1
|
Pan R, Yu S, Zhang H, Timmins GS, Weaver J, Yang Y, Zhou X, Liu KJ. Endogenous zinc protoporphyrin formation critically contributes to hemorrhagic stroke-induced brain damage. J Cereb Blood Flow Metab 2021; 41:3232-3247. [PMID: 34187233 PMCID: PMC8669275 DOI: 10.1177/0271678x211028475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemorrhagic stroke is a leading cause of death. The causes of intracerebral hemorrhage (ICH)-induced brain damage are thought to include lysis of red blood cells, hemin release and iron overload. These mechanisms, however, have not proven very amenable to therapeutic intervention, and so other mechanistic targets are being sought. Here we report that accumulation of endogenously formed zinc protoporphyrin (ZnPP) also critically contributes to ICH-induced brain damage. ICH caused a significant accumulation of ZnPP in brain tissue surrounding hematoma, as evidenced by fluorescence microscopy of ZnPP, and further confirmed by fluorescence spectroscopy and supercritical fluid chromatography-mass spectrometry. ZnPP formation was dependent upon both ICH-induced hypoxia and an increase in free zinc accumulation. Notably, inhibiting ferrochelatase, which catalyzes insertion of zinc into protoporphyrin, greatly decreased ICH-induced endogenous ZnPP generation. Moreover, a significant decrease in brain damage was observed upon ferrochelatase inhibition, suggesting that endogenous ZnPP contributes to the damage in ICH. Our findings reveal a novel mechanism of ICH-induced brain damage through ferrochelatase-mediated formation of ZnPP in ICH tissue. Since ferrochelatase can be readily inhibited by small molecules, such as protein kinase inhibitors, this may provide a promising new and druggable target for ICH therapy.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Song Yu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Graham S Timmins
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - John Weaver
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
2
|
Iida A, Naito H, Nojima T, Yumoto T, Yamada T, Fujisaki N, Nakao A, Mikane T. State-of-the-art methods for the treatment of severe hemorrhagic trauma: selective aortic arch perfusion and emergency preservation and resuscitation-what is next? Acute Med Surg 2021; 8:e641. [PMID: 33791103 PMCID: PMC7995927 DOI: 10.1002/ams2.641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/30/2023] Open
Abstract
Trauma is a primary cause of death globally, with non‐compressible torso hemorrhage constituting an important part of “potentially survivable trauma death.” Resuscitative endovascular balloon occlusion of the aorta has become a popular alternative to aortic cross‐clamping under emergent thoracotomy for non‐compressible torso hemorrhage in recent years, however, it alone does not improve the survival rate of patients with severe shock or traumatic cardiac arrest from non‐compressible torso hemorrhage. Development of novel advanced maneuvers is essential to improve these patients’ survival, and research on promising methods such as selective aortic arch perfusion and emergency preservation and resuscitation is ongoing. This review aimed to provide physicians in charge of severe trauma cases with a broad understanding of these novel therapeutic approaches to manage patients with severe hemorrhagic trauma, which may allow them to develop lifesaving strategies for exsanguinating trauma patients. Although there are still hurdles to overcome before their clinical application, promising research on these novel strategies is in progress, and ongoing development of synthetic red blood cells and techniques that reduce ischemia‐reperfusion injury may further maximize their effects. Both continuous proof‐of‐concept studies and translational clinical evaluations are necessary to clinically apply these hemostasis approaches to trauma patients.
