1
|
Rahaman J, Mukherjee D. Insulin for oral bone tissue engineering: a review on innovations in targeted insulin-loaded nanocarrier scaffold. J Drug Target 2025; 33:648-665. [PMID: 39707830 DOI: 10.1080/1061186x.2024.2445737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of oral bone tissue degeneration and bone defects by osteoporosis, tooth extraction, obesity, trauma, and periodontitis are major challenges for clinicians. Traditional bone regeneration methods often come with limitations such as donor site morbidity, limitation of special shape, inflammation, and resorption of the implanted bone. The treatment oriented with biomimetic bone materials has achieved significant attention recently. In the oral bone tissue engineering arena, insulin has gained considerable attention among all the known biomaterials for osteogenesis and angiogenesis. It also exhibits osteogenic and angiogenic properties by interacting with insulin receptors on osteoblasts. Insulin influences bone remodelling both directly and indirectly. It acts directly through the PI3K/Akt and MAPK signalling pathways and indirectly by modulating the RANK/RANKL/OPG pathway, which helps reduce bone resorption. The current review reports the role of insulin in bone remodelling and bone tissue regeneration in the oral cavity in the form of scaffolds and nanomaterials. Different insulin delivery systems, utilising nanomaterials and scaffolds functionalised with polymeric biomaterials have been explored for oral bone tissue regeneration. The review put forward a theoretical basis for future research in insulin delivery in the form of scaffolds and composite materials for oral bone tissue regeneration.
Collapse
Affiliation(s)
- Jiyaur Rahaman
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, India
| |
Collapse
|
2
|
Doymuş B, Peközer GG, Önder S. Enhancing Bioactivity of Titanium-Based Materials Through Chitosan Based Coating and Calcitriol Functionalization. Ann Biomed Eng 2025; 53:980-993. [PMID: 39871063 DOI: 10.1007/s10439-025-03684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes. VD was then loaded onto the coated surfaces, and the release profile of VD was monitored. Human fetal osteoblastic cells (hFOB) were cultured on the VD-loaded Ti surfaces. Cellular activities such as proliferation, Alkaline phosphatase (ALP) activity, osteogenic gene expression (runt-related transcription factor 2 (Runx2), collagen type 1 (Col I), osteocalcin ( OCn), osteopontin (OP)), and mineralization were assessed. Von Kossa staining was performed to analyze mineralization, and the expression of cell adhesion proteins (N-cadherin (NC), integrin alpha V (IaV), integrin beta 3, (Ib3)) was measured. The results showed that approximately 50% of the VD released over 50 hours. The chitosan coating increased surface roughness three-fold, and this, combined with VD release, resulted in reduced cell proliferation but increased ALP activity, suggesting enhanced differentiation. VD-functionalized Ti surfaces showed statistically significant differences in osteogenic gene expressions, particularly on rougher surfaces. Additionally, the expression of cell adhesion proteins (NC, IaV, Ib3) was upregulated on VD-containing coated surfaces. Von Kossa analysis revealed that surface roughness significantly enhanced mineralization, particularly on VD-free surfaces by day 7, while mineralization on VD-containing bare surfaces started on day 14. These findings demonstrate that VD-loaded chitosan coatings significantly enhance the biocompatibility and bioactivity of Ti-based materials, highlighting their potential for applications in bone regeneration.
Collapse
Affiliation(s)
- Burcu Doymuş
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Türkiye
| | - Görke Gürel Peközer
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye
| | - Sakip Önder
- Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
| |
Collapse
|
3
|
Zhang Z, Ye M, Ge Y, Elsehrawy MG, Pan X, Abdullah N, Elattar S, Massoud EES, Lin S. Eco-friendly nanotechnology in rheumatoid arthritis: ANFIS-XGBoost enhanced layered nanomaterials. ENVIRONMENTAL RESEARCH 2024; 262:119832. [PMID: 39181296 DOI: 10.1016/j.envres.2024.119832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by inflammation and pain in the joints, which can lead to joint damage and disability over time. Nanotechnology in RA treatment involves using nano-scale materials to improve drug delivery efficiency, specifically targeting inflamed tissues and minimizing side effects. The study aims to develop and optimize a new class of eco-friendly and highly effective layered nanomaterials for targeted drug delivery in the treatment of RA. The study's primary objective is to develop and optimize a new class of layered nanomaterials that are both eco-friendly and highly effective in the targeted delivery of medications for treating RA. Also, by employing a combination of Adaptive Neuron-Fuzzy Inference System (ANFIS) and Extreme Gradient Boosting (XGBoost) machine learning models, the study aims to precisely control nanomaterials synthesis, structural characteristics, and release mechanisms, ensuring delivery of anti-inflammatory drugs directly to the affected joints with minimal side effects. The in vitro evaluations demonstrated a sustained and controlled drug release, with an Encapsulation Efficiency (EE) of 85% and a Loading Capacity (LC) of 10%. In vivo studies in a murine arthritis model showed a 60% reduction in inflammation markers and a 50% improvement in mobility, with no significant toxicity observed in major organs. The machine learning models exhibited high predictive accuracy with a Root Mean Square Error (RMSE) of 0.667, a correlation coefficient (r) of 0.867, and an R2 value of 0.934. The nanomaterials also demonstrated a specificity rate of 87.443%, effectively targeting inflamed tissues with minimal off-target effects. These findings highlight the potential of this novel approach to significantly enhance RA treatment by improving drug delivery precision and minimizing systemic side effects.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China
| | - Mingtao Ye
- Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China; Shangyu Institute of Science and Engineering Co.Ltd., Hangzhou Dianzi University, Shaoxing, 312300, China
| | - Yisu Ge
- College of Computer Science and Artificial Intelligence, Wenzhou University, 325035, China
| | - Mohamed Gamal Elsehrawy
- Nursing Administration and Education Department, College of Nursing, Prince Sattam Bin Abdulaziz University, Saudi Arabia; Nursing Administration Department, Faculty of Nursing, Port-Said University, Egypt.
