1
|
Huckauf J, Weisenfeld U, Broer I. From the lab to the field and closer to the market: Production of the biopolymer cyanophycin in plants. N Biotechnol 2025; 87:S1871-6784(25)00022-6. [PMID: 40024522 DOI: 10.1016/j.nbt.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
A range of studies has investigated the production of biopolymers in plants but a comprehensive assessment of feasibility and environmental safety and consumer acceptance is lacking. This review delivers such an assessment. It describes the establishment of the production in tobacco and potato, the analysis of lead events in the greenhouse and in the field, the establishment and upscaling of effective isolation processes and storage conditions, taking the cyanobacterial storage peptide cyanophycin (CGP) as an example. The paper lists several industrial and medical applications of CGP and its building blocks Arg-Asp-dipeptides. This production is especially interesting because the CGP content can exceed 10% of the dry weight (dw) in the greenhouse and still deliver 4 gram per plant in the field. Furthermore, risk assessment of CGP production in potatoes in vitro, in vivo, in the greenhouse, and in the field showed no relevant differences concerning environment or consumer safety compared with the near isogenic control. A consumer choice analysis in four European countries showed a preference for biodegradable CGP in food-wrapping materials over conventional plastic wrapping. Although data on economic feasibility is lacking, CGP as a renewable, biodegradable and CO2-neutrally produced compound, is preferable over fossil fuels in many applications.
Collapse
Affiliation(s)
- Jana Huckauf
- Agrobiotechnology, University of Rostock, Rostock, Germany.
| | - Ursula Weisenfeld
- Institute of Management & Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | - Inge Broer
- Agrobiotechnology, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Khan A, Asif I, Abid R, Ghazanfar S, Ajmal W, Shehata AM, Naiel MAE. The sustainable approach of microbial bioremediation of arsenic: an updated overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2024; 21:7849-7864. [DOI: 10.1007/s13762-024-05594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/19/2023] [Accepted: 03/10/2024] [Indexed: 03/06/2025]
|
3
|
Afrose N, Chakraborty R, Hazra A, Bhowmick P, Bhowmick M. AI-Driven Drug Discovery and Development. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:259-277. [DOI: https:/doi.org/10.4018/979-8-3693-3629-8.ch013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Artificial intelligence (AI) has revolutionized the discovery and development of new drugs in biomedicine. By using advanced algorithms and computational methods, AI optimizes treatment plans, accelerates the drug development process, and improves patient outcomes. AI algorithms integrate multi-omics data sets, decipher molecular connections, and identify therapeutic targets and biomarkers. High-throughput screening, predictive modeling, and AI-powered virtual screening platforms are revolutionizing the drug development pipeline. Machine learning and deep learning models enable drug-target interactions prediction, pharmacological evaluation, and experimental validation. Structure-based drug design methodologies accelerate the discovery of new therapies. AI-driven technologies enable personalized treatment plans for patients, taking into account their unique traits and disease profiles. Pharmacogenomics, when combined with predictive analytics, improves drug selection, dosage adjustment, and treatment response prediction, enhancing therapeutic efficacy and reducing side effects.