Collapse
Affiliation(s)
- Atsuyoshi Iida
- Department of Emergency Medicine Japanese Red Cross Okayama Hospital 2-1-1 Aoe, Kita ward Okayama Okayama 7008607 Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Taihei Yamada
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Noritomo Fujisaki
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Takeshi Mikane
- Department of Emergency Medicine Japanese Red Cross Okayama Hospital 2-1-1 Aoe, Kita ward Okayama Okayama 7008607 Japan
| |
Collapse
|
3
|
Uray T, Empey PE, Drabek T, Stezoski JP, Janesko-Feldman K, Jackson T, Garman RH, Kim F, Kochanek PM, Dezfulian C. Nitrite pharmacokinetics, safety and efficacy after experimental ventricular fibrillation cardiac arrest. Nitric Oxide 2019; 93:71-77. [PMID: 31526855 PMCID: PMC6957908 DOI: 10.1016/j.niox.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Besides therapeutic hypothermia or targeted temperature management no novel therapies have been developed to improve outcomes of patients after cardiac arrest (CA). Recent studies suggest that nitrite reduces neurological damage after asphyxial CA. Nitrite is also implicated as a new mediator of remote post conditioning produced by tourniquet inflation-deflation, which is under active investigation in CA. However, little is known about brain penetration or pharmacokinetics (PK). Therefore, to define the optimal use of this agent, studies on the PK of nitrite in experimental ventricular fibrillation (VF) are needed. We tested the hypothesis that nitrite administered after resuscitation from VF is detectable in cerebrospinal fluid (CSF), brain and other organ tissues, produces no adverse hemodynamic effects, and improves neurologic outcome in rats. METHODS After return of spontaneous circulation (ROSC) of 5 min untreated VF, adult male Sprague-Dawley rats were given intravenous nitrite (8 μM, 0.13 mg/kg) or placebo as a 5 min infusion beginning at 5 min after CA. Additionally, sham groups with and without nitrite treatment were also studied. Whole blood nitrite levels were serially measured. After 15 min, CSF, brain, heart and liver tissue were collected. In a second series, using a randomized and blinded treatment protocol, rats were treated with nitrite or placebo after arrest. Neurological deficit scoring (NDS) was performed daily and eight days after resuscitation, fear conditioning testing (FCT) and brain histology were assessed. RESULTS In an initial series of experiments, rats (n = 21) were randomized to 4 groups: VF-CPR and nitrite therapy (n = 6), VF-CPR and placebo therapy (n = 5), sham (n = 5), or sham plus nitrite therapy (n = 5). Whole blood nitrite levels increased during drug infusion to 57.14 ± 10.82 μM at 11 min post-resuscitation time (1 min after dose completion) in the VF nitrite group vs. 0.94 ± 0.58 μM in the VF placebo group (p < 0.001). There was a significant difference between the treatment and placebo groups in nitrite levels in blood between 7.5 and 15 min after CPR start and between groups with respect to nitrite levels in CSF, brain, heart and liver. In a second series (n = 25 including 5 shams), 19 out of 20 animals survived until day 8. However, NDS, FCT and brain histology did not show any statistically significant difference between groups. CONCLUSIONS Nitrite, administered early after ROSC from VF, was shown to cross the blood brain barrier after a 5 min VF cardiac arrest. We characterized the PK of intravenous nitrite administration after VF and were able to demonstrate nitrite safety in this feasibility study.
Collapse
Affiliation(s)
- Thomas Uray
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA; Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Philip E Empey
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Pharmacy and Therapeutics, University of Pittsburgh, PA, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Anesthesiology, University of Pittsburgh School of Medicine, PA, USA
| | - Jason P Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA
| | - Travis Jackson
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA
| | - Robert H Garman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francis Kim
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Lu L, Wang M, Wei X, Li W. 20-HETE Inhibition by HET0016 Decreases the Blood-Brain Barrier Permeability and Brain Edema After Traumatic Brain Injury. Front Aging Neurosci 2018; 10:207. [PMID: 30061822 PMCID: PMC6054934 DOI: 10.3389/fnagi.2018.00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Recent studies have implicated 20-HETE as a vasoconstrictive mediator in trauma, the purpose of this study was to determine whether administration of HET0016, the 20-HETE inhibitor, could protect neurons from trauma and the effect of HET0016 on the blood-brain barrier (BBB) and brain edema in experimental traumatic brain injury (TBI). Rat models with TBI were established. Brain edema was measured according to the wet and dry weight method at 3, 24, and 72 h after injury. The BBB permeability was quantified by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Superoxide production, the activity of superoxide dismutase (SOD) and total antioxidative capability (T-AOC) in traumatic brain tissues were also measured. Western blot analysis was used to analyze the expression of the occludin, ZO-1, Matrix metalloproteinase-9 (MMP-9), and c-Jun N-terminal protein kinase (JNK) pathways. At 24 and 72 h after administration of HET0016 following TBI, the BBB permeability and brain edema decreased. The decrease in superoxide production and the increase in the activity of SOD and T-AOC were measured in this study. Western blot analysis showed that the expression of MMP-9 and JNK pathways was suppressed, but the expression of ZO-1 and occludin was increased. These results suggest that the administration of HET0016 could protect the BBB function and decrease brain edema after experimental traumatic injury by suppressing the expression of MMP-9 and activating the expression of tight junction proteins via suppressing the JNK pathway and oxidative stress.
