induced pLTF when administered before, but not after, mAIH; thus, 5-HT2 receptor activation is necessary for the induction but not maintenance of mAIH-induced pLTF. However, systemic ketanserin administration does not identify the site of the relevant 5-HT2A/2C receptors. Furthermore, this approach does not differentiate between the roles of 5-HT2A versus 5-HT2C receptors, nor does it preclude involvement of other Gq protein-coupled metabotropic 5-HT receptors capable of eliciting long-lasting phrenic motor facilitation, such as 5-HT2B receptors. Here we tested the hypothesis that mAIH-induced pLTF requires cervical spinal 5-HT2 receptor activation and determined which 5-HT2 receptor subtypes are involved. Anesthetized, paralyzed, and ventilated adult male Sprague Dawley rats were pretreated intrathecally with cervical (~C3-C5) spinal injections of subtype selective 5-HT2A/2C, 5-HT2B, or 5-HT2C receptor antagonists before mAIH. Whereas cervical spinal 5-HT2C receptor inhibition had no impact on mAIH-induced pLTF, pLTF was no longer observed after pretreatment with either 5-HT2A/2C or 5-HT2B receptor antagonists. Furthermore, spinal pretreatment with an MEK/ERK MAPK inhibitor blocked phrenic motor facilitation elicited by intrathecal injections of 5-HT2A but not 5-HT2B receptor agonists. Thus, mAIH-induced pLTF requires concurrent cervical spinal activation of both 5-HT2A and 5-HT2B receptors. However, these distinct receptor subtypes contribute to phrenic motor facilitation via distinct downstream signaling cascades that differ in their requirement for ERK MAPK signaling. The demonstration that both 5-HT2A and 5-HT2B receptors make unique contributions to mAIH-induced pLTF advances our understanding of mechanisms that underlie 5-HT-induced phrenic motor plasticity.NEW & NOTEWORTHY Moderate acute intermittent hypoxia (mAIH) triggers a persistent enhancement in phrenic motor output, an effect termed phrenic long-term facilitation (pLTF). mAIH-induced pLTF is blocked by cervical spinal application of the broad-spectrum serotonin (5-HT) receptor antagonist methysergide, demonstrating the need for spinal 5-HT receptor activation. However, the exact type of 5-HT receptors required for initiation of pLTF remains unknown. To the best of out knowledge, the present study is the first to demonstrate that 1) spinal coactivation of two distinct Gq protein-coupled 5-HT2 receptor subtypes is necessary for mAIH-induced pLTF, and 2) these receptors contribute to pLTF via cascades that differ in their requirement for ERK MAPK signaling.
Collapse
Affiliation(s)
- Arash Tadjalli
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Liu TT, Liu BW, He ZG, Feng L, Liu SG, Xiang HB. Delineation of the central melanocortin circuitry controlling the kidneys by a virally mediated transsynaptic tracing study in transgenic mouse model. Oncotarget 2018; 7:69256-69266. [PMID: 27626491 PMCID: PMC5342475 DOI: 10.18632/oncotarget.11956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
To examine if brain neurons involved in the efferent control of the kidneys possess melanocortin-4 receptor (MC4-R) and/or tryptophan hydroxylase (TPH). Retrograde tracing pseudorabies virus (PRV)-614 was injected into the kidneys in adult male MC4R-green fluorescent protein (GFP) transgenic mice. After a survival time of 3-7 days, spinal cord and brain were removed and sectioned, and processed for PRV-614 visualization. The neurochemical phenotype of PRV-614-positive neurons was identified using double or triple immunocytochemical labeling against PRV-614, MC4R, or TPH. Double and triple labeling was quantified using microscopy. The majority of PRV-614 immunopositive neurons which also expressed immunoreactivity for MC4R were located in the ipsilateral intermediolateral cell column (IML) of the thoracic spinal cord, the paraventricular nucleus (PVN) of the hypothalamus, and raphe pallidus (RPa), nucleus raphe magnus (NRM) and ventromedial medulla (VMM) of the brainstem. Triple-labeled MC4R/PRV-614/TPH neurons were concentrated in the PVN, RPa, NRM and VMM. These data strongly suggest that central MC4R and TPH are involved in the efferent neuronal control of the kidneys.