| | - Xiaotian Pan
- Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China; Shangyu Institute of Science and Engineering Co.Ltd., Hangzhou Dianzi University, Shaoxing, 312300, China.
| | - Nermeen Abdullah
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samia Elattar
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha, Saudi Arabia
| | - Suxian Lin
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Sung ZY, Liao YQ, Hou JH, Lai HH, Weng SM, Jao HW, Lu BJ, Chen CH. Advancements in fertility preservation strategies for pediatric male cancer patients: a review of cryopreservation and transplantation of immature testicular tissue. Reprod Biol Endocrinol 2024; 22:47. [PMID: 38637872 PMCID: PMC11025181 DOI: 10.1186/s12958-024-01219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/06/2024] [Indexed: 04/20/2024] Open
Abstract
Recently, there has been increasing emphasis on the gonadotoxic effects of cancer therapy in prepubertal boys. As advances in oncology treatments continue to enhance survival rates for prepubertal boys, the need for preserving their functional testicular tissue for future reproduction becomes increasingly vital. Therefore, we explore cutting-edge strategies in fertility preservation, focusing on the cryopreservation and transplantation of immature testicular tissue as a promising avenue. The evolution of cryopreservation techniques, from controlled slow freezing to more recent advancements in vitrification, with an assessment of their strengths and limitations was exhibited. Detailed analysis of cryoprotectants, exposure times, and protocols underscores their impact on immature testicular tissue viability. In transplantation strategy, studies have revealed that the scrotal site may be the preferred location for immature testicular tissue grafting in both autotransplantation and xenotransplantation scenarios. Moreover, the use of biomaterial scaffolds during graft transplantation has shown promise in enhancing graft survival and stimulating spermatogenesis in immature testicular tissue over time. This comprehensive review provides a holistic approach to optimize the preservation strategy of human immature testicular tissue in the future.
Collapse
Affiliation(s)
- Zih-Yi Sung
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Yong-Qi Liao
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Jung-Hsiu Hou
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Hong-Hsien Lai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Sung-Ming Weng
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hai-Wei Jao
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Buo-Jia Lu
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Chi-Huang Chen
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC.
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
Domingues JM, Miranda CS, Homem NC, Felgueiras HP, Antunes JC. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023; 11:1862. [PMID: 37509502 PMCID: PMC10377033 DOI: 10.3390/biomedicines11071862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
Collapse
Affiliation(s)
- Joana M Domingues
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues 165, 3720-193 Oliveira de Azeméis, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
6
|
Wlodarczyk J, Musial-Kulik M, Jelonek K, Stojko M, Karpeta-Jarzabek P, Pastusiak M, Janeczek H, Dobrzynski P, Sobota M, Kasperczyk J. Dual-jet electrospun PDLGA/PCU nonwovens as promising mesh implant materials with controlled release of sirolimus and diclofenac. Int J Pharm 2022; 625:122113. [PMID: 35973592 DOI: 10.1016/j.ijpharm.2022.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Dual-jet electrospinning was employed to produce two-component, partially degradable drug releasing nonwovens with interlacing of poly(D,L-lactide-co-glycolide) (PDLGA) and different poly(carbonate urethanes) (PCUs). Diclofenac sodium and sirolimus were released simultaneously from the copolyester carrier. The research focused on determining of release profiles of drugs, depending on the hydrophilicity of introduced PCU nanofibers. The influence of drugs incorporation on the hydrolytic degradation of the PDLGA and mechanical properties of nonwovens was also studied. Evaluation for interaction with cells in vitro was investigated on a fibroblast cell line in cytotoxicity and surface adhesion tests. Significant changes in drugs release rate, depending on the applied PCU were observed. It was also noticed, that hydrophilicity of drugs significantly influenced the hydrolytic degradation mechanism and surface erosion of the PDLGA, as well as the tensile strength of nonwovens. Tests carried out on cells in an in vitro experiment showed that introduction of sirolimus caused a slight reduction in the viability of fibroblasts as well as a strong limitation in their capability to colonize the surface of fibers. Due to improvement of mechanical strength and the ability to controlled drugs release, the obtained material may be considered as prospect surgical mesh implant in the treatment of hernia.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Monika Musial-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Mateusz Stojko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200 Sosnowiec, Poland
| | - Paulina Karpeta-Jarzabek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Malgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Piotr Dobrzynski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland
| | - Michal Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland.