Collapse
Affiliation(s)
- Naureen Afrose
- Bengal College of Pharmaceutical Sciences and Research, India
| | | | - Ahana Hazra
- Bengal College of Pharmaceutical Sciences and Research, India
| | | | - Mithun Bhowmick
- Bengal College of Pharmaceutical Sciences and Research, India
| |
Collapse
|
4
|
Niazian M, Belzile F, Curtin SJ, de Ronne M, Torkamaneh D. Optimization of in vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation of soybean for visual screening of transformants using RUBY. FRONTIERS IN PLANT SCIENCE 2023; 14:1207762. [PMID: 37484469 PMCID: PMC10361064 DOI: 10.3389/fpls.2023.1207762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
In vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both in vitro and ex vitro HRT were optimized in soybean using the RUBY reporter. Different parameters including A. rhizogenes strain, optical density of the bacterial cell culture (OD600), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated. Overall, the in vitro assay was more efficient than the ex vitro assay in terms of the percentage of induction of hairy roots and transformed roots (expressing RUBY). Nonetheless, the ex vitro technique was deemed faster and a less complicated approach. The highest transformation of RUBY was observed on 7-d-old cotyledons of cv. Bert inoculated for 30 minutes with the R1000 resuspended in ¼ B5 medium to OD600 (0.3) and 150 µM of acetosyringone. The parameters of this assay also led to the highest percentage of RUBY through two-step ex vitro hairy root transformation. Finally, using machine learning-based modeling, optimal protocols for both assays were further defined. This study establishes efficient and reliable hairy root transformation protocols applicable for functional studies in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Shaun J. Curtin
- Plant Science Research Unit, United States Department of Agriculture (USDA), St Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec City, QC, Canada
| |
Collapse
|
5
|
Yaashikaa PR, Senthil Kumar P, Saravanan A, Karishma S, Rangasamy G. A biotechnological roadmap for decarbonization systems combined into bioenergy production: Prelude of environmental life-cycle assessment. CHEMOSPHERE 2023; 329:138670. [PMID: 37054843 DOI: 10.1016/j.chemosphere.2023.138670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Decarbonization has become a critical issue in recent years due to rising energy demands and diminishing oil resources. Decarbonization systems based on biotechnology have proven to be a cost-effective and environmentally benign technique of lowering carbon emissions. Bioenergy generation is an environmentally friendly technique for mitigating climate change in the energy industry, and it is predicted to play an important role in lowering global carbon emissions. This review essentially provides a new perspective on the unique biotechnological approaches and strategies based decarbonization pathways. Furthermore, the application of genetically engineered microbes in CO2 biomitigation and energy generation is particularly emphasized. The production of biohydrogen and biomethane via anaerobic digestion techniques has been highlighted in the perspective. In this review, role of microorganisms in bioconversion of CO2 into different types of bioproducts such as biochemical, biopolymers, biosolvents and biosurfactant was summarized. The current analysis, which includes an in-depth discussion of a biotechnology-based roadmap for the bioeconomy, provides a clear picture of sustainability, forthcoming challenges, and perspectives.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
6
|
Wang F, Huang Z. Analysis of international competitive situation of key core technology in strategic emerging industries: New generation of information technology industry as an example. PLoS One 2023; 18:e0287034. [PMID: 37319134 PMCID: PMC10270364 DOI: 10.1371/journal.pone.0287034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
In the context of the current technological revolution and unprecedented major changes, countries are facing the situation of accelerating the development of key core technologies, which is caused by the transformation from the dispute over trade to the dispute over ecology and scientific and technological strength. Competitive situation analysis is an important link of key core technology innovation. The construction of a universal model of international competitive situation analysis of key core technology can provide scientific support for decision makers of science and technology innovation to solve technical difficulties. This study takes the new generation of information technology industry as an example, identifies key core technologies of the industry and evaluates the competitive situation of the major world countries. Studies indicate that in the field of new generation information technology, the US and Japan is in the leading position globally. In addition, China has active innovation activities in all fields, but overall there remains a considerable gap with the world-leading level, and its R&D quality needs to be further improved.
Collapse
Affiliation(s)
- Fengyang Wang
- School of Economics and Management, Beijing Jiaotong University, Beijing, China
| | - Zongyuan Huang
- School of Economics and Management, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
7
|
D'Agostino LM, Tiraboschi L, Torrisi S. European patent opposition outcomes in biotechnology. WORLD PATENT INFORMATION 2023. [DOI: 10.1016/j.wpi.2023.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Asin-Garcia E, Robaey Z, Kampers LFC, Martins Dos Santos VAP. Exploring the Impact of Tensions in Stakeholder Norms on Designing for Value Change: The Case of Biosafety in Industrial Biotechnology. SCIENCE AND ENGINEERING ETHICS 2023; 29:9. [PMID: 36882674 PMCID: PMC9992083 DOI: 10.1007/s11948-023-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Synthetic biologists design and engineer organisms for a better and more sustainable future. While the manifold prospects are encouraging, concerns about the uncertain risks of genome editing affect public opinion as well as local regulations. As a consequence, biosafety and associated concepts, such as the Safe-by-design framework and genetic safeguard technologies, have gained notoriety and occupy a central position in the conversation about genetically modified organisms. Yet, as regulatory interest and academic research in genetic safeguard technologies advance, the implementation in industrial biotechnology, a sector that is already employing engineered microorganisms, lags behind. The main goal of this work is to explore the utilization of genetic safeguard technologies for designing biosafety in industrial biotechnology. Based on our results, we posit that biosafety is a case of a changing value, by means of further specification of how to realize biosafety. Our investigation is inspired by the Value Sensitive Design framework, to investigate scientific and technological choices in their appropriate social context. Our findings discuss stakeholder norms for biosafety, reasonings about genetic safeguards, and how these impact the practice of designing for biosafety. We show that tensions between stakeholders occur at the level of norms, and that prior stakeholder alignment is crucial for value specification to happen in practice. Finally, we elaborate in different reasonings about genetic safeguards for biosafety and conclude that, in absence of a common multi-stakeholder effort, the differences in informal biosafety norms and the disparity in biosafety thinking could end up leading to design requirements for compliance instead of for safety.