Collapse
Affiliation(s)
- Tao Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bao Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhi Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Li Feng
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - San Guang Liu
- Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Hong Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
11
|
Bravo K, Eugenín JL, Llona I. Perinatal Fluoxetine Exposure Impairs the CO2 Chemoreflex. Implications for Sudden Infant Death Syndrome. Am J Respir Cell Mol Biol 2017; 55:368-76. [PMID: 27018763 DOI: 10.1165/rcmb.2015-0384oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High serotonin levels during pregnancy affect central nervous system development. Whether a commonly used antidepressant such as fluoxetine (a selective serotonin reuptake inhibitor) taken during pregnancy may adversely affect respiratory control in offspring has not been determined. The objective was to determine the effect of prenatal-perinatal fluoxetine exposure on the respiratory neural network in offspring, particularly on central chemoreception. Osmotic minipumps implanted into CF-1 mice on Days 5-7 of pregnancy delivered 7 milligrams per kilogram per day of fluoxetine, achieving plasma levels within the range found in patients. Ventilation was assessed in offspring at postnatal Days 0-40 using head-out body plethysmography. Neuronal activation was evaluated in the raphe nuclei and in the nucleus tractus solitarius by c-Fos immunohistochemistry during normoxic eucapnia and hypercapnia (10% CO2). Respiratory responses to acidosis were evaluated in brainstem slices. Prenatal-perinatal fluoxetine did not affect litter size, birth weight, or the postnatal growth curve. Ventilation under eucapnic normoxic conditions was similar to that of control offspring. Fluoxetine exposure reduced ventilatory responses to hypercapnia at P8-P40 (P < 0.001) but not at P0-P5. At P8, it reduced hypercapnia-induced neuronal activation in raphe nuclei (P < 0.05) and nucleus tractus solitarius (P < 0.01) and the acidosis-induced increase in the respiratory frequency in brainstem slices (P < 0.05). Fluoxetine applied acutely on control slices did not modify their respiratory response to acidosis. We concluded that prenatal-perinatal fluoxetine treatment impairs central respiratory chemoreception during postnatal life. These results are relevant in understanding the pathogenesis of respiratory failures, such as sudden infant death syndrome, associated with brainstem serotonin abnormalities and the failure of respiratory chemoreflexes.
Collapse
Affiliation(s)
- Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jaime L Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel Llona
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
12
|
Sagrillo-Fagundes L, Clabault H, Laurent L, Hudon-Thibeault AA, Salustiano EMA, Fortier M, Bienvenue-Pariseault J, Wong Yen P, Sanderson JT, Vaillancourt C. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption. J Vis Exp 2016. [PMID: 27500522 DOI: 10.3791/54228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.
Collapse
|
13
|
New insights on the role of the insular cortex and habenula in OSA. Sleep Breath 2015; 19:1347-53. [DOI: 10.1007/s11325-015-1168-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022]
|
14
|
Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways. Exp Neurol 2014; 261:440-50. [PMID: 25086272 DOI: 10.1016/j.expneurol.2014.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 01/22/2023]
Abstract
WGA-Alexa 488 is a fluorescent neuronal tracer that demonstrates transsynaptic transport in the central nervous system. The transsynaptic transport occurs over physiologically active synaptic connections rather than less active or silent connections. Immediately following C2 spinal cord hemisection (C2Hx), when WGA-Alexa 488 is injected into the ipsilateral hemidiaphragm, the tracer diffuses across the midline of the diaphragm and retrogradely labels the phrenic nuclei (PN) bilaterally in the spinal cord. Subsequently, the tracer is transsynaptically transported bilaterally to the rostral Ventral Respiratory Groups (rVRGs) in the medulla over physiologically active connections. No other neurons are labeled in the acute C2Hx model at the level of the phrenic nuclei or in the medulla. However, with a recovery period of at least 7weeks (chronic C2Hx), the pattern of WGA-Alexa 488 labeling is notably changed. In addition to the bilateral PN and rVRG labeling, the chronic C2Hx model reveals fluorescence in the ipsilateral ventral and dorsal spinocerebellar tracts, and the ipsilateral reticulospinal tract. Furthermore, interneurons are labeled bilaterally in laminae VII and VIII of the spinal cord as well as neurons in the motor nuclei bilaterally of the intercostal and forelimb muscles. Moreover, in the chronic C2Hx model, there is bilateral labeling of additional medullary centers including raphe, hypoglossal, spinal trigeminal, parvicellular reticular, gigantocellular reticular, and intermediate reticular nuclei. The selective WGA-Alexa 488 labeling of additional locations in the chronic C2Hx model is presumably due to a hyperactive state of the synaptic pathways and nuclei previously shown to connect with the respiratory centers in a non-injured model. The present study suggests that hyperactivity not only occurs in neuronal centers and pathways caudal to spinal cord injury, but in supraspinal centers as well. The significance of such injury-induced plasticity is that hyperactivity may be a mechanism to re-establish lost function by compensatory routes which were initially physiologically inactive.