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowskiej St., 41-819 Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Advances in nanoenabled 3D matrices for cartilage repair. Acta Biomater 2022; 150:1-21. [PMID: 35902038 DOI: 10.1016/j.actbio.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Cartilage repair strategies are evolving at a fast pace with technology development. Matrices that offer multifaceted functions and a full adaption to the cartilage defect are of pivotal interest. Current cartilage repair strategies face numerous challenges, mostly related to the development of highly biomimetic materials, non-invasive injectable solutions, and adequate degradation rates. These strategies often fail due to feeble mechanical properties, the inability to sustain cell adhesion, growth, and differentiation or by underestimating other players of cartilage degeneration, such as the installed pro-inflammatory microenvironment. The integration of nanomaterials (NMs) into 3D scaffolds, hydrogels and bioinks hold great potential in the improvement of key features of materials that are currently applied in cartilage tissue engineering strategies. NMs offer a high surface to volume ratio and their multiple applications can be explored to enhance cartilage mechanical properties, biocompatibility, cell differentiation, inflammation modulation, infection prevention and even to function as diagnostic tools or as stimuli-responsive cues in these 3D structures. In this review, we have critically reviewed the latest advances in the development of nanoenabled 3D matrices - enhanced by means of NMs - in the context of cartilage regeneration. We have provided a wide perspective of the synergistic effect of combining 3D strategies with NMs, with emphasis on the benefits brought by NMs in achieving functional and enhanced therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Cartilage is one of the most challenging tissues to treat owing to its limited self-regeneration potential. Novel strategies using nanoenabled 3D matrices have emerged from the need to design more efficient solutions for cartilage repair, that take into consideration its unique mechanical properties and can direct specific cell behaviours. Here we aim to provide a comprehensive review on the synergistic effects of 3D matrices nanoenrichment in the context of cartilage regeneration, with emphasis on the heightening brought by nanomaterials in achieving functional and enhanced therapeutic outcomes. We anticipate this review to provide a wide perspective on the past years' research on the field, demonstrating the great potential of these approaches in the treatment and diagnosis of cartilage-related disorders.
Collapse
|
8
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
9
|
Colapicchioni V, Millozzi F, Parolini O, Palacios D. Nanomedicine, a valuable tool for skeletal muscle disorders: Challenges, promises, and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1777. [PMID: 35092179 PMCID: PMC9285803 DOI: 10.1002/wnan.1777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Muscular dystrophies are a group of rare genetic disorders characterized by progressive muscle weakness, which, in the most severe forms, leads to the patient's death due to cardiorespiratory problems. There is still no cure available for these diseases and significant effort is being placed into developing new strategies to either correct the genetic defect or to compensate muscle loss by stimulating skeletal muscle regeneration. However, the vast anatomical extension of the target tissue poses great challenges to these goals, highlighting the need for complementary strategies. Nanomedicine is an actively evolving field that merges nanotechnologies with biomedical and pharmaceutical sciences. It holds great potential in regenerative medicine, both in supporting tissue engineering and regeneration, and in optimizing drug and oligonucleotide delivery and gene therapy strategies. In this review, we will summarize the state‐of‐the‐art in the field of nanomedicine applied to skeletal muscle regeneration. We will discuss the recent work toward the development of nanopatterned scaffolds for tissue engineering, the efforts in the synthesis of organic and inorganic nanoparticles for gene therapy and drug delivery applications, as well as their use as immune modulators. Although nanomedicine holds great promise for muscle and other degenerative diseases, many challenges still need to be systematically addressed to assure a smooth transition from the bench to the bedside. This article is categorized under:Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement
Collapse
Affiliation(s)
- Valentina Colapicchioni
- Italian National Research Council, Institute for Atmospheric Pollution Research (CNR-IIA), Rome, Italy.,Mhetra LLC, Miami, Florida, USA
| | - Francesco Millozzi
- Histology and Embryology Unit, DAHFMO, Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
10
|
Li Y, Tu Q, Xie D, Chen S, Gao K, Xu X, Zhang Z, Mei X. Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90 + MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis. J Nanobiotechnology 2022; 20:150. [PMID: 35305656 PMCID: PMC8934450 DOI: 10.1186/s12951-022-01367-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/10/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a highly prevalent human degenerative joint disorder that has long plagued patients. Glucocorticoid injection into the intra-articular (IA) cavity provides potential short-term analgesia and anti-inflammatory effects, but long-term IA injections cause loss of cartilage. Synovial mesenchymal stem cells (MSCs) reportedly promote cartilage proliferation and increase cartilage content. METHODS CD90+ MCS-derived micro-vesicle (CD90@MV)-coated nanoparticle (CD90@NP) was developed. CD90+ MCSs were extracted from human synovial tissue. Cytochalasin B (CB) relaxed the interaction between the cytoskeleton and the cell membranes of the CD90+ MCSs, stimulating CD90@MV secretion. Poly (lactic-co-glycolic acid) (PLGA) nanoparticle was coated with CD90@MV, and a model glucocorticoid, triamcinolone acetonide (TA), was encapsulated in the CD90@NP (T-CD90@NP). The chondroprotective effect of T-CD90@NP was validated in rabbit and rat OA models. RESULTS The CD90@MV membrane proteins were similar to that of CD90+ MCSs, indicating that CD90@MV bio-activity was similar to the cartilage proliferation-inducing CD90+ MCSs. CD90@NP binding to injured primary cartilage cells was significantly stronger than to erythrocyte membrane-coated nanoparticles (RNP). In the rabbit OA model, the long-term IA treatment with T-CD90@NP showed significantly enhanced repair of damaged cartilage compared to TA and CD90+ MCS treatments. In the rat OA model, the short-term IA treatment with T-CD90@NP showed effective anti-inflammatory ability similar to that of TA treatment. Moreover, the long-term IA treatment with T-CD90@NP induced cartilage to restart the cell cycle and reduced cartilage apoptosis. T-CD90@NP promoted the regeneration of chondrocytes, reduced apoptosis via the FOXO pathway, and influenced type 2 macrophage polarization to regulate inflammation through IL-10. CONCLUSION This study confirmed that T-CD90@NP promoted chondrocyte proliferation and anti-inflammation, improving the effects of a clinical glucocorticoid treatment plan.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qingqiang Tu