Collapse
Affiliation(s)
- Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands.
| | - Zoë Robaey
- Department of Social Sciences, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Linde F C Kampers
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Bioprocess Engineering Group, Wageningen University & Research, 6700, AA, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| |
Collapse
|
9
|
Tufail MA, Iltaf J, Zaheer T, Tariq L, Amir MB, Fatima R, Asbat A, Kabeer T, Fahad M, Naeem H, Shoukat U, Noor H, Awais M, Umar W, Ayyub M. Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157961. [PMID: 35963399 DOI: 10.1016/j.scitotenv.2022.157961] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals and persistent organic pollutants are causing detrimental effects on the environment. The seepage of heavy metals through untreated industrial waste destroys the crops and lands. Moreover, incineration and combustion of several products are responsible for primary and secondary emissions of pollutants. This review has gathered the remediation strategies, current bioremediation technologies, and their primary use in both in situ and ex situ methods, followed by a detailed explanation for bioremediation over other techniques. However, an amalgam of bioremediation techniques and nanotechnology could be a breakthrough in cleaning the environment by degrading heavy metals and persistant organic pollutants.
Collapse
Affiliation(s)
| | - Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, 40100, Pakistan
| | - Tahreem Zaheer
- Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Leeza Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal Amir
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Rida Fatima
- School of Science, Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Asbat
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahira Kabeer
- Center of Agriculture Biochemistry and Biotechnology CABB, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Fahad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamna Naeem
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| | - Usama Shoukat
- Integrated Genomics Cellular Development Biology Lab, Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Hazrat Noor
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Awais
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wajid Umar
- Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő 2100, Hungary
| | - Muhaimen Ayyub
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| |
Collapse
|
10
|
Golgeci I, Ali I, Bozkurt S, Gligor DM, Arslan A. The impact of corporate support programs on environmental and social innovation: empirical insights from the food and beverage industry. INTERNATIONAL JOURNAL OF OPERATIONS & PRODUCTION MANAGEMENT 2022. [DOI: 10.1108/ijopm-10-2021-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe purpose of this paper is to analyze the influence of corporate support programs on managers' environmental and social innovation behaviors. To offer a more comprehensive understanding of these relationships, the moderating role of technological reflectiveness and business moral values is also accounted for.Design/methodology/approachA scenario-based experimental study to test the impact of corporate support programs on environmental and social innovation behaviors is also adopted. After running a pretest to verify the effectiveness of alternative scenarios through 100 respondents with managerial experience residing in the UK and EU countries, we collected data from a sample of 220 senior managers of firms from the Australian food and beverage industry for the main study. One-way analysis of variance (ANOVA) with Dunnett's test to investigate direct relationships and the PROCESS Model to test the moderating role of technological reflectiveness and business moral values were used.FindingsThe findings reveal time provision, budget provision and advice provision as salient forms of corporate support programs that positively impact managers' environmental and social innovation behaviors. It is found that technological reflectiveness positively moderates the link between time provision and managers' social innovation behavior and negatively moderates the link between advice provision and managers' social innovation behavior. Furthermore, it is found that business moral values positively moderate the relationships between time and budget provisions and managers' environmental innovation behavior and between budget and advice provisions and managers' social innovation behavior.Originality/valueThe authors contribute to innovation and operations management research by adopting a behavioral operations management perspective and empirically analyzing the influences of managers' technological reflectiveness and business moral values on the relationship between organizational corporate support programs and managers' environmental and social innovation behavior in the context of the food and beverage industry.