Collapse
Affiliation(s)
- Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingliang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaoer Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenbin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
5
|
Tisherman SA, Alam HB, Rhee PM, Scalea TM, Drabek T, Forsythe RM, Kochanek PM. Development of the emergency preservation and resuscitation for cardiac arrest from trauma clinical trial. J Trauma Acute Care Surg 2017; 83:803-809. [PMID: 28538639 DOI: 10.1097/ta.0000000000001585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patients who suffer a cardiac arrest from trauma rarely survive, even with aggressive resuscitation attempts, including an emergency department thoracotomy. Emergency Preservation and Resuscitation (EPR) was developed to utilize hypothermia to buy time to obtain hemostasis before irreversible organ damage occurs. Large animal studies have demonstrated that cooling to tympanic membrane temperature 10°C during exsanguination cardiac arrest can allow up to 2 hours of circulatory arrest and repair of simulated injuries with normal neurologic recovery. STUDY DESIGN The Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma trial has been developed to test the feasibility and safety of initiating EPR. Select surgeons will be trained in the EPR technique. If a trained surgeon is available, the subject will undergo EPR. If not, the subject will be followed as a control subject. For this feasibility study, 10 EPR and 10 control subjects will be enrolled. STUDY PARTICIPANTS Study participants will be those with penetrating trauma who remain pulseless despite an emergency department thoracotomy. INTERVENTIONS Emergency Preservation and Resuscitation will be initiated via an intra-aortic flush of a large volume of ice-cold saline solution. Following surgical hemostasis, delayed resuscitation will be accomplished with cardiopulmonary bypass. OUTCOME MEASURES The primary outcome will be survival to hospital discharge without significant neurologic deficits. Secondary outcomes include long-term survival and functional outcome. IMPLICATIONS Once data from these 20 subjects are reviewed, revisions to the inclusion criteria and/or the EPR technique may then be tested in a second set of EPR and control subjects.
Collapse
Affiliation(s)
- Samuel A Tisherman
- From the University of Maryland School of Medicine (S.A.T., T.M.S.), R Adams Cowley Shock Trauma Center, Baltimore, Maryland; Department of Surgery (H.B.A.), University of Michigan, Ann Arbor, Michigan; Department of Surgery (P.M.R.), Emory University, Atlanta, Georgia; Department of Anesthesiology (T.D.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery (R.M.F.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Critical Care Medicine (P.M.K.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
6
|
Moderate Hypothermia Provides Better Protection of the Intestinal Barrier than Deep Hypothermia during Circulatory Arrest in a Piglet Model: A Microdialysis Study. PLoS One 2016; 11:e0163684. [PMID: 27685257 PMCID: PMC5042434 DOI: 10.1371/journal.pone.0163684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/11/2016] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION This study aimed to assess the effects of different temperature settings of hypothermic circulatory arrest (HCA) on intestinal barrier function in a piglet model. METHODS Twenty Wuzhishan piglets were randomly assigned to 40 min of HCA at 18°C (DHCA group, n = 5), 40 min of HCA at 24°C (MHCA group, n = 5), normothermic cardiopulmonary bypass (CPB group, n = 5) or sham operation (SO group, n = 5). Serum D-lactate (SDL) and lipopolysaccharide (LPS) levels were determined. Microdialysis parameters (glucose, lactate, pyruvate and glycerol) in the intestinal dialysate were measured. After 180 min of reperfusion, intestinal samples were harvested for real-time polymerase chain reaction and western blotting measurements for E-cadherin and Claudin-1. RESULTS Higher levels of SDL and LPS were detected in the DHCA group than in the MHCA group (P < 0.001). Both MHCA and DHCA groups exhibited lower glucose levels, higher lactate and glycerol levels and a higher lactate to pyruvate (L/P) ratio compared with the CPB group (p<0.05); the DHCA group had higher lactate and glycerol levels and a higher L/P ratio (p<0.05) but similar glucose levels compared to the MHCA group. No significant differences in E-cadherin mRNA or protein levels were noted. Upregulation of claudin-1 mRNA levels was detected in both the DHCA and MHCA animals' intestines (P < 0.01), but only the DHCA group exhibited a decrease in claudin-1 protein expression (P < 0.01). CONCLUSION HCA altered the energy metabolism and expression of epithelial junctions in the intestine. Moderate hypothermia (24°C) was less detrimental to the markers of normal functioning of the intestinal barrier than deep hypothermia (18°C).