- Department of Orthopedics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongmei Xie
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shurui Chen
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kai Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaochun Xu
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziji Zhang
- Department of Orthopedics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
11
|
Abstract
Bone injuries and fractures are often associated with post-surgical failures, extended healing times, infection, a lack of return to a normal active lifestyle, and corrosion associated allergies. In this regard, this review presents a comprehensive report on advances in nanotechnology driven solutions for bone tissue engineering. The fabrication of metals such as copper, gold, platinum, palladium, silver, strontium, titanium, zinc oxide, and magnetic nanoparticles with tunable physico-chemical and opto-electronic properties for osteogenic scaffolds is discussed here in detail. Furthermore, the rational selection of a polymeric base such as chitosan, collagen, poly (L-lactide), hydroxyl-propyl-methyl cellulose, poly-lactic-co-glycolic acid, polyglucose-sorbitol-carboxymethy ether, polycaprolactone, natural rubber latex, and silk fibroin for scaffold preparation is also discussed. These advanced materials and fabrication strategies not only provide for appropriate mechanical strength but also render integrity, making them appealing for orthopedic applications. Further, such scaffolds can be functionalized with ligands or biomolecules such as hydroxyapatite, polypyrrole (PPy), magnesium, zinc dopants, and growth factors to stimulate osteogenic differentiation, mineralization, and neovascularization to aid in rapid healing. Future directions to co-incorporate bioceramics, biogenic nanoparticles, and fourth generation biomaterials to enhance biocompatibility, mechanical properties, and rapid recovery are also included in this review. Hence, the further development of such biomimetic metal-based nano-scaffolds at a lower cost with reduced risks and greater efficacy at regrowing bone can revolutionize the future of orthopedics.
Collapse
|
12
|
Biomimetic and cell-based nanocarriers - New strategies for brain tumor targeting. J Control Release 2021; 337:482-493. [PMID: 34352316 DOI: 10.1016/j.jconrel.2021.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022]
Abstract
In the last two decades no significant advances were achieved in the treatment of the most frequent and malignant types of brain tumors. The main difficulties in achieving progress are related to the incapacity to deliver drugs in therapeutic amounts into the central nervous system and the associated severe side effects. Indeed, to obtain effective treatments, the drugs should be able to cross the intended biological barriers and not being inactivated before reaching the specific therapeutic target. To overcome these challenges the development of synthetic nanocarriers has been widely explored for brain tumor treatment but unfortunately with no clinical translation until date. The use of cell-derived nanocarriers or biomimetic nanocarriers has been studied in the last few years, considering their innate bio-interfacing properties. The ability to carry therapeutic agents and a higher selectivity towards brain tumors would bring new hope for the development of safe and effective treatments. In this review, we explore the biological barriers that need to be crossed for effective delivery in brain tumors, and the types and properties of cell-based nanocarriers (extracellular vesicles and cell-membrane coated nanocarriers) currently under investigation.
Collapse
|
13
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJ. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Chernozem RV, Surmeneva MA, Abalymov AA, Parakhonskiy BV, Rigole P, Coenye T, Surmenev RA, Skirtach AG. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111909. [PMID: 33641905 DOI: 10.1016/j.msec.2021.111909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anatolii A Abalymov
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; Department of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | | | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
16
|
Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater 2020; 109:160-179. [PMID: 32776481 DOI: 10.1002/jbm.b.34688] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone-related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.
Collapse
Affiliation(s)
- Niyou Wang
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, 4 Medical Drive, National University of Singapore, Singapore, Singapore
| | - A Senthil Kumar
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Jiang CC, Hsieh CH, Liao CJ, Chang WH, Liao WJ, Tsai-Wu JJ, Chiang H. Collagenase treatment of cartilaginous matrix promotes fusion of adjacent cartilage. Regen Ther 2020; 15:97-102. [PMID: 33426207 PMCID: PMC7770344 DOI: 10.1016/j.reth.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 11/15/2022] Open
Abstract
In articular cartilage-repair, grafts usually fuse unsatisfactorily with surrounding host cartilage. Enzymatic dissociation of cartilaginous matrix to free chondrocytes may benefit fusion. We tested such a hypothesis with human cartilage in vitro, and with porcine cartilage in vivo. Human articular cartilage was collected from knee surgeries, cut into disc-and-ring sets, and randomly distributed into three groups: disc-and-ring sets in Group 1 were left untreated; in Group 2 only discs, and in Group 3 both discs and rings were treated with enzyme. Each disc-and-ring reassembly was cultured in a perfusion system for 14 days; expression of cartilage marker proteins and genes was evaluated by immunohistochemistry and PCR. Porcine articular cartilage from knees was similarly fashioned into disc-and-ring combinations. Specimens were randomly distributed into a control group without further treatment, and an experimental group with both disc and ring treated with enzyme. Each disc-and-ring reassembly was transplanted into subcutaneous space of a nude mouse for 30 days, and retrieved to examine disc-ring interface. In in vitro study with human cartilage, a visible gap remained at disc-ring interfaces in Group 1, yet became indiscernible in Group 2 and 3. Marker genes, including type II collagen, aggrecan and Sox 9, were well expressed by chondrocytes in all specimens, indicating that chondrocytes’ phenotype retained regardless of enzymatic treatment. Similar results were found inin vivo study with porcine cartilage. Enzymatic dissociation of cartilaginous matrix promotes fusion of adjacent cartilage. The clinical relevance may be a novel method to facilitate integration of repaired cartilage in joints. Cartilage repair-patches fuse poorly to surrounding host cartilage. Collagenase treatment of adjacent cartilaginous tissues facilitates their fusion. Collagenase treatment of cartilage promotes chondrocyte proliferation and presentation. Collagenase treatment does not affect phenotypes of chondrocytes.
