1
|
Nagori R, Vigoreaux JO. β-hydroxy- β-methylbutyrate Attenuates Age-Dependent Loss of Flight Ability and Extends Lifespan in Drosophila. Int J Mol Sci 2025; 26:2664. [PMID: 40141306 PMCID: PMC11941854 DOI: 10.3390/ijms26062664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
β-hydroxy-β-methylbutyrate (HMB) has been shown to enhance muscle function and strength in older humans and rodents after periods of consumption extending for several weeks. We investigated the feasibility of utilizing Drosophila as a model organism to study the biological effects of HMB on aging muscle when consumed throughout adult life. Using flight ability as an index of flight muscle function, we found that HMB attenuates the age-dependent decline in flight ability. Male and female flies fed a diet supplemented with 10 mg/mL HMB had significantly higher flight scores from median age until the onset of flight senescence than control flies fed a standard diet. HMB supplementation also resulted in improved flight scores in males before median age and delayed the onset of flight senescence in females. Notably, the consumption of HMB throughout adult life increased the rate of survival and extended lifespan. The effect on lifespan did not result from changes in food consumption or body weight. Old flies on the HMB-supplemented diet retained a higher proportion of flight muscle mitochondria whose morphology resembled that of young flies than the control diet group. Together, these results suggest that HMB attenuates the age-dependent decline in flight ability and prolongs lifespan by enhancing muscle health.
Collapse
|
2
|
Ren Y, Gao YB, Yu DX, Huang HB. Beta-hydroxy-beta-methyl butyrate supplementation in critically ill patients: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 2025; 12:1505797. [PMID: 39917745 PMCID: PMC11798817 DOI: 10.3389/fnut.2025.1505797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Background Beta-hydroxy-beta-methylbutyrate (HMB) is beneficial for restoring muscle mass. However, the evidence supporting its use in critically ill patients remains unclear. We conducted a systematic review and meta-analysis of HMB in this population to ascertain its effects. Methods We searched PubMed, Embase, China National Knowledge Infrastructure, Wanfang, and the Cochrane database for articles focusing on adult patients receiving HMB compared to controls. The primary outcome was mortality. To explore potential heterogeneity, we assessed study quality and performed subgroup analysis, sensitivity analysis, and quality of evidence. Results Nine randomized controlled trials were included. There were some differences in the study design, HMB protocols, and muscle measurements among these trials. Overall, there were no significant differences in mortality between the HMB and the control groups (risk ratio = 0.96; 95% CI, 0.44-2.08; P = 0.92). This finding was confirmed by the subgroup and sensitivity analyzes. Patients in the HMB group had similar durations of MV [mean difference (MD), -0.40; 95% CI, -0.91 to 0.12; P = 0.13], ICU stay (MD, -0.61 days; 95% CI, -3.59 to 2.38; P = 0.69), and hospital stay (MD, 1.52 days; 95% CI, -1.18 to 4.22; P = 0.27). In addition, HMB did not affect changes in body weight (P = 0.53), body mass index (P = 0.56), or quadriceps thickness (P = 0.74). The outcomes of changes in skeletal muscle area (P = 0.95) and muscle loss (P = 0.16) were similar between the two groups. Conclusion Beta-hydroxy-beta-methylbutyrate (HMB) did not improve the mortality or other clinical outcomes in critically ill patients. This may be because of the different HMB strategies used in the included trials. Our findings provide insights into future research designs that explore the clinical efficacy of HMB in this patient population.