Collapse
|
11
|
Smart and Sustainable Bioeconomy Platform: A New Approach towards Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14010466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The smart and sustainable bioeconomy represents a comprehensive perspective, in which economic, social, environmental, and technological dimensions are considered simultaneously in the planning, monitoring, evaluating, and redefining of processes and operations. In this context of profound transformation driven by rapid urbanization and digitalization, participatory and interactive strategies and practices have become fundamental to support policymakers, entrepreneurs, and citizens in the transition towards a smart and sustainable bioeconomy. This approach is applied by numerous countries around the world in order to redefine their strategy of sustainable and technology-assisted development. Specifically, real-time monitoring stations, sensors, Internet of Things (IoT), smart grids, GPS tracking systems, and Blockchain aim to develop and strengthen the quality and efficiency of the circularity of economic, social, and environmental resources. In this sense, this study proposes a systematic review of the literature of smart and sustainable bioeconomy strategies and practices implemented worldwide in order to develop a platform capable of integrating holistically the following phases: (1) planning and stakeholder management; (2) identification of social, economic, environmental, and technological dimensions; and (3) goals. The results of this analysis emphasise an innovative and under-treated perspective, further stimulating knowledge in the theoretical and managerial debate on the smart and sustainable aspects of the bioeconomy, which mainly concern the following: (a) the proactive involvement of stakeholders in planning; (b) the improvement of efficiency and quality of economic, social, environmental, and technological flows; and (c) the reinforcement of the integration between smartness and sustainability.
Collapse
|
12
|
Biju LM, Pooshana V, Kumar PS, Gayathri KV, Ansar S, Govindaraju S. Treatment of textile wastewater containing mixed toxic azo dye and chromium (VI) BY haloalkaliphilic bacterial consortium. CHEMOSPHERE 2022; 287:132280. [PMID: 34571446 DOI: 10.1016/j.chemosphere.2021.132280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Scientific empowerment in this century created a positive and negative impact on the ecosystem's biotic and abiotic components. The current scenario of emerging recalcitrant pollutants in the environment is encountered using various remediation approaches are enforced and applied. The need for mineralization of the toxic pollutants to non - toxic forms accomplished the application of microbes (bacteria, fungi and algae) and plants individually or in a combined manner. The current research on the removal of pollutants from synthetic textile wastewater containing 1200 ppm concentration of mixed azo dyes -Reactive red (RR), Reactive Brown (RB) & Reactive Black (RBl) and 300 ppm Cr (VI) metal using haloalkaliphilic bacterial strains LBKVG1, LBKVG2, LBKVG3 & LBKVG4 in a Moving Bed Biofilm Reactor (MBBR), showed decolorization of 82 ± 0.5% of mixed azo dyes and degradation 56 ± 0.5% of Cr (VI) metal at 37 °C and pH 8.5 in the fifth day of the study. The isolated bacterial strains in the consortium were molecularly and morphologically characterized by 16SrRNA sequencing and SEM analysis. FT-IR and GC-MS analysis scrutinized the metabolites obtained. The findings suggest the degradation of hazardous pollutants even at higher concentrations and attempt to decolourize the mixed azo dyes simultaneously using the eco-friendly bacterial consortium.
Collapse
Affiliation(s)
- Leena Merlin Biju
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, 600083, India; Department of Microbiology, Kumararani Meena Muthiah College of Arts & Science, India
| | - V Pooshana
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, 600083, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India.
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, 600083, India.
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | | |
Collapse
|
13
|
McNulty MJ, Berliner AJ, Negulescu PG, McKee L, Hart O, Yates K, Arkin AP, Nandi S, McDonald KA. Evaluating the Cost of Pharmaceutical Purification for a Long-Duration Space Exploration Medical Foundry. Front Microbiol 2021; 12:700863. [PMID: 34707576 PMCID: PMC8542935 DOI: 10.3389/fmicb.2021.700863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/20/2021] [Indexed: 01/10/2023] Open
Abstract
There are medical treatment vulnerabilities in longer-duration space missions present in the current International Space Station crew health care system with risks, arising from spaceflight-accelerated pharmaceutical degradation and resupply lag times. Bioregenerative life support systems may be a way to close this risk gap by leveraging in situ resource utilization (ISRU) to perform pharmaceutical synthesis and purification. Recent literature has begun to consider biological ISRU using microbes and plants as the basis for pharmaceutical life support technologies. However, there has not yet been a rigorous analysis of the processing and quality systems required to implement biologically produced pharmaceuticals for human medical treatment. In this work, we use the equivalent system mass (ESM) metric to evaluate pharmaceutical purification processing strategies for longer-duration space exploration missions. Monoclonal antibodies, representing a diverse therapeutic platform capable of treating multiple space-relevant disease states, were selected as the target products for this analysis. We investigate the ESM resource costs (mass, volume, power, cooling, and crew time) of an affinity-based capture step for monoclonal antibody purification as a test case within a manned Mars mission architecture. We compare six technologies (three biotic capture methods and three abiotic capture methods), optimize scheduling to minimize ESM for each technology, and perform scenario analysis to consider a range of input stream compositions and pharmaceutical demand. We also compare the base case ESM to scenarios of alternative mission configuration, equipment models, and technology reusability. Throughout the analyses, we identify key areas for development of pharmaceutical life support technology and improvement of the ESM framework for assessment of bioregenerative life support technologies.