Collapse
|
15
|
Raphe serotonergic neurons modulate genioglossus corticomotor activity in intermittent hypoxic rats. Respir Res 2014; 15:76. [PMID: 25001907 PMCID: PMC4100526 DOI: 10.1186/1465-9921-15-76] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/01/2014] [Indexed: 11/26/2022] Open
Abstract
Background Genioglossus activity is greater during wakefulness but decreases to a weaker state during sleep in obstructive sleep apnea syndrome (OSAS) patients, compared to healthy subjects. Previous studies suggested that the corticomotor control of the genioglossus was modified in OSAS patients. Intermittent hypoxia (IH), the typical pathophysiological change in OSAS, can induce genioglossus facilitation. The serotonergic neurons of the raphe dorsal (DRN) and magnus nuclei (RMg) are responsive to hypoxia and play important roles in the control of the genioglossus. However, it remains unknown whether DRN and RMg serotonergic neurons are responsible for the facilitated corticomotor activity of the genioglossus during IH. This study explored the influence of IH on the corticomotor activity of the genioglossus by transcranial magnetic stimulation (TMS), and the role of DRN and RMg serotonergic neurons in this effect. Methods Rats were exposed to IH and divided into two groups. In one group, anti-SERT-SAP was microinjected into the DRN and RMg respectively to kill serotonergic neurons. In the other group, artificial cerebrospinal fluid (ACSF) was injected. Comparisons were conducted between the two groups during four weeks of IH and four weeks after IH. Results Compared to the corresponding ACSF-injected group, the DRN lesion group and RMg lesion group showed longer TMS latencies and lower amplitudes during IH from the 1st to the 28th day. After 28 days of IH, longer latencies and lower amplitudes were seen only in the DRN lesion group. Conclusion These results indicate that DRN and RMg serotonergic neurons play different roles in the facilitation of genioglossus corticomotor activity induced by IH.
Collapse
|
16
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
17
|
Pan XC, Song YT, Liu C, Xiang HB, Lu CJ. Melanocortin-4 receptor expression in the rostral ventromedial medulla involved in modulation of nociception in transgenic mice. ACTA ACUST UNITED AC 2013; 33:195-198. [DOI: 10.1007/s11596-013-1096-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 10/26/2022]
|
18
|
Chen H, Hu K, Zhu J, Xianyu Y, Cao X, Kang J, He J, Zhao P, Mei Y. Polymorphisms of the 5-hydroxytryptamine 2A/2C receptor genes and 5-hydroxytryptamine transporter gene in Chinese patients with OSAHS. Sleep Breath 2013; 17:1241-8. [PMID: 23494654 DOI: 10.1007/s11325-013-0829-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/05/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND It is known that there is a genetic predisposition to OSAHS. Polymorphisms of the 5-hydroxytryptamine (5-HT) 2A/2C receptors (5-HTR 2A/2C) genes and 5-HT transporter (5-HTT) gene may be associated with the pathogenesis of obstructive sleep apnea-hypopnea syndrome (OSAHS). OBJECTIVES In this study, we aimed to investigate the prevalence of polymorphisms of the 5-HTR 2A/2C genes and the 5-HTT gene in the Chinese Han OSAHS population. METHODS A total of 226 unrelated subjects of the Chinese Han population, including 121 OSAHS patients and 105 healthy controls, were involved in the study. The A1438G and T102C polymorphisms of the 5-HTR 2A gene, G796C polymorphisms of the 5-HTR 2C gene, and two polymorphisms (gene-linked polymorphic region [LPR] and variable number tandem repeat [VNTR]) of the 5-HTT gene were identified by polymerase chain reaction (PCR)-RFLP. RESULTS Compared with the control group, the OSAHS group had significantly higher AA genotype and A allele frequencies in the A1438G polymorphisms of the 5-HTR 2A gene, and had significantly higher frequencies of 10/10, 12/10 genotypes and the allele 10 of 5-HTT-VNTR. There were no significant differences between the genotype distribution and allele frequencies of the OSAHS group and the control group regarding the T102C polymorphisms of the 5-HTR 2A gene and the G796C polymorphisms of the 5-HTR 2C gene, the frequencies of the S or L allele and the S/S, S/L or L/L genotypes in 5-HTT-LPR. CONCLUSIONS The A1438G polymorphism of the 5-HTR 2A gene might be involved in the pathogenesis in OSAHS subjects of the Chinese Han population. Meanwhile, our findings support the argument that 5-HTT polymorphism appears to be associated with susceptibility to OSAHS, because the allele 10 of 5-HTT-VNTR might be a susceptible factor.