Collapse
Affiliation(s)
- Yu Ren
- Department of Emergency, Fuxing Hospital of Capital Medical University, Beijing, China
| | - Ya-Bei Gao
- Department of Critical Care Medicine, Beijing Fengtai Hospital of Traditional Chinese and Western Medicine, Beijing, China
| | - Da-Xing Yu
- Department of Critical Care Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui-Bin Huang
- Department of Critical Care Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zheng J, Li B, Yan Y, Huang X, Zhang E. β-Hydroxy-β-Methylbutyric Acid Promotes Repair of Sheep Myoblast Injury by Inhibiting IL-17/NF-κB Signaling. Int J Mol Sci 2022; 24:444. [PMID: 36613892 PMCID: PMC9820147 DOI: 10.3390/ijms24010444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Delayed muscle development and impaired tissue repair are common occurrences in sheep reared for mutton. Therefore, understanding the regulatory mechanisms involved in muscle growth and development is critical for animal production. Skeletal muscle satellite cells (SMSCs) can simulate the proliferation and differentiation of muscle cells and could be induced to differentiate into myoblasts. β-hydroxy-β-methylbutyric acid (HMB) is an additive commonly used in animal production. This study examined the effect of HMB on myoblast injury repair using flow cytometry, EdU assay, RNA sequencing, Western blot, and ELISA. Our results showed that HMB could inhibit IL-17 expression and, in turn, inhibit NF-κB signaling. By acting on the downstream genes of NF-κB pathway IL-6, TNF-α and IL-1β, HMB inhibits the apoptosis and promotes the proliferation of myoblasts. The findings of this study provide insight into the mechanism by which HMB mediates myoblast injury repair in sheep.
Collapse
Affiliation(s)
| | | | | | | | - Enping Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
4
|
Supinski GS, Netzel PF, Westgate PM, Schroder EA, Wang L, Callahan LA. A randomized controlled trial to determine whether beta-hydroxy-beta-methylbutyrate and/or eicosapentaenoic acid improves diaphragm and quadriceps strength in critically Ill mechanically ventilated patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:308. [PMID: 34446067 PMCID: PMC8390080 DOI: 10.1186/s13054-021-03737-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023]
Abstract
Background Intensive care unit acquired weakness is a serious problem, contributing to respiratory failure and reductions in ambulation. Currently, there is no pharmacological therapy for this condition. Studies indicate, however, that both beta-hydroxy-beta-methylbutyrate (HMB) and eicosapentaenoic acid (EPA) increase muscle function in patients with cancer and in older adults. The purpose of this study was to determine whether HMB and/or EPA administration would increase diaphragm and quadriceps strength in mechanically ventilated patients. Methods Studies were performed on 83 mechanically ventilated patients who were recruited from the Medical Intensive Care Units at the University of Kentucky. Diaphragm strength was assessed as the trans-diaphragmatic pressure generated by supramaximal magnetic phrenic nerve stimulation (PdiTw). Quadriceps strength was assessed as leg force generated by supramaximal magnetic femoral nerve stimulation (QuadTw). Diaphragm and quadriceps thickness were assessed by ultrasound. Baseline measurements of muscle strength and size were performed, and patients were then randomized to one of four treatment groups (placebo, HMB 3 gm/day, EPA 2 gm/day and HMB plus EPA). Strength and size measurements were repeated 11 days after study entry. ANCOVA statistical testing was used to compare variables across the four experimental groups. Results Treatments failed to increase the strength and thickness of either the diaphragm or quadriceps when compared to placebo. In addition, treatments also failed to decrease the duration of mechanical ventilation after study entry. Conclusions These results indicate that a 10-day course of HMB and/or EPA does not improve skeletal muscle strength in critically ill mechanically ventilated patients. These findings also confirm previous reports that diaphragm and leg strength in these patients are profoundly low. Additional studies will be needed to examine the effects of other anabolic agents and innovative forms of physical therapy. Trial registration: ClinicalTrials.gov, NCT01270516. Registered 5 January 2011, https://clinicaltrials.gov/ct2/show/NCT01270516?term=Supinski&draw=2&rank=4. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03737-9.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Paul F Netzel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Philip M Westgate
- Department of Biostatistics, College of Public Health, University of Kentucky, 725 Rose Street, Lexington, KY, MDS 205B40536-0082, USA
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, 740 South Limestone, L543, Lexington, KY, 40536-0284, USA.