Collapse
|
7
|
Tress EE, Clark RSB, Foley LM, Alexander H, Hickey RW, Drabek T, Kochanek PM, Manole MD. Blood brain barrier is impermeable to solutes and permeable to water after experimental pediatric cardiac arrest. Neurosci Lett 2014; 578:17-21. [PMID: 24937271 PMCID: PMC4246011 DOI: 10.1016/j.neulet.2014.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/20/2014] [Accepted: 06/07/2014] [Indexed: 01/04/2023]
Abstract
Pediatric asphyxial cardiac arrest (CA) results in unfavorable neurological outcome in most survivors. Development of neuroprotective therapies is contingent upon understanding the permeability of intravenously delivered medications through the blood brain barrier (BBB). In a model of pediatric CA we sought to characterize BBB permeability to small and large molecular weight substances. Additionally, we measured the percent brain water after CA. Asphyxia of 9 min was induced in 16-18 day-old rats. The rats were resuscitated and the BBB permeability to small (sodium fluorescein and gadoteridol) and large (immunoglobulin G, IgG) molecules was assessed at 1, 4, and 24 h after asphyxial CA or sham surgery. Percent brain water was measured post-CA and in shams using wet-to-dry brain weight. Fluorescence, gadoteridol uptake, or IgG staining at 1, 4h and over the entire 24 h post-CA did not differ from shams, suggesting absence of BBB permeability to these solutes. Cerebral water content was increased at 3h post-CA vs. sham. In conclusion, after 9 min of asphyxial CA there is no BBB permeability over 24h to conventional small or large molecule tracers despite the fact that cerebral water content is increased early post-CA indicating the development of brain edema. Evaluation of novel therapies targeting neuronal death after pediatric CA should include their capacity to cross the BBB.
Collapse
Affiliation(s)
- Erika E Tress
- University of Pittsburgh, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Robert S B Clark
- University of Pittsburgh, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh, Critical Care Medicine, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA; University of Pittsburgh, Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | - Lesley M Foley
- Carnegie Mellon University, NMR Center for Biomedical Research, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | - Henry Alexander
- University of Pittsburgh, Critical Care Medicine, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA; University of Pittsburgh, Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | - Robert W Hickey
- University of Pittsburgh, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Tomas Drabek
- University of Pittsburgh, Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA; University of Pittsburgh Department of Anesthesiology, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | - Patrick M Kochanek
- University of Pittsburgh, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh, Critical Care Medicine, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA; University of Pittsburgh, Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | - Mioara D Manole
- University of Pittsburgh, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; University of Pittsburgh, Safar Center for Resuscitation Research, 3434 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
8
|
Drabek T, Janata A, Jackson EK, End B, Stezoski J, Vagni VA, Janesko-Feldman K, Wilson CD, van Rooijen N, Tisherman SA, Kochanek PM. Microglial depletion using intrahippocampal injection of liposome-encapsulated clodronate in prolonged hypothermic cardiac arrest in rats. Resuscitation 2012; 83:517-526. [PMID: 21970817 PMCID: PMC4034691 DOI: 10.1016/j.resuscitation.2011.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/01/2011] [Accepted: 09/12/2011] [Indexed: 12/29/2022]
Abstract
Trauma patients who suffer cardiac arrest (CA) from exsanguination rarely survive. Emergency preservation and resuscitation using hypothermia was developed to buy time for resuscitative surgery and delayed resuscitation with cardiopulmonary bypass (CPB), but intact survival is limited by neuronal death associated with microglial proliferation and activation. Pharmacological modulation of microglia may improve outcome following CA. Systemic injection of liposome-encapsulated clodronate (LEC) depletes macrophages. To test the hypothesis that intrahippocampal injection of LEC would attenuate local microglial proliferation after CA in rats, we administered LEC or PBS into the right or left hippocampus, respectively. After rapid exsanguination and 6min no-flow, hypothermia was induced by ice-cold (IC) or room-temperature (RT) flush. Total duration of CA was 20min. Pre-treatment (IC, RTpre) and post-treatment (RTpost) groups were studied, along with shams (cannulation only) and CPB controls. On day 7, shams and CPB groups showed neither neuronal death nor microglial activation. In contrast, the number of microglia in hippocampus in each individual group (IC, RTpre, RTpost) was decreased with LEC vs. PBS by ∼34-46% (P<0.05). Microglial proliferation was attenuated in the IC vs. RT groups (P<0.05). Neuronal death did not differ between hemispheres or IC vs. RT groups. Thus, intrahippocampal injection of LEC attenuated microglial proliferation by ∼40%, but did not alter neuronal death. This suggests that microglia may not play a pivotal role in mediating neuronal death in prolonged hypothermic CA. This novel strategy provides us with a tool to study the specific effects of microglia in hypothermic CA.