Collapse
Affiliation(s)
- Matthew J. McNulty
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Aaron J. Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Patrick G. Negulescu
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Liber McKee
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Olivia Hart
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kevin Yates
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Adam P. Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Somen Nandi
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Karen A. McDonald
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Liu S, Zhao D. Diffusion and economic growth fuzzy intelligent system based on DSGE model. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-189437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In general, there are a lot of uncertainties in uncertain information, natural language, and human knowledge. The conclusion can be better deduced by using an approximate reasoning method, while a fuzzy intelligent system can deal with uncertain data and rule evaluation information systems. In order to better explore diffusion and economic growth, this paper constructs a fuzzy intelligent system based on the DSGE model and uses this system to analyze diffusion and economic growth. In order to verify the feasibility of this system, we test the response time and accuracy of the system. In addition, we also use the system to simulate diffusion and economic growth. The results show that with the increase of the task amount, the gap between the actual response time and the expected response time of the fuzzy intelligent system based on the DSGE model increases. When the task quantity is 20, the expected response time is 2.31 and the actual response time is 2.24. When the task quantity is 40, the expected response time is 2.5 and the actual response time is 2.36. The larger the task quantity is, the faster the response time of a fuzzy intelligent system based on the DSEG model is. Therefore, the fuzzy intelligent system based on the DSEG model has good performance and can analyze diffusion and economic growth well.
Collapse
Affiliation(s)
- Shuqiang Liu
- School of Economics and Management, Heilongjiang Institute of Technology, Harbin, Heilongjiang, China
| | - Dawei Zhao
- School of Economics and Management, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Arocena R, Sutz J. Universities and social innovation for global sustainable development as seen from the south. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE 2021; 162:120399. [PMID: 33071365 PMCID: PMC7554489 DOI: 10.1016/j.techfore.2020.120399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
Potential contributions of universities to social innovation are explored with special attention to Southern countries. The normative guide is the notion of Sustainable Human Development understood as stressing the agency of least-advantaged sectors. The main challenges stem from decreasing sustainability and increasing inequality. Their impacts are highly dependent on how the tension between economic growth and environmental protection is managed. Improving actual perspectives demands harnessing advanced knowledge to foster inclusive and frugal innovation. For this to occur, universities need to be main actors. The context in which they act is analyzed with reference to the National Systems of Innovation conceptualization. Possible evolutions of universities as agents of social innovation are discussed with the aid of the Multi-Level Perspective. The importance of the Southern experience of innovating in scarcity conditions is highlighted and illustrated with the specific experience of a Latin American university. The cooperation of universities with weak social actors in ways that involve advanced knowledge appears as a key theoretical issue and as a difficult practical problem for the effective engagement of universities in social innovation. The diverse issues that such engagement needs to integrate conform an ambitious research program, of which the paper aims at giving a first glimpse.