| |
Collapse
|
5
|
Magnesium sulfate ameliorates sepsis-induced diaphragm dysfunction in rats via inhibiting HMGB1/TLR4/NF-κB pathway. Neuroreport 2021; 31:902-908. [PMID: 32558672 PMCID: PMC7368847 DOI: 10.1097/wnr.0000000000001478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diaphragm dysfunction could be induced by sepsis with subsequent ventilatory pump failure that is associated with local infiltration of inflammatory factors in the diaphragm. It has been shown that the administration of anticonvulsant agent, magnesium sulfate (MgSO4) could decrease systematic inflammatory response. We recently reported that MgSO4 could inhibit macrophages high mobility group box 1 (HMGB1) secretion that confirms its anti-inflammatory properties. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signal pathway appears to be involved in the pathology of septic experimental animal’s inflammatory response and involve in the pathogenic mechanisms of sepsis-induced diaphragm dysfunction. Thus, in this study, we are aiming to explore whether MgSO4 could ameliorate sepsis-induced diaphragm dysfunction via TLR4/NF-κB pathway in a rodent model with controlled mechanical ventilation (CMV) and subsequent septic challenge.
Collapse
|
6
|
Supinski GS, Schroder EA, Wang L, Morris AJ, Callahan LAP. Mitoquinone mesylate (MitoQ) prevents sepsis-induced diaphragm dysfunction. J Appl Physiol (1985) 2021; 131:778-787. [PMID: 34197233 DOI: 10.1152/japplphysiol.01053.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. There are no pharmacological treatments for this syndrome, but studies suggest that diaphragm weakness is linked to mitochondrial free radical generation. We hypothesized that administration of mitoquinone mesylate (MitoQ), a mitochondrially targeted free radical scavenger, would prevent sepsis-induced diaphragm dysfunction. We compared diaphragm function in 4 groups of male mice: 1) sham-operated controls treated with saline (0.3 mL ip), 2) sham-operated treated with MitoQ (3.5 mg/kg/day given intraperitoneally in saline), 3) cecal ligation puncture (CLP) mice treated with saline, and 4) CLP mice treated with MitoQ. Forty-eight hours after surgery, we assessed diaphragm force generation, myosin heavy chain content, state 3 mitochondrial oxygen consumption (OCR), and aconitase activity. We also determined effects of MitoQ in female mice with CLP sepsis and in mice with endotoxin-induced sepsis. CLP decreased diaphragm specific force generation and MitoQ prevented these decrements (e.g. maximal force averaged 30.2 ± 1.3, 28.0 ± 1.3, 12.8 ± 1.9, and 30.0 ± 1.0 N/cm2 for sham, sham + MitoQ, CLP, and CLP + MitoQ groups, respectively, P < 0.001). CLP also reduced diaphragm mitochondrial OCR and aconitase activity; MitoQ blocked both effects. Similar responses were observed in female mice and in endotoxin-induced sepsis. Moreover, delayed MitoQ treatment (by 6 h) was as effective as immediate treatment. These data indicate that MitoQ prevents sepsis-induced diaphragm dysfunction, preserving force generation. MitoQ may be a useful therapeutic agent to preserve diaphragm function in critically ill patients with sepsis.NEW & NOTEWORTHY This is the first study to show that mitoquinone mesylate (MitoQ), a mitochondrially targeted antioxidant, treats sepsis-induced skeletal muscle dysfunction. This biopharmaceutical agent is without known side effects and is currently being used by healthy individuals and in clinical trials in patients with various diseases. When taken together, our results suggest that MitoQ has the potential to be immediately translated into treatment for sepsis-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Andrew J Morris
- Division of Cardiovascular Medicine, The Gill Heart and Vascular Institute, University of Kentucky, Lexington, Kentucky.,Division of Cardiovascular Medicine, Veterans Affairs Medical Center, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
7