Collapse
Affiliation(s)
- Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wei XE, Zhang YZ, Li YH, Li MH, Li WB. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study. J Neurotrauma 2011; 29:2413-20. [PMID: 21675826 DOI: 10.1089/neu.2010.1510] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To understand the dynamics of brain edema in different areas after traumatic brain injury (TBI) in rabbit, we used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to monitor blood-brain barrier (BBB) permeability and cytotoxic brain edema after weight drop-induced TBI in rabbit. The dynamics of BBB permeability and brain edema were quantified using K(trans) and apparent diffusion coefficient (ADC) in the focal and perifocal lesion areas, as well as the area contralateral to the lesion. In the focal lesion area, K(trans) began to increase at 3 h post-TBI, peaked at 3 days, and decreased gradually while remaining higher than sham injury animals at 7 and 30 days. ADC was more variable, increased slightly at 3 h, decreased to its lowest value at 7 days, then increased to a peak at 30 days. In the perifocal lesion area, K(trans) began to increase at 1 day, peaked at 3-7 days, and returned to control level by 30 days. ADC showed a trend to increase at 1 day, followed by a continuous increase thereafter. In the contralateral area, no changes in K(trans) and ADC were observed at any time-point. These data demonstrate that different types of brain edema predominate in the focal and perifocal lesion areas. Specifically cytotoxic edema was predominant in the focal lesion area while vasogenic edema predominated in the perifocal area in acute phase. Furthermore, secondary opening of the BBB after TBI may appear if secondary injury is not controlled. BBB damage may be a driving force for cytotoxic brain edema and could be a new target for TBI intervention.
Collapse
Affiliation(s)
- Xiao-Er Wei
- Department of Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
10
|
Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology 2011; 36:1073-89. [PMID: 21289607 PMCID: PMC3077275 DOI: 10.1038/npp.2010.245] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Huperzine A (HupA) is a reversible and selective inhibitor of acetylcholinesterase (AChE), and it has multiple targets when used for Alzheimer's disease (AD) therapy. In this study, we searched for new mechanisms by which HupA could activate Wnt signaling and reduce amyloidosis in AD brain. A nasal gel containing HupA was prepared. No obvious toxicity of intranasal administration of HupA was found in mice. HupA was administered intranasally to β-amyloid (Aβ) precursor protein and presenilin-1 double-transgenic mice for 4 months. We observed an increase in ADAM10 and a decrease in BACE1 and APP695 protein levels and, subsequently, a reduction in Aβ levels and Aβ burden were present in HupA-treated mouse brain, suggesting that HupA enhances the nonamyloidogenic APP cleavage pathway. Importantly, our results further showed that HupA inhibited GSK3α/β activity, and enhanced the β-catenin level in the transgenic mouse brain and in SH-SY5Y cells overexpressing Swedish mutation APP, suggesting that the neuroprotective effect of HupA is not related simply to its AChE inhibition and antioxidation, but also involves other mechanisms, including targeting of the Wnt/β-catenin signaling pathway in AD brain.
Collapse
|
11
|
Experimental trauma models: an update. J Biomed Biotechnol 2011; 2011:797383. [PMID: 21331361 PMCID: PMC3035380 DOI: 10.1155/2011/797383] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/17/2010] [Indexed: 01/31/2023] Open
Abstract
Treatment of polytrauma patients remains a medical as well as socioeconomic challenge. Although diagnostics and therapy improved during the last decades, multiple injuries are still the major cause of fatalities in patients below 45 years of age. Organ dysfunction and organ failure are major complications in patients with major injuries and contribute to mortality during the clinical course. Profound understanding of the systemic pathophysiological response is crucial for innovative therapeutic approaches. Therefore, experimental studies in various animal models are necessary. This review is aimed at providing detailed information of common trauma models in small as well as in large animals.
Collapse
|
12
|
Drabek T, Tisherman SA, Garman RH, Kochanek PM. Reply to: Delta-opioid receptor ligands in shock treatment. Resuscitation 2009; 80:1331-1332. [DOI: 10.1016/j.resuscitation.2009.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|