Collapse
Affiliation(s)
- Hongbin Chen
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuchang, Wuhan, 430060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Macey PM, Kumar R, Yan-Go FL, Woo MA, Harper RM. Sex differences in white matter alterations accompanying obstructive sleep apnea. Sleep 2012. [PMID: 23204603 DOI: 10.5665/sleep.2228] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
STUDY OBJECTIVES Females with obstructive sleep apnea (OSA) show different psychological and physiological symptoms from males, which may be associated with sex-related variations in neural injury occurring with the disorder. To determine whether male- or female-specific brain injury is present in OSA, we assessed influences of sex on white matter changes in the condition. DESIGN Two-group factorial. SETTING University medical center. PATIENTS OR PARTICIPANTS 80 subjects total, with newly diagnosed, untreated OSA groups of 10 female (age mean ± SE: 52.6 ± 2.4 years, AHI 22.5 ± 4.1 events/h) and 20 male (age 48.9 ± 1.7, AHI 25.5 ± 2.9) patients, and 20 female (age 50.3 ± 1.7) and 30 male (age 49.2 ± 1.4) healthy control subjects. INTERVENTIONS None. MEASUREMENTS AND RESULTS Brain fiber integrity was assessed with fractional anisotropy (FA), a diffusion tensor imaging-derived measure. Sleep quality, daytime sleepiness, depression, and anxiety were assessed with questionnaires. We identified regions of differing injury in male versus female OSA patients by assessing brain regions with significant interaction effects of OSA and sex on FA. Areas of sex-specific, OSA-related FA reductions appeared in females relative to males, including in the bilateral cingulum bundle adjacent to the mid hippocampus, right stria terminalis near the amygdala, prefrontal and posterior-parietal white matter, corpus callosum, and left superior cerebellar peduncle. Females with OSA showed higher daytime sleepiness, anxiety and depression levels, and reduced sleep quality. CONCLUSIONS Sex differences in white matter structural integrity appeared in OSA patients, with females more affected than males. These female-specific structural changes may contribute to or derive from neuropsychological and physiological symptom differences between sexes.
Collapse
Affiliation(s)
- Paul M Macey
- School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095-1702, USA
| | | | | | | | | |
Collapse
|
20
|
Behan M, Moeser AE, Thomas CF, Russell JA, Wang H, Leverson GE, Connor NP. The effect of tongue exercise on serotonergic input to the hypoglossal nucleus in young and old rats. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:919-29. [PMID: 22232395 PMCID: PMC3326185 DOI: 10.1044/1092-4388(2011/11-0091)] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PURPOSE Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether age-related alterations in 5HT inputs to the hypoglossal nucleus can be modified. We hypothesized that tongue forces would increase with exercise, 5HT input to the tongue would decrease with age, and tongue exercise would augment 5HT input to the hypoglossal nucleus. METHOD Young (9-10 months), middle-aged (24-25 months), and old (32-33 months) male F344/BN rats received tongue exercise for 8 weeks. Immunoreactivity for 5HT was measured in digital images of sections through the hypoglossal nucleus using ImageJ software. RESULTS Tongue exercise resulted in increased maximum tongue forces at all ages. There was a statistically significant increase in 5HT immunoreactivity in the hypoglossal nucleus in exercised, young rats but only in the caudal third of the nucleus and primarily in the ventral half. CONCLUSION Specificity found in serotonergic input following exercise may reflect the topographic organization of motoneurons in the hypoglossal nucleus and the tongue muscles engaged in the exercise paradigm.