Collapse
Key Words
- Cartilage fusion
- Cartilage repair
- Cartilaginous matrix
- DMMB, 1,9-dimethyl methylene blue
- DNA, deoxyribonucleic acid
- Enzymatic treatment
- GAG, glycosaminoglycan
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- H&E, hematoxylin and eosin
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- RNA, ribonucleic acid
- Sox 9, SRY-box transcription factor 9
- cDNA, complementary deoxyribonucleic acid
Collapse
Affiliation(s)
- Ching-Chuan Jiang
- Department of Orthopaedic Surgery, Fu Jen Catholic University Hospital, Taipei, Taiwan
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | - Wei-Ju Liao
- Taiwan Biomaterial Co., Ltd., Taipei, Taiwan
| | - Jyy-Jih Tsai-Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hongsen Chiang
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Corresponding author. National Taiwan University Hospital, 7 Chungsan South Road, Taipei, 10002, Taiwan.
| |
Collapse
|
18
|
Martins A, Reis RL, Neves NM. Biofunctional nanostructured systems for regenerative medicine. Nanomedicine (Lond) 2020; 15:1545-1549. [PMID: 32576102 DOI: 10.2217/nnm-2020-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Headquarters at University of Minho, Avepark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative & Precision Medicine, Headquarters at University of Minho, Avepark - Parque de Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
19
|
Li T, Huang L, Yang M. Lipid-based Vehicles for siRNA Delivery in Biomedical Field. Curr Pharm Biotechnol 2020; 21:3-22. [PMID: 31549951 DOI: 10.2174/1389201020666190924164152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic drugs have aroused much attention in the past twenty years. RNA interference (RNAi) offers novel insights into discovering potential gene functions and therapies targeting genetic diseases. Small interference RNA (siRNA), typically 21-23 nucleotides in length, can specifically degrade complementary mRNA. However, targeted delivery and controlled release of siRNA remain a great challenge. METHODS Different types of lipid-based delivery vehicles have been synthesized, such as liposomes, lipidoids, micelles, lipoplexes and lipid nanoparticles. These carriers commonly have a core-shell structure. For active targeting, ligands may be conjugated to the surface of lipid particles. RESULTS Lipid-based drug delivery vehicles can be utilized in anti-viral or anti-tumor therapies. They can also be used to tackle genetic diseases or discover novel druggable genes. CONCLUSION In this review, the structures of lipid-based vehicles and possible surface modifications are described, and applications of delivery vehicles in biomedical field are discussed.
Collapse
Affiliation(s)
- Tianzhong Li
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Linfeng Huang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
20
|
Osseointegrated membranes based on electro-spun TiO 2/hydroxyapatite/polyurethane for oral maxillofacial surgery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110479. [PMID: 31923963 DOI: 10.1016/j.msec.2019.110479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
Membranes which have an osseointegration abilty are often selected as biomaterials in oral and maxillofacial surgery. Although these membranes are often the best option for certain uses, it is a challenge to create functionally attractive membranes. In this research, electro-spun titanium oxide (TiO2)/hydroxyapatite (HA)/polyurethane (PU) membranes were fabricated with different ratios of HA and TiO2: 100: 0, 70:30, 50:50, 30:70 and 0:100 w/w. The morphologies of the different mixtures were assessed with a Scanning Electron Microscope (SEM) and Field Emission Microscope (FESEM). Element analysis was performed with EDX. The physical properties of the water contact angles and mechanical strength were tested and the membranes cultured with osteoblasts to evaluate their biological functions, cell adhesion, viability, proliferation, alkaline phosphatase (ALP) activity, and calcium content. The results showed that the membranes with TiO2 and HA had smaller fibers than those without TiO2 and HA. The TiO2- and HA-including compounds showed the formation of particle aggregation on the surface of the fibers. They also had higher water contact angles, mechanical strength, and stiffness than those without TiO2 and HA, and they had better cell adhesion, viability, proliferation, ALP activity and calcium content. The membrane with a 50:50 TiO2:HA ratio had more unique biological functions than the others. Finally, our research demonstrated that osseointegrated membranes with 50:50 TiO2:HA are promising for oral and maxillofacial surgery.