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. MitoTEMPOL, a mitochondrial targeted antioxidant, prevents sepsis-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L228-L238. [PMID: 32460519 DOI: 10.1152/ajplung.00473.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clinical studies indicate that sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. Currently there is no drug to treat this form of diaphragm weakness. Sepsis-induced muscle dysfunction is thought to be triggered by excessive mitochondrial free radical generation; we therefore hypothesized that therapies that target mitochondrial free radical production may prevent sepsis-induced diaphragm weakness. The present study determined whether MitoTEMPOL, a mitochondrially targeted free radical scavenger, could reduce sepsis-induced diaphragm dysfunction. Using an animal model of sepsis, we compared four groups of mice: 1) sham-operated controls, 2) animals with sepsis induced by cecal ligation puncture (CLP), 3) sham controls given MitoTEMPOL (10 mg·kg-1·day-1 ip), and 4) CLP animals given MitoTEMPOL. At 48 h after surgery, we measured diaphragm force generation, mitochondrial function, proteolytic enzyme activities, and myosin heavy chain (MHC) content. We also examined the effects of delayed administration of MitoTEMPOL (by 6 h) on CLP-induced diaphragm weakness. The effects of MitoTEMPOL on cytokine-mediated alterations on muscle cell superoxide generation and cell size in vitro were also assessed. Sepsis markedly reduced diaphragm force generation. Both immediate and delayed MitoTEMPOL administration prevented sepsis-induced diaphragm weakness. MitoTEMPOL reversed sepsis-mediated reductions in mitochondrial function, activation of proteolytic pathways, and decreases in MHC content. Cytokines increased muscle cell superoxide generation and decreased cell size, effects that were ablated by MitoTEMPOL. MitoTEMPOL and other compounds that target mitochondrial free radical generation may be useful therapies for sepsis-induced diaphragm weakness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
8
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. SS31, a mitochondrially targeted antioxidant, prevents sepsis-induced reductions in diaphragm strength and endurance. J Appl Physiol (1985) 2020; 128:463-472. [PMID: 31944887 PMCID: PMC7099438 DOI: 10.1152/japplphysiol.00240.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-induced diaphragm dysfunction contributes to respiratory failure and mortality in critical illness. There are no treatments for this form of diaphragm weakness. Studies show that sepsis-induced muscle dysfunction is triggered by enhanced mitochondrial free radical generation. We tested the hypothesis that SS31, a mitochondrially targeted antioxidant, would attenuate sepsis-induced diaphragm dysfunction. Four groups of mice were studied: 1) sham-operated controls, 2) sham-operated+SS31 (10 mg·kg-1·day-1), 3) cecal ligation puncture (CLP), and 4) CLP+SS31. Forty-eight hours postoperatively, diaphragm strips with attached phrenic nerves were isolated, and the following were assessed: muscle-field-stimulated force-frequency curves, nerve-stimulated force-frequency curves, and muscle fatigue. We also measured calpain activity, 20S proteasomal activity, myosin heavy chain (MHC) levels, mitochondrial function, and aconitase activity, an index of mitochondrial superoxide generation. Sepsis markedly reduced diaphragm force generation; SS31 prevented these decrements. Diaphragm-specific force generation averaged 30.2 ± 1.4, 9.4 ± 1.8, 25.5 ± 2.3, and 27.9 ± 0.6 N/cm2 for sham, CLP, sham+SS31, and CLP+SS31 groups (P < 0.001). Similarly, with phrenic nerve stimulation, CLP depressed diaphragm force generation, effects prevented by SS31. During endurance trials, force was significantly reduced with CLP, and SS31 prevented these reductions (P < 0.001). Sepsis also increased diaphragm calpain activity, increased 20S proteasomal activity, decreased MHC levels, reduced mitochondrial function (state 3 rates and ATP generation), and reduced aconitase activity; SS31 prevented each of these sepsis-induced alterations (P ≤ 0.017 for all indices). SS31 prevents sepsis-induced diaphragm dysfunction, preserving force