Collapse
|
21
|
Peng L, Wang J, Zhang L, Liu P, Wang M, Huang M, Liu S, He P, Cui L, Li M, Wang S. Role of 5-hydroxytryptamine expression in cerebellar Purkinje cells in obstructive sleep apnea syndrome. Neural Regen Res 2012; 7:606-10. [PMID: 25745452 PMCID: PMC4346986 DOI: 10.3969/j.issn.1673-5374.2012.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/20/2011] [Indexed: 11/18/2022] Open
Abstract
In the present study, electrical stimulation to the rat insular cortex induced apnea or respiratory disturbance, reduced amplitude of genioglossal electromyogram, and decreased electromyogram integrals. In addition, arterial blood gas analysis showed arterial blood acidosis, reduced pH values, increased alkali reserve negative values, decreased peripheral blood 5-hydroxytryptamine content, and increased 5-hydroxytryptamine expression in cerebellar Purkinje cells. Following lidocaine injection to block the habenular nucleus, abnormalities in breath, genioglossal electromyogram, and blood gas values disappeared, and peripheral blood 5-hydroxytryptamine content returned to levels prior to electric stimulation. However, 5-hydroxytryptamine expression in cerebellar Purkinje cells remained high. The results suggested that 5-hydroxytryptamine expression in Purkinje cells did not correlate with ventilation function involving insular cortex and habenular nucleus.
Collapse
Affiliation(s)
- Liping Peng
- Department of Pneumology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jinghua Wang
- Department of Pneumology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin Province, China
| | - Pan Liu
- Department of Pneumology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Min Wang
- Department of Pneumology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Min Huang
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin Province, China
| | - Shengnan Liu
- Department of Pneumology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Pingping He
- Department of Pneumology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li Cui
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Mingxian Li
- Department of Pneumology, First Affiliated Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Shao Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
22
|
Cui L, Wang JH, Wang M, Huang M, Wang CY, Xia H, Xu JG, Li MX, Wang S. Injection of l-glutamate into the insular cortex produces sleep apnea and serotonin reduction in rats. Sleep Breath 2011; 16:845-53. [DOI: 10.1007/s11325-011-0586-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 08/16/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
23
|
Hodges MR, Best S, Richerson GB. Altered ventilatory and thermoregulatory control in male and female adult Pet-1 null mice. Respir Physiol Neurobiol 2011; 177:133-40. [PMID: 21453797 DOI: 10.1016/j.resp.2011.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 11/15/2022]
Abstract
The integrity of the serotonin (5-HT) system is essential to normal respiratory and thermoregulatory control. Male and female transgenic mice lacking central 5-HT neurons (Lmx1b(f/f/p) mice) show a 50% reduction in the hypercapnic ventilatory response and insufficient heat generation when cooled (Hodges and Richerson, 2008a; Hodges et al., 2008b). Lmx1b(f/f/p) mice also show reduced body temperatures (T(body)) and O(2) consumption [Formula: see text] , and breathe less at rest and during hypoxia and hypercapnia when measured below thermoneutrality (24 °C), suggesting a role for 5-HT neurons in integrating ventilatory, thermal and metabolic control. Here, the hypothesis that Pet-1 null mice, which retain 30% of central 5-HT neurons, will demonstrate similar deficits in temperature and ventilatory control was tested. Pet-1 null mice had fewer medullary tryptophan hydroxylase-immunoreactive (TPH(+)) neurons compared to wild type (WT) mice, particularly in the midline raphé. Female (but not male) Pet-1 null mice had lower baseline ventilation (V(E)), breathing frequency (f), [Formula: see text] and T(body) relative to female WT mice (P < 0.05). In addition, V(E) and [Formula: see text] were decreased in male and female Pet-1 null mice during hypoxia and hypercapnia (P < 0.05), but only male Pet-1 null mice showed a significant deficit in the hypercapnic ventilatory response when expressed as % of control (P < 0.05). Finally, male and female Pet-1 null mice showed significant decreases in T(body) when externally cooled to 4 °C. These data demonstrate that a moderate loss of 5-HT neurons leads to a modest attenuation of mechanisms defending body temperature, and that there are gender differences in the contributions of 5-HT neurons to ventilatory and thermoregulatory control.