Collapse
|
21
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
22
|
Yasmin F, Chen X, Eames BF. Effect of Process Parameters on the Initial Burst Release of Protein-Loaded Alginate Nanospheres. J Funct Biomater 2019; 10:E42. [PMID: 31527490 PMCID: PMC6787618 DOI: 10.3390/jfb10030042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
The controlled release or delivery of proteins encapsulated in micro/nanospheres is an emerging strategy in regenerative medicine. For this, micro/nanospheres made from alginate have drawn considerable attention for the use as a protein delivery device because of their mild fabrication process, inert nature, non-toxicity and biocompatibility. Though promising, one key issue associated with using alginate micro/nanospheres is the burst release of encapsulated protein at the beginning of the release, which may be responsible for exerting toxic side effects and poor efficiency of the delivery device. To address this issue, this study aimed to investigate the effect of process parameters of fabricating protein-loaded alginate nanospheres on the initial burst release. The alginate nanospheres were prepared via a combination of water-in-oil emulsification and the external gelation method and loaded with bovine serum albumin (BSA) as a model protein. The examined process parameters included alginate concentration, ionic cross-linking time and drying time. Once fabricated, the nanospheres were then subjected to the examination of BSA release, as well as the characterization of their morphology, size, and encapsulation efficiency. Our results revealed that by properly adjusting the process parameters, the initial burst release can be reduced by 13%. Taken together, our study demonstrates that regulating process parameters of fabricating alginate nanospheres is a possible means to reduce the initial burst release.
Collapse
Affiliation(s)
- Farhana Yasmin
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada.
| |
Collapse
|
23
|
García-Couce J, Almirall A, Fuentes G, Kaijzel E, Chan A, Cruz LJ. Targeting Polymeric Nanobiomaterials as a Platform for Cartilage Tissue Engineering. Curr Pharm Des 2019; 25:1915-1932. [DOI: 10.2174/1381612825666190708184745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited. Tissue engineering and the science of nanobiomaterials are two lines of research that together can contribute to the restoration of damaged tissue. The science of nanobiomaterials focuses on the development of different nanoscale structures that can be used as carriers of drugs / cells to treat and repair damaged tissues such as articular cartilage. This review article is an overview of the composition of articular cartilage, the causes and treatments of osteoarthritis, with a special emphasis on nanomaterials as carriers of drugs and cells, which reduce inflammation, promote the activation of biochemical factors and ultimately contribute to the total restoration of articular cartilage.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Amisel Almirall
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Eric Kaijzel
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) group, Radiology department, Leiden University Medical Centrum, Leiden, Netherlands
| |
Collapse
|
24
|
Kader S, Monavarian M, Barati D, Moeinzadeh S, Makris TM, Jabbari E. Plasmin-Cleavable Nanoparticles for On-Demand Release of Morphogens in Vascularized Osteogenesis. Biomacromolecules 2019; 20:2973-2988. [DOI: 10.1021/acs.biomac.9b00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Safaa Kader
- Department of Pathology, University of Al-Nahrain, Baghdad 10006, Iraq
| | | | | | | | | | | |
Collapse
|
25
|
Seciu AM, Craciunescu O, Stanciuc AM, Zarnescu O. Tailored Biomaterials for Therapeutic Strategies Applied in Periodontal Tissue Engineering. Stem Cells Dev 2019; 28:963-973. [PMID: 31020906 DOI: 10.1089/scd.2019.0016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several therapeutic strategies are currently in development for severe periodontitis and other associated chronic inflammatory diseases. Guided tissue regeneration of the periodontium is based on surgical implantation of natural or synthetic polymers conditioned as membranes, injectable biomaterials (hydrogels), or three-dimensional (3D) matrices. Combinations of biomaterials with bioactive factors represent the next generation of regenerative strategy. Cell delivery strategy based on scaffold-cell constructs showed potential in periodontitis treatment. Bioengineering of periodontal tissues using cell sheets and genetically modified stem cells is currently proposed to complete existing (pre)clinical procedures for periodontal regeneration. 3D structures can be built using computer-assisted manufacturing technologies to improve the implant architecture effect on new tissue formation. The aim of this review was to summarize the advantages and drawbacks of biomimetic composite matrices used as biomaterials for periodontal tissue engineering. Their conditioning as two-dimensional or 3D scaffolds using conventional or emerging technologies was also discussed. Further biotechnologies are required for developing novel products tailored to stimulate periodontal regeneration. Additional preclinical studies will be useful to closely investigate the mechanisms and identify specific markers involved in cell-implant interactions, envisaging further clinical tests. Future therapeutic protocols will be developed based on these novel procedures and techniques.