generation, endurance, and mitochondrial function. Compounds with similar mechanisms of action may be useful therapeutically to preserve diaphragm function in patients who are septic and critically ill.NEW & NOTEWORTHY Sepsis-induced diaphragm dysfunction is a major contributor to mortality and morbidity in patients with critical illness in intensive care units. Currently, there is no proven pharmacological treatment for this problem. This study provides the novel finding that administration of SS31, a mitochondrially targeted antioxidant, preserves diaphragm myosin heavy chain content and mitochondrial function, thereby preventing diaphragm weakness and fatigue in sepsis.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
9
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. Taurine administration ablates sepsis induced diaphragm weakness. Respir Physiol Neurobiol 2019; 271:103289. [PMID: 31505275 DOI: 10.1016/j.resp.2019.103289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Infection induced diaphragm weakness is a major contributor to death and prolonged mechanical ventilation in critically ill patients. Infection induced muscle dysfunction is associated with activation of muscle proteolytic enzymes, and taurine is known to suppress proteolysis. We therefore postulated that taurine administration may prevent infection induced diaphragm dysfunction. The purpose of this study was to test this hypothesis using a clinically relevant animal model of infection, i.e. cecal ligation puncture induced sepsis (CLP). Studies were performed on (n = 5-7 mice/group): (a) sham operated controls, (b) animals with sepsis induced by CLP, (c) sham operated animals given taurine (75 mg/kg/d, intraperitoneally), and (d) CLP animals given taurine. At intervals after surgery animals were euthanized, diaphragm force generation measured in vitro, and diaphragm calpain, caspase and proteasomal activity determined. CLP elicited a large reduction in diaphragm specific force generation at 24 h (1-150 Hz, p < 0.001) and taurine significantly attenuated CLP induced diaphragm weakness at all stimulation frequencies (p < 0.001). CLP induced significant increases in diaphragm calpain, caspase and proteasomal activity; taurine administration prevented increases in the activity of all three pathways. In additional time course experiments, diaphragm force generation remained at control levels over 72 h in CLP animals treated with daily taurine administration, while CLP animals demonstrated severe, sustained reductions in diaphragm strength (p < 0.01 for all time points). Our results indicate that taurine administration prevents infection induced diaphragm weakness and reduces activation of three major proteolytic pathways. Because this agent is has been shown to be safe, non-toxic when administered to humans, taurine may have a role in treating infection induced diaphragm weakness. Future clinical studies will be needed to assess this possibility.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
10
|
McCarty MF, Iloki-Assanga S, Lujany LML. Nutraceutical targeting of TLR4 signaling has potential for prevention of cancer cachexia. Med Hypotheses 2019; 132:109326. [PMID: 31421423 DOI: 10.1016/j.mehy.2019.109326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022]
Abstract
The mechanisms underlying cancer cachexia - the proximate cause of at least 20% of cancer-related deaths - have until recently remained rather obscure. New research, however, clarifies that cancers evoking cachexia release microvesicles rich in heat shock proteins 70 and 90, and that these extracellular heat shock proteins induce cachexia by serving as agonists for toll-like receptor 4 (TLR4) in skeletal muscle, macrophages, and adipocytes. Hence, safe nutraceutical measures which can down-regulate TLR4 signaling can be expected to aid prevention and control of cancer cachexia. There is reason to suspect that phycocyanobilin, ferulic acid, glycine, long-chain omega-3s, green tea catechins, β-hydroxy-β-methylbutyrate, carnitine, and high-dose biotin may have some utility in this regard.