Collapse
|
16
|
Kumar A, Taparia M, Madapu A, Rajalakshmi P, Marathi B, Desai UB. Discrimination of filled and unfilled grains of rice panicles using thermal and RGB images. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Roeva O, Zoteva D, Castillo O. Joint set-up of parameters in genetic algorithms and the artificial bee colony algorithm: an approach for cultivation process modelling. Soft comput 2020. [DOI: 10.1007/s00500-020-05272-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Figueiredo PN, Larsen H, Hansen UE. The role of interactive learning in innovation capability building in multinational subsidiaries: A micro-level study of biotechnology in Brazil. RESEARCH POLICY 2020. [DOI: 10.1016/j.respol.2020.103995] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Finger-Bou M, Orsi E, van der Oost J, Staals RHJ. CRISPR with a Happy Ending: Non-Templated DNA Repair for Prokaryotic Genome Engineering. Biotechnol J 2020; 15:e1900404. [PMID: 32558098 DOI: 10.1002/biot.201900404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Indexed: 12/18/2022]
Abstract
The exploration of microbial metabolism is expected to support the development of a sustainable economy and tackle several problems related to the burdens of human consumption. Microorganisms have the potential to catalyze processes that are currently unavailable, unsustainable and/or inefficient. Their metabolism can be optimized and further expanded using tools like the clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) systems. These tools have revolutionized the field of biotechnology, as they greatly streamline the genetic engineering of organisms from all domains of life. CRISPR-Cas and other nucleases mediate double-strand DNA breaks, which must be repaired to prevent cell death. In prokaryotes, these breaks can be repaired through either homologous recombination, when a DNA repair template is available, or through template-independent end joining, of which two major pathways are known. These end joining pathways depend on different sets of proteins and mediate DNA repair with different outcomes. Understanding these DNA repair pathways can be advantageous to steer the results of genome engineering experiments. In this review, we discuss different strategies for the genetic engineering of prokaryotes through either non-homologous end joining (NHEJ) or alternative end joining (AEJ), both of which are independent of exogenous DNA repair templates.
Collapse
Affiliation(s)
- Max Finger-Bou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Enrico Orsi
- Bioprocess Engineering, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
20
|
Biostimulants as a Tool for Improving Environmental Sustainability of Greenhouse Vegetable Crops. SUSTAINABILITY 2020. [DOI: 10.3390/su12125101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plant biostimulants have gained great interest from the agrochemical industry and farmers because of their ability to enhance nutrient use efficiency and increase abiotic stress tolerance in crop production. However, despite the considerable potential of biostimulants for the sustainable development of the agricultural sector, the environmental evaluation of the application of biostimulants is still missing. Hence, this is the first study that focuses on the environmental assessment of the biostimulant action of arbuscular mycorrhizal fungus Glomus intraradices and vegetal-derived protein hydrolysate on two greenhouse vegetable crops, spinach and zucchini squash, under different fertilization regimes. The life cycle assessment from a cradle to gate perspective, which covers all processes related to crop cultivation up to harvest, was carried out to calculate the carbon footprint of the production chain for these two crops. The results of the comparative analysis revealed that the CO2 equivalent emissions of both crops were reduced due to the biostimulant applications. In particular, the effect of the mycorrhization on the reduction of carbon emissions compared to the un-mycorrhized control was higher in zucchini plants under organic fertilization (12%) than under mineral fertilization (7%). In addition, organic fertilization increased the total carbon footprint of zucchini (52%) compared with mineral fertilization. The results also showed that an increase of nitrogen fertilization from 15 to 45 kg N ha−1 in spinach production enhanced the total CO2 emissions per ton of harvested leaves in comparison with treatments that involved the foliar applications of protein hydrolysate together with a lower nitrogen input; this increase was 4% compared to the unfertilized treatment with application of biostimulant. This study can support decision-making in terms of agronomic technique choices in line with sustainable development of vegetable crop production.
Collapse
|
21
|
Rodrigues Dias R, Queiroz Zepka L, Jacob-Lopes E. Introductory Chapter: Biotechnology and Bioengineering. Biotechnol Bioeng 2019. [DOI: 10.5772/intechopen.86380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Value Chains for Industrial Biotechnology in the Bioeconomy-Innovation System Analysis. SUSTAINABILITY 2019. [DOI: 10.3390/su11082435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial Biotechnology (IB) is considered as a key technology with a strong potential to generate new growth, spur innovation, increase productivity, and tackle environmental and climate challenges. Industrial Biotechnology is applied in many segments of the bioeconomy ranging from chemicals, biofuels, bioenergy, bio-based plastics, and other biomaterials. However, the segments differ profoundly regarding volume, price, type, and amount of needed feedstock, market condition, societal contributions as well as maturity, etc. This article aims to analyse a set of five different value chains in the technological innovation system (TIS) framework in order to derive adequate policy conclusions. Hereby, we focus on quite distinctive value chains to take into account the high heterogeneity of biotechnological applications. The analysis points out that policy maker have to take into account the fundamental differences in the innovation systems and to implement differentiated innovation policy to address system weaknesses. In particular, market formation is often the key bottleneck innovation systems, but different policy instruments for various application segments needed.
Collapse
|