Collapse
Affiliation(s)
- Ana-Maria Seciu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Oana Craciunescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Ana-Maria Stanciuc
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,2Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, Bucharest, Romania
| | - Otilia Zarnescu
- 1Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
26
|
2D correlation Raman spectroscopy of model micro- and nano-carbon layers in interactions with albumin, human and animal. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Nanoparticles Based Drug Delivery for Tissue Regeneration Using Biodegradable Scaffolds: a Review. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0184-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Timin AS, Muslimov AR, Zyuzin MV, Peltek OO, Karpov TE, Sergeev IS, Dotsenko AI, Goncharenko AA, Yolshin ND, Sinelnik A, Krause B, Baumbach T, Surmeneva MA, Chernozem RV, Sukhorukov GB, Surmenev RA. Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34849-34868. [PMID: 30230807 DOI: 10.1021/acsami.8b09810] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The incorporation of bioactive compounds onto polymer fibrous scaffolds with further control of drug release kinetics is essential to improve the functionality of scaffolds for personalized drug therapy and regenerative medicine. In this study, polymer and hybrid microcapsules were prepared and used as drug carriers, which are further deposited onto polymer microfiber scaffolds [polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and PHB doping with the conductive polyaniline (PANi) of 2 wt % (PHB-PANi)]. The number of immobilized microcapsules decreased with increase in their ζ-potential due to electrostatic repulsion with the negatively charged fiber surface, depending on the polymer used for the scaffold's fabrication. Additionally, the immobilization of the capsules in dynamic mechanical conditions at a frequency of 10 Hz resulted in an increase in the number of the capsules on the fibers with increase in the scaffold piezoelectric response in the order PCL < PHB < PHB-PANi, depending on the chemical composition of the capsules. The immobilization of microcapsules loaded with different bioactive molecules onto the scaffold surface enabled multimodal triggering by physical (ultrasound, laser radiation) and biological (enzymatic treatment) stimuli, providing controllable release of the cargo from scaffolds. Importantly, the microcapsules immobilized onto the surface of the scaffolds did not influence the cell growth, viability, and cell proliferation on the scaffolds. Moreover, the attachment of human mesenchymal stem cells (hMSCs) on the scaffolds revealed that the PHB and PHB-PANi scaffolds promoted adhesion of hMSCs compared to that of the PCL scaffolds. Two bioactive compounds, antibiotic ceftriaxone sodium (CS) and osteogenic factor dexamethasone (DEXA), were chosen to load the microcapsules and demonstrate the antimicrobial properties and osteogenesis of the scaffolds. The modified scaffolds had prolonged release of CS or DEXA, which provided an improved antimicrobial effect, as well as enhanced osteogenic differentiation and mineralization of the scaffolds modified with capsules compared to that of individual scaffolds soaked in CS solution or incubated in an osteogenic medium. Thus, the immobilization of microcapsules provides a simple, convenient way to incorporate bioactive compounds onto polymer scaffolds, which makes these multimodal materials suitable for personalized drug therapy and bone tissue engineering.
Collapse
Affiliation(s)
- Alexander S Timin
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
- Physical Materials Science and Composite Materials Centre , National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
| | - Albert R Muslimov
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russian Federation
- Smorodintsev Influenza Research Institute , Ministry of Healthcare of the Russian Federation , Prof. Popova Street, 15/17 , 197376 St. Petersburg , Russian Federation
| | | | - Oleksii O Peltek
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russian Federation
| | - Timofey E Karpov
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russian Federation
| | - Igor S Sergeev
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russian Federation
| | - Anna I Dotsenko
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
| | - Alexander A Goncharenko
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russian Federation
| | - Nikita D Yolshin
- Smorodintsev Influenza Research Institute , Ministry of Healthcare of the Russian Federation , Prof. Popova Street, 15/17 , 197376 St. Petersburg , Russian Federation
| | | | - Bärbel Krause
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , 76344 Eggenstein-Leopoldshafen , Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation , Karlsruhe Institute of Technology , 76344 Eggenstein-Leopoldshafen , Germany
- Laboratory for Applications of Synchrotron Radiation (LAS) , Karlsruhe Institute of Technology (KIT) , 76049 Karlsruhe , Germany
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre , National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
| | - Roman V Chernozem
- Physical Materials Science and Composite Materials Centre , National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
| | - Gleb B Sukhorukov
- Physical Materials Science and Composite Materials Centre , National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- Peter the Great St. Petersburg Polytechnic University , Polytechnicheskaya, 29 , 195251 St. Petersburg , Russian Federation
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , London E1 4NS , United Kingdom
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre , National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
| |
Collapse
|
29
|
Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem 2018; 23:1185-1204. [PMID: 30097748 DOI: 10.1007/s00775-018-1600-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.
Collapse
Affiliation(s)
| | - Mallappa Kumara Swamy
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
30
|
Moaddab M, Nourmohammadi J, Rezayan AH. Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700513. [PMID: 29721408 PMCID: PMC5908359 DOI: 10.1002/advs.201700513] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide-based drug delivery systems.