Collapse
|
11
|
Piva S, Fagoni N, Latronico N. Intensive care unit-acquired weakness: unanswered questions and targets for future research. F1000Res 2019; 8. [PMID: 31069055 PMCID: PMC6480958 DOI: 10.12688/f1000research.17376.1] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/23/2022] Open
Abstract
Intensive care unit-acquired weakness (ICU-AW) is the most common neuromuscular impairment in critically ill patients. We discuss critical aspects of ICU-AW that have not been completely defined or that are still under discussion. Critical illness polyneuropathy, myopathy, and muscle atrophy contribute in various proportions to ICU-AW. Diagnosis of ICU-AW is clinical and is based on Medical Research Council sum score and handgrip dynamometry for limb weakness and recognition of a patient's ventilator dependency or difficult weaning from artificial ventilation for diaphragmatic weakness (DW). ICU-AW can be caused by a critical illness polyneuropathy, a critical illness myopathy, or muscle disuse atrophy, alone or in combination. Its diagnosis requires both clinical assessment of muscle strength and complete electrophysiological evaluation of peripheral nerves and muscles. The peroneal nerve test (PENT) is a quick simplified electrophysiological test with high sensitivity and good specificity that can be used instead of complete electrophysiological evaluation as a screening test in non-cooperative patients. DW, assessed by bilateral phrenic nerve magnetic stimulation or diaphragm ultrasound, can be an isolated event without concurrent limb muscle involvement. Therefore, it remains uncertain whether DW and limb weakness are different manifestations of the same syndrome or are two distinct entities. Delirium is often associated with ICU-AW but a clear correlation between these two entities requires further studies. Artificial nutrition may have an impact on ICU-AW, but no study has assessed the impact of nutrition on ICU-AW as the primary outcome. Early mobilization improves activity limitation at hospital discharge if it is started early in the ICU, but beneficial long-term effects are not established. Determinants of ICU-AW can be many and can interact with each other. Therefore, future studies assessing early mobilization should consider a holistic patient approach with consideration of all components that may lead to muscle weakness.
Collapse
Affiliation(s)
- Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy, 25123, Italy.,Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy, 25123, Italy
| | - Nazzareno Fagoni
- Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy, 25123, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy, 25123, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy, 25123, Italy.,Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili University Hospital, Brescia, Italy, 25123, Italy
| |
Collapse
|
12
|
BUENO CRDS, MARTINELLI B, BERNARDO GC, DARÉ LR, ANDREO JC, ROSA JUNIOR GM. Thirty-day β-hydroxy-βmethylbutyrate supplementation with a controlled diet does not alter the morphological and morphometric characteristics of the rat diaphragm muscle. REV NUTR 2019. [DOI: 10.1590/1678-9865201932e180235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective To evaluate the β-hydroxy-βmethylbutyrate supplementation influence on the morphological and morphometric characteristics of the diaphragm muscle of rats and verify whether there are sex differences. Methods Experimental study with 48 Wistar rats (24 of each sex) divided into 3 groups: Control Group: in which a daily diet with saline solution was offered; Experimental Group: the same amount of food from the Control group consumed in the previous day and 0.3g/kg of β-hydroxy-βmethylbutyrate; Ad libitum Experimental Group: ad libitum feeding with the same dose of the supplement. The analysis consisted of histomorphometry and classification in diaphragm muscle fiber area bands. The procedures occurred 30 days after the start of the experiment. Data were analyzed using the one-way ANOVA and Tukey tests (p<0.05). Results There was no increase in the cross-sectional area of the diaphragm muscle fibers with the supplementation protocol employed and a similar histological pattern in both sexes. No significant changes were observed in muscle fiber size ranges in the supplemented groups, suggesting that there was no hypertrophy of muscle fibers. Conclusion This study suggests that β-hydroxy-βmethylbutyrate supplementation does not cause changes in the morphological and morphometric characteristics of the diaphragm muscle, regardless of sex.
Collapse
|
13
|
Eisenstein N, Naumann D, Burns D, Stapley S, Draper H. Left Of Bang Interventions in Trauma: ethical implications for military medical prophylaxis. JOURNAL OF MEDICAL ETHICS 2018; 44:504-508. [PMID: 28814441 DOI: 10.1136/medethics-2017-104299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/12/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Advances in medical capability should be accompanied by discussion of their ethical implications. In the military medical context there is a growing interest in developing prophylactic interventions that will mitigate the effects of trauma and improve survival. The ethics of this novel capability are currently unexplored. This paper describes the concept of trauma prophylaxis (Left Of Bang Interventions in Trauma) and outlines some of the ethical issues that need to be considered, including within concept development, research and implementation. Trauma prophylaxis can be divided into interventions that do not (type 1) and those that do (type 2) have medical enhancement as an unintended side effect of their prophylactic action. We conclude that type 1 interventions have much in common with established military medical prophylaxis, and the potentially enhancing qualities of type 2 interventions raise different issues. We welcome further debate on both interventions.