Collapse
Affiliation(s)
- Matthew R Hodges
- Departments of Neurology and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, United States.
| | | | | |
Collapse
|
24
|
Quan L, Ishikawa T, Hara J, Michiue T, Chen JH, Wang Q, Zhu BL, Maeda H. Postmortem serotonin levels in cerebrospinal and pericardial fluids with regard to the cause of death in medicolegal autopsy. Leg Med (Tokyo) 2011; 13:75-8. [DOI: 10.1016/j.legalmed.2010.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
25
|
Niblock MM, Gao H, Li A, Jeffress EC, Murphy M, Nattie EE. Fos-Tau-LacZ mice reveal sex differences in brainstem c-fos activation in response to mild carbon dioxide exposure. Brain Res 2010; 1311:51-63. [PMID: 19932690 PMCID: PMC2812580 DOI: 10.1016/j.brainres.2009.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 01/13/2023]
Abstract
There are sex differences in the neurochemistry of brainstem nuclei that participate in the control of breathing as well as sex differences in respiratory responses to hypoxia. Central chemoreception refers to the detection within the brain of minute changes in carbon dioxide (CO(2)) levels and the subsequent modulation of breathing. Putative central chemoreceptor sites are widespread and include cells located near the ventral surface of the brainstem in the retrotrapezoid nucleus (RTN), in the medullary midline raphe nuclei, and, more dorsally in the medulla, in the nucleus of the solitary tract and in the locus caeruleus at the pontomedullary junction as well as in the fastigial nucleus of the cerebellum. In this study, we ask if the cells that respond to CO(2) differ between the sexes. We used a transgenic mouse with a c-fos promoter driven tau-lacZ reporter construct (FTL) to map the locations of cells in the mouse brainstem and cerebellum that responded to exposure of mice of both sexes to 5% CO(2) or room air (control). X-gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside) histochemical staining to detect the beta-galactosidase enzyme produced staining in the brains of mice of both sexes in all of the previously identified putative chemoreceptor sites, with the exception of the fastigial nucleus. Notably, the male RTN region contained significantly more x-gal-labeled cells than the female RTN region. In addition to new observations regarding potential sex differences in the retrotrapezoid region, we found the FTL mouse to be a useful tool for identifying cells that respond to the exposure of the whole animal to relatively low concentrations of CO(2).
Collapse
Affiliation(s)
- Mary Melissa Niblock
- Biology Department and Neuroscience Program, Dickinson College, Carlisle, PA, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Wu Q, Sample SJ, Baker TA, Thomas CF, Behan M, Muir P. Mechanical loading of a long bone induces plasticity in sensory input to the central nervous system. Neurosci Lett 2009; 463:254-7. [PMID: 19647783 DOI: 10.1016/j.neulet.2009.07.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/06/2023]
Abstract
Although the skeleton is extensively innervated by sensory nerves, the importance of this innervation to skeletal physiology is unclear. Neuronal connectivity between limbs is little studied and likely underestimated. In this study, we examined the effect of bone loading on spinal plasticity in young male Sprague-Dawley rats, using end-loading of the ulna and transynaptic tracing with the Bartha pseudorabies virus (PRV). PRV was inoculated onto the periosteum of the right ulna after 10 days of adaptation to a single period of cyclic loading of the right ulna (1,500 cycles of load at 4 Hz, initial peak strain of -3,750 micro epsilon). We found that neuronal circuits connect the sensory innervation of right thoracic limb to all other limbs, as PRV was detectable in the dorsal root ganglia (DRG) of left and right brachial and lumbosacral intumescences. We also found that mechanical loading of the right ulna induced plasticity in the spinal cord, with significant augmentation of the connectivity between limbs, as measured by PRV translocation. Within the spinal cord, PRV was predominantly found adjacent to the central canal and in the dorsal horns, suggesting that plasticity in cross-talk between limbs is likely a consequence of dendritic growth, and enhanced connectivity of propriospinal interneurons. In conclusion, the data clearly demonstrate that the innervation of the skeleton exhibits plasticity in response to loading events, suggesting the existence of a dynamic control system that may be of regulatory importance during functional skeletal adaptation.
Collapse
Affiliation(s)
- Qiang Wu
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|