Collapse
Affiliation(s)
- Tianxin Miao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Collaborative Innovation Center of Guangxi Biological Medicine and theMedical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| | - Yun Zeng
- Department of PharmacologyXiamen Medical CollegeXiamen361008China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
32
|
Nanoparticles-Based Systems for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:209-217. [DOI: 10.1007/978-3-319-76735-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Borzenkov M, Chirico G, Collini M, Pallavicini P. Gold Nanoparticles for Tissue Engineering. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Wang L, Jang G, Ban DK, Sant V, Seth J, Kazmi S, Patel N, Yang Q, Lee J, Janetanakit W, Wang S, Head BP, Glinsky G, Lal R. Multifunctional stimuli responsive polymer-gated iron and gold-embedded silica nano golf balls: Nanoshuttles for targeted on-demand theranostics. Bone Res 2017; 5:17051. [PMID: 29285401 PMCID: PMC5737138 DOI: 10.1038/boneres.2017.51] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 11/13/2022] Open
Abstract
Multi-functional nanoshuttles for remotely targeted and on-demand delivery of therapeutic molecules and imaging to defined tissues and organs hold great potentials in personalized medicine, including precise early diagnosis, efficient prevention and therapy without toxicity. Yet, in spite of 25 years of research, there are still no such shuttles available. To this end, we have designed magnetic and gold nanoparticles (NP)-embedded silica nanoshuttles (MGNSs) with nanopores on their surface. Fluorescently labeled Doxorubicin (DOX), a cancer drug, was loaded in the MGNSs as a payload. DOX loaded MGNSs were encapsulated in heat and pH sensitive polymer P(NIPAM-co-MAA) to enable controlled release of the payload. Magnetically-guided transport of MGNSs was examined in: (a) a glass capillary tube to simulate their delivery via blood vessels; and (b) porous hydrogels to simulate their transport in composite human tissues, including bone, cartilage, tendon, muscles and blood-brain barrier (BBB). The viscoelastic properties of hydrogels were examined by atomic force microscopy (AFM). Cellular uptake of DOX-loaded MGNSs and the subsequent pH and temperature-mediated release were demonstrated in differentiated human neurons derived from induced pluripotent stem cells (iPSCs) as well as epithelial HeLa cells. The presence of embedded iron and gold NPs in silica shells and polymer-coating are supported by SEM and TEM. Fluorescence spectroscopy and microscopy documented DOX loading in the MGNSs. Time-dependent transport of MGNSs guided by an external magnetic field was observed in both glass capillary tubes and in the porous hydrogel. AFM results affirmed that the stiffness of the hydrogels model the rigidity range from soft tissues to bone. pH and temperature-dependent drug release analysis showed stimuli responsive and gradual drug release. Cells' viability MTT assays showed that MGNSs are non-toxic. The cell death from on-demand DOX release was observed in both neurons and epithelial cells even though the drug release efficiency was higher in neurons. Therefore, development of smart nanoshuttles have significant translational potential for controlled delivery of theranostics' payloads and precisely guided transport in specified tissues and organs (for example, bone, cartilage, tendon, bone marrow, heart, lung, liver, kidney, and brain) for highly efficient personalized medicine applications.
Collapse
Affiliation(s)
- Liping Wang
- School of Biomedical Engineering, Shanghai Jiaotong Univerity, Shanghai, China
| | - Grace Jang
- Department of Mechanical and Aerospace Engineering, La Jolla, CA, USA
| | | | - Vrinda Sant
- Materials Science and Engineering Program, La Jolla, CA, USA
| | - Jay Seth
- Department of Nanoengineering, La Jolla, CA, USA
| | - Sami Kazmi
- Department of Chemical Engineering University of California, San Diego, La Jolla, CA, USA
| | - Nirav Patel
- Department of Bioengineering, La Jolla, CA, USA
| | - Qingqing Yang
- Materials Science and Engineering Program, La Jolla, CA, USA
| | - Joon Lee
- Materials Science and Engineering Program, La Jolla, CA, USA
| | | | - Shanshan Wang
- Department of Anesthesiology, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Brian P Head
- Department of Anesthesiology, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Ratneshwar Lal
- Department of Mechanical and Aerospace Engineering, La Jolla, CA, USA
- Materials Science and Engineering Program, La Jolla, CA, USA
- Department of Bioengineering, La Jolla, CA, USA
| |
Collapse
|
35
|
Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov Today 2017; 22:652-664. [PMID: 28219742 DOI: 10.1016/j.drudis.2016.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/02/2016] [Accepted: 12/16/2016] [Indexed: 01/02/2023]
Abstract
To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Bapi Gorain
- Faculty of Pharmacy, Lincoln University College, Kuala Lumpur, Malaysia
| | - Muktika Tekade
- TIT College of Pharmacy, Technocrats Institute of Technology, Anand Nagar, Bhopal, MP 462021, India
| | - Prashant Kesharwani
- The International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
36
|
Jeuken RM, Roth AK, Peters RJRW, Van Donkelaar CC, Thies JC, Van Rhijn LW, Emans PJ. Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects. Polymers (Basel) 2016; 8:E219. [PMID: 30979313 PMCID: PMC6432241 DOI: 10.3390/polym8060219] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.
Collapse
Affiliation(s)
- Ralph M Jeuken
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| | - Alex K Roth
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| | | | - Corrinus C Van Donkelaar
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
| | - Jens C Thies
- DSM Biomedical, Koestraat 1, Geleen 6167 RA, The Netherlands.
| | - Lodewijk W Van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| | - Pieter J Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| |
Collapse
|
37
|
Monteiro N, Martins A, Pires RA, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM. Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC Adv 2016. [DOI: 10.1039/c6ra21623d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dual release of growth/differentiation factors from liposomes induced osteogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Albino Martins
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Ricardo A. Pires
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Susana Faria
- Research Center Officinal Mathematical
- Department of Mathematics for Science and Technology
- University of Minho
- Portugal
| | - Nuno A. Fonseca
- Center for Neurosciences and Cell Biology (CNC)
- Faculty of Pharmacy of the University of Coimbra
- 3000 Coimbra
- Portugal
| | - João N. Moreira
- Center for Neurosciences and Cell Biology (CNC)
- Faculty of Pharmacy of the University of Coimbra
- 3000 Coimbra
- Portugal
| | - Rui L. Reis
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Nuno M. Neves
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- Department of Polymer Engineering
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| |
Collapse
|