Collapse
Affiliation(s)
- Neil Eisenstein
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, ICT Centre, Birmingham, UK
- Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Edgbaston, UK
| | - David Naumann
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, ICT Centre, Birmingham, UK
- Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Edgbaston, UK
| | - Daniel Burns
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, ICT Centre, Birmingham, UK
- Surgical Reconstruction and Microbiology Research Centre, University of Birmingham, Edgbaston, UK
| | - Sarah Stapley
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, ICT Centre, Birmingham, UK
| | - Heather Draper
- Division of Health Science, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Sustained high serum caspase-3 concentrations and mortality in septic patients. Eur J Clin Microbiol Infect Dis 2017; 37:281-288. [DOI: 10.1007/s10096-017-3129-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
|
15
|
Supinski GS, Morris PE, Dhar S, Callahan LA. Diaphragm Dysfunction in Critical Illness. Chest 2017; 153:1040-1051. [PMID: 28887062 DOI: 10.1016/j.chest.2017.08.1157] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Peter E Morris
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Sanjay Dhar
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY.
| |
Collapse
|
16
|
Lorente L, Martín MM, Ferreres J, Solé-Violán J, Labarta L, Díaz C, Jiménez A, Borreguero-León JM. Serum caspase 3 levels are associated with early mortality in severe septic patients. J Crit Care 2016; 34:103-6. [DOI: 10.1016/j.jcrc.2016.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
|
17
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
18
|
Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Calcium-dependent phospholipase A2 modulates infection-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2016; 310:L975-84. [PMID: 26968769 DOI: 10.1152/ajplung.00312.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/09/2016] [Indexed: 11/22/2022] Open
Abstract
Calpain activation contributes to the development of infection-induced diaphragm weakness, but the mechanisms by which infections activate calpain are poorly understood. We postulated that skeletal muscle calcium-dependent phospholipase A2 (cPLA2) is activated by cytokines and has downstream effects that induce calpain activation and muscle weakness. We determined whether cPLA2 activation mediates cytokine-induced calpain activation in isolated skeletal muscle (C2C12) cells and infection-induced diaphragm weakness in mice. C2C12 cells were treated with the following: 1) vehicle; 2) cytomix (TNF-α 20 ng/ml, IL-1β 50 U/ml, IFN-γ 100 U/ml, LPS 10 μg/ml); 3) cytomix + AACOCF3, a cPLA2 inhibitor (10 μM); or 4) AACOCF3 alone. At 24 h, we assessed cell cPLA2 activity, mitochondrial superoxide generation, calpain activity, and calpastatin activity. We also determined if SS31 (10 μg/ml), a mitochondrial superoxide scavenger, reduced cytomix-mediated calpain activation. Finally, we determined if CDIBA (10 μM), a cPLA2 inhibitor, reduced diaphragm dysfunction due to cecal ligation puncture in mice. Cytomix increased C2C12 cell cPLA2 activity (P < 0.001) and superoxide generation; AACOCF3 and SS31 blocked increases in superoxide generation (P < 0.001). Cytomix also activated calpain (P < 0.001) and inactivated calpastatin (P < 0.01); both AACOCF3 and SS31 prevented these changes. Cecal ligation puncture reduced diaphragm force in mice, and CDIBA prevented this reduction (P < 0.001). cPLA2 modulates cytokine-induced calpain activation in cells and infection-induced diaphragm weakness in animals. We speculate that therapies that inhibit cPLA2 may prevent diaphragm weakness in infected, critically ill patients.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alexander P Alimov
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Xiao-Hong Song
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh A Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Neutral sphingomyelinase 2 is required for cytokine-induced skeletal muscle calpain activation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L614-24. [PMID: 26138644 DOI: 10.1152/ajplung.00141.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022] Open
Abstract
