1
|
Burggren W, Filogonio R, Wang T. Cardiovascular shunting in vertebrates: a practical integration of competing hypotheses. Biol Rev Camb Philos Soc 2019; 95:449-471. [PMID: 31859458 DOI: 10.1111/brv.12572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
This review explores the long-standing question: 'Why do cardiovascular shunts occur?' An historical perspective is provided on previous research into cardiac shunts in vertebrates that continues to shape current views. Cardiac shunts and when they occur is then described for vertebrates. Nearly 20 different functional reasons have been proposed as specific causes of shunts, ranging from energy conservation to improved gas exchange, and including a plethora of functions related to thermoregulation, digestion and haemodynamics. It has even been suggested that shunts are merely an evolutionary or developmental relic. Having considered the various hypotheses involving cardiovascular shunting in vertebrates, this review then takes a non-traditional approach. Rather than attempting to identify the single 'correct' reason for the occurrence of shunts, we advance a more holistic, integrative approach that embraces multiple, non-exclusive suites of proposed causes for shunts, and indicates how these varied functions might at least co-exist, if not actually support each other as shunts serve multiple, concurrent physiological functions. It is argued that deposing the 'monolithic' view of shunting leads to a more nuanced view of vertebrate cardiovascular systems. This review concludes by suggesting new paradigms for testing the function(s) of shunts, including experimentally placing organ systems into conflict in terms of their perfusion needs, reducing sources of variation in physiological experiments, measuring possible compensatory responses to shunt ablation, moving experiments from the laboratory to the field, and using cladistics-related approaches in the choice of experimental animals.
Collapse
Affiliation(s)
- Warren Burggren
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, U.S.A
| | - Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus C, 8000, Denmark.,Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
2
|
Nunan BL, Silva AS, Wang T, da Silva GS. Respiratory control of acid-base status in lungfish. Comp Biochem Physiol A Mol Integr Physiol 2019; 237:110533. [DOI: 10.1016/j.cbpa.2019.110533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/02/2019] [Accepted: 07/31/2019] [Indexed: 01/19/2023]
|
3
|
Minto WJ, Giusti H, Glass ML, Klein W, da Silva GSF. Buccal jet streaming and dead space determination in the South American lungfish, Lepidosiren paradoxa. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:159-165. [PMID: 31195123 DOI: 10.1016/j.cbpa.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
The "jet stream" model predicts an expired flow within the dorsal part of the buccal cavity with small air mixing during buccal pump ventilation, and has been suggested for some anuran amphibians but no other species of air breathing animal using a buccal force pump has been investigated. The presence of a two-stroke buccal pump in lungfish, i.e. expiration followed by inspiration, was described previously, but no quantitative data are available for the dead-space of their respiratory system and neither a detailed description of airflow throughout a breathing cycle. The present study aimed to assess the degree of mixing of fresh air and expired gas during the breathing cycle of Lepidosiren paradoxa and to verify the possible presence of a jet stream during expiration in this species. To do so, simultaneous measurements of buccal pressure and ventilatory airflows were carried out. Buccal and lung gases (PCO2 and PO2) were also measured. The effective ventilation was calculated and the dead space estimated using Bohr equations. The results confirmed that the two-stroke buccal pump is present in lungfish, as it is in anuran amphibians. The present approaches were coherent with a small dead space, with a very small buccal-lung PCO2 difference. In the South American lungfish the dead space (VD) as a percentage of tidal volume (VT) (VD / VT) ranged from 4.1 to 12.5%. Our data support the presence of a jet stream and indicate a small degree of air mixing in the buccal cavity. Comparisons with the literature indicate that these data are similar to previous data reported for the toad Rhinella schneideri.
Collapse
Affiliation(s)
- Walter J Minto
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Humberto Giusti
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Mogens L Glass
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Wilfried Klein
- School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute of Science and Technology on Comparative Physiology, Rio Claro, SP, Brazil
| | - Glauber S F da Silva
- National Institute of Science and Technology on Comparative Physiology, Rio Claro, SP, Brazil; Institute of Biological Science, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Mendez-Sanchez JF, Burggren WW. Very high blood oxygen affinity and large Bohr shift differentiates the air-breathing siamese fighting fish (Betta splendens) from the closely related anabantoid the blue gourami (Trichopodus trichopterus). Comp Biochem Physiol A Mol Integr Physiol 2018; 229:45-51. [PMID: 30503628 DOI: 10.1016/j.cbpa.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/19/2018] [Indexed: 02/08/2023]
Abstract
The Siamese fighting fish, Betta splendens, and the blue gourami, Trichopodus trichopterus, are two closely related air-breathing anabantoid fishes. B. splendens is a sedentary facultative air breather frequenting often hypoxic waters, while T. trichopterus is a more active obligatory air-breather inhabiting better oxygenated waters. Despite their close taxonomic relationship, previous studies have shown inter-specific differences in both physiological and morphological plasticity. Consequently, we hypothesized that B. splendens would have the higher blood oxygen affinity characteristics typical of more hypoxia-tolerant fishes. Whole blood oxygen equilibrium curves were determined at 27 °C and pHs of 7.62, 7.44 and 7.25. At a pH of 7.62, the blood O2 affinity (P50) of B. splendens was just 2.9 mmHg, while that of T. trichopterus was ~5 times higher at 14.7 mmHg. There were no significant differences in P50 between males and females in either species. The Bohr coefficient in B. splendens and T. trichopterus was -1.79 and - 0.83, respectively. B. splendens, unlike T. trichopterus, showed a large Root effect. Hills cooperatively coefficient, n, was ~2 in both species, indicating a significant binding cooperative between oxygen and hemoglobin. Collectively, these differences in blood O2 transport characteristics in these two closely related species are likely correlated with the differing habitats in which they breed and inhabit as adults, as well as different activity levels. Finally, the very high blood O2 affinity of B. splendens is not extraordinary among air-breathing fish, as revealed by a review of the literature of blood oxygen affinity in air-breathing fishes.