Calpain contributes to infection-induced diaphragm dysfunction but the upstream mechanism(s) responsible for calpain activation are poorly understood. It is known, however, that cytokines activate neutral sphingomyelinase (nSMase) and nSMase has downstream effects with the potential to increase calpain activity. We tested the hypothesis that infection-induced skeletal muscle calpain activation is a consequence of nSMase activation. We administered cytomix (20 ng/ml TNF-α, 50 U/ml IL-1β, 100 U/ml IFN-γ, 10 μg/ml LPS) to C2C12 muscle cells to simulate the effects of infection in vitro and studied mice undergoing cecal ligation puncture (CLP) as an in vivo model of infection. In cell studies, we assessed sphingomyelinase activity, subcellular calcium levels, and calpain activity and determined the effects of inhibiting sphingomyelinase using chemical (GW4869) and genetic (siRNA to nSMase2 and nSMase3) techniques. We assessed diaphragm force and calpain activity and utilized GW4869 to inhibit sphingomyelinase in mice. Cytomix increased cytosolic and mitochondrial calcium levels in C2C12 cells (P < 0.001); addition of GW4869 blocked these increases (P < 0.001). Cytomix also activated calpain, increasing calpain activity (P < 0.02), and the calpain-mediated cleavage of procaspase 12 (P < 0.001). Procaspase 12 cleavage was attenuated by either GW4869 (P < 0.001), BAPTA-AM (P < 0.001), or siRNA to nSMase2 (P < 0.001) but was unaffected by siRNA to nSMase3. GW4869 prevented CLP-induced diaphragm calpain activation and diaphragm weakness in mice. These data suggest that nSMase2 activation is required for the development of infection-induced diaphragm calpain activation and muscle weakness. As a consequence, therapies that inhibit nSMase2 in patients may prevent infection-induced skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Alexander P Alimov
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Xiao-Hong Song
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh A Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky; and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Karisnan K, Bakker AJ, Song Y, Noble PB, Pillow JJ, Pinniger GJ. Interleukin-1 receptor antagonist protects against lipopolysaccharide induced diaphragm weakness in preterm lambs. PLoS One 2015; 10:e0124390. [PMID: 25860718 PMCID: PMC4393095 DOI: 10.1371/journal.pone.0124390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
Chorioamnionitis (inflammation of the fetal membranes) is strongly associated with preterm birth and in utero exposure to inflammation significantly impairs contractile function in the preterm lamb diaphragm. The fetal inflammatory response to intra-amniotic (IA) lipopolysaccharide (LPS) is orchestrated via interleukin 1 (IL-1). We aimed to determine if LPS induced contractile dysfunction in the preterm diaphragm is mediated via the IL-1 pathway. Pregnant ewes received IA injections of recombinant human IL-1 receptor antagonist (rhIL-1ra) (Anakinra; 100 mg) or saline (Sal) 3 h prior to second IA injections of LPS (4 mg) or Sal at 119d gestational age (GA). Preterm lambs were killed after delivery at 121d GA (term = 150 d). Muscle fibres dissected from the right hemi-diaphragm were mounted in an in vitro muscle test system for assessment of contractile function. The left hemi-diaphragm was snap frozen for molecular and biochemical analyses. Maximum specific force in lambs exposed to IA LPS (Sal/LPS group) was 25% lower than in control lambs (Sal/Sal group; p=0.025). LPS-induced diaphragm weakness was associated with higher plasma IL-6 protein, diaphragm IL-1β mRNA and oxidised glutathione levels. Pre-treatment with rhIL-1ra (rhIL-1ra/LPS) ameliorated the LPS-induced diaphragm weakness and blocked systemic and local inflammatory responses, but did not prevent the rise in oxidised glutathione. These findings indicate that LPS induced diaphragm dysfunction is mediated via IL-1 and occurs independently of oxidative stress. Therefore, the IL-1 pathway represents a potential therapeutic target in the management of impaired diaphragm function in preterm infants.
Collapse
Affiliation(s)
- Kanakeswary Karisnan
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
| | - Anthony J. Bakker
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
| | - Yong Song
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, WA, Australia
| | - Peter B. Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, WA, Australia
| | - J. Jane Pillow
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia, Crawley, WA, Australia
| | - Gavin J. Pinniger
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|