Collapse
Affiliation(s)
- J F Mendez-Sanchez
- Departamento de Biología, Universidad Autónoma del Estado de México, Mexico.
| | - W W Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
5
|
Monteiro DA, Taylor EW, Sartori MR, Cruz AL, Rantin FT, Leite CAC. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish. SCIENCE ADVANCES 2018; 4:eaaq0800. [PMID: 29507882 PMCID: PMC5833999 DOI: 10.1126/sciadv.aaq0800] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/19/2018] [Indexed: 05/31/2023]
Abstract
The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.
Collapse
Affiliation(s)
- Diana A. Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
| | - Edwin W. Taylor
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Marina R. Sartori
- Department of Zoology, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - André L. Cruz
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
- Institute of Biology, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Francisco T. Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
| | - Cleo A. C. Leite
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 São Paulo, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT FisComp), São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Stephenson A, Adams JW, Vaccarezza M. The vertebrate heart: an evolutionary perspective. J Anat 2017; 231:787-797. [PMID: 28905992 PMCID: PMC5696137 DOI: 10.1111/joa.12687] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Convergence is the tendency of independent species to evolve similarly when subjected to the same environmental conditions. The primitive blueprint for the circulatory system emerged around 700-600 Mya and exhibits diverse physiological adaptations across the radiations of vertebrates (Subphylum Vertebrata, Phylum Chordata). It has evolved from the early chordate circulatory system with a single layered tube in the tunicate (Subphylum Urchordata) or an amphioxus (Subphylum Cephalochordata), to a vertebrate circulatory system with a two-chambered heart made up of one atrium and one ventricle in gnathostome fish (Infraphylum Gnathostomata), to a system with a three-chambered heart made up of two atria which maybe partially divided or completely separated in amphibian tetrapods (Class Amphibia). Subsequent tetrapods, including crocodiles and alligators (Order Crocodylia, Subclass Crocodylomorpha, Class Reptilia), birds (Subclass Aves, Class Reptilia) and mammals (Class Mammalia) evolved a four-chambered heart. The structure and function of the circulatory system of each individual holds a vital role which benefits each species specifically. The special characteristics of the four-chamber mammalian heart are highlighted by the peculiar structure of the myocardial muscle.
Collapse
Affiliation(s)
- Andrea Stephenson
- School of Biomedical SciencesFaculty of Health SciencesCurtin UniversityBentleyPerthWAAustralia
| | - Justin W. Adams
- Department of Anatomy and Developmental BiologyFaculty of Medicine, Nursing and Health SciencesSchool of Biomedical SciencesCentre for Human Anatomy EducationMonash UniversityClaytonMelbourneVICAustralia
| | - Mauro Vaccarezza
- School of Biomedical SciencesFaculty of Health SciencesCurtin UniversityBentleyPerthWAAustralia
| |
Collapse
|
7
|
Zena LA, Bícego KC, da Silva GSF, Giusti H, Glass ML, Sanchez AP. Acute effects of temperature and hypercarbia on cutaneous and branchial gas exchange in the South American lungfish, Lepidosiren paradoxa. J Therm Biol 2016; 63:112-118. [PMID: 28010808 DOI: 10.1016/j.jtherbio.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 11/25/2022]
Abstract
The South American lungfish, Lepidosiren paradoxa inhabits seasonal environments in the Central Amazon and Paraná-Paraguay basins that undergo significant oscillations in temperature throughout the year. They rely on different gas exchange organs, such as gills and skin for aquatic gas exchange while their truly bilateral lungs are responsible for aerial gas exchange; however, there are no data available on the individual contributions of the skin and the gills to total aquatic gas exchange in L. paradoxa. Thus, in the present study we quantify the relative contributions of skin and gills on total aquatic gas exchange during warm (35°C) and cold exposure (20°C) in addition to the effects of aerial and aquatic hypercarbia on aquatic gas exchange and gill ventilation rate (fG; 25°C), respectively. Elevated temperature (35°C) caused a significant increase in the contribution of cutaneous (from 0.61±0.13 to 1.34±0.26ml. STPD.h-1kg-1) and branchial (from 0.54±0.17 to 1.73±0.53ml. STPD.h-1kg-1) gas exchange for V̇CO2 relative to the lower temperature (20°C), while V̇O2 remained relatively unchanged. L. paradoxa exhibited a greater branchial contribution in relation to total aquatic gas exchange at lower temperatures (20 and 25°C) for oxygen uptake. Aerial hypercarbia decreased branchial V̇O2 whereas branchial V̇CO2 was significantly increased. Progressive increases in aquatic hypercarbia did not affect fG. This response is in contrast to increases in pulmonary ventilation that may offset any increase in arterial partial pressure of CO2 owing to CO2 loading through the animals' branchial surface. Thus, despite their reduced contribution to total gas exchange, cutaneous and branchial gas exchange in L. paradoxa can be significantly affected by temperature and aerial hypercarbia.
Collapse
Affiliation(s)
- Lucas A Zena
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP 14884-900, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil.
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP 14884-900, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal, SP 14884-900, Brazil; National Institute of Science and Technology in Comparative Physiology (INCT Fisiologia Comparada), Brazil
| | - Humberto Giusti
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mogens L Glass
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana P Sanchez
- Faculty of Health Sciences of Barretos Dr. Paulo Prata (FACISB), Barretos, SP, Brazil
| |
Collapse
|
8
|
da Silva GS, Glass ML, Branco LG. Temperature and respiratory function in ectothermic vertebrates. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2012.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|