1
|
Wang AYL, Aviña AE, Liu YY, Kao HK. Pluripotent Stem Cells: Recent Advances and Emerging Trends. Biomedicines 2025; 13:765. [PMID: 40299329 PMCID: PMC12025069 DOI: 10.3390/biomedicines13040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The field of induced pluripotent stem cells (iPSCs) continues to evolve, offering unprecedented potential for regenerative medicine, disease modeling, and therapeutic applications [...].
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Yu Liu
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Chen J, Horiuchi S, Kuramochi S, Kawasaki T, Kawasumi H, Akiyama S, Arai T, Morinaga K, Kimura T, Kiyono T, Akutsu H, Ishida S, Umezawa A. Human intestinal organoid-derived PDGFRα + mesenchymal stroma enables proliferation and maintenance of LGR4 + epithelial stem cells. Stem Cell Res Ther 2024; 15:16. [PMID: 38229108 PMCID: PMC10792855 DOI: 10.1186/s13287-023-03629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Intestinal epithelial cells derived from human pluripotent stem cells (hPSCs) are generally maintained and cultured as organoids in vitro because they do not exhibit adhesion when cultured. However, the three-dimensional structure of organoids makes their use in regenerative medicine and drug discovery difficult. Mesenchymal stromal cells are found near intestinal stem cells in vivo and provide trophic factors to regulate stem cell maintenance and proliferation, such as BMP inhibitors, WNT, and R-spondin. In this study, we aimed to use mesenchymal stromal cells isolated from hPSC-derived intestinal organoids to establish an in vitro culture system that enables stable proliferation and maintenance of hPSC-derived intestinal epithelial cells in adhesion culture. METHODS We established an isolation protocol for intestinal epithelial cells and mesenchymal stromal cells from hPSCs-derived intestinal organoids and a co-culture system for these cells. We then evaluated the intestinal epithelial cells and mesenchymal stromal cells' morphology, proliferative capacity, chromosomal stability, tumorigenicity, and gene expression profiles. We also evaluated the usefulness of the cells for pharmacokinetic and toxicity studies. RESULTS The proliferating intestinal epithelial cells exhibited a columnar form, microvilli and glycocalyx formation, cell polarity, and expression of drug-metabolizing enzymes and transporters. The intestinal epithelial cells also showed barrier function, transporter activity, and drug-metabolizing capacity. Notably, small intestinal epithelial stem cells cannot be cultured in adherent culture without mesenchymal stromal cells and cannot replaced by other feeder cells. Organoid-derived mesenchymal stromal cells resemble the trophocytes essential for maintaining small intestinal epithelial stem cells and play a crucial role in adherent culture. CONCLUSIONS The high proliferative expansion, productivity, and functionality of hPSC-derived intestinal epithelial cells may have potential applications in pharmacokinetic and toxicity studies and regenerative medicine.
Collapse
Affiliation(s)
- JunLong Chen
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Shinichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - So Kuramochi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hayato Kawasumi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomoki Arai
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenichi Morinaga
- 1st Section, 1st Development Department, Food and Healthcare Business Development Unit, Business Development Division, Research & Business Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of BioSciences, Kitasato University School of Science, Kanagawa, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
- Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
3
|
Variation of DNA methylation on the IRX1/2 genes is responsible for the neural differentiation propensity in human induced pluripotent stem cells. Regen Ther 2022; 21:620-630. [PMID: 36514370 PMCID: PMC9719094 DOI: 10.1016/j.reth.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Human induced pluripotent stem cells (hiPSCs) are useful tools for reproducing neural development in vitro. However, each hiPSC line has a different ability to differentiate into specific lineages, known as differentiation propensity, resulting in reduced reproducibility and increased time and funding requirements for research. To overcome this issue, we searched for predictive signatures of neural differentiation propensity of hiPSCs focusing on DNA methylation, which is the main modulator of cellular properties. Methods We obtained 32 hiPSC lines and their comprehensive DNA methylation data using the Infinium MethylationEPIC BeadChip. To assess the neural differentiation efficiency of these hiPSCs, we measured the percentage of neural stem cells on day 7 of induction. Using the DNA methylation data of undifferentiated hiPSCs and their measured differentiation efficiency into neural stem cells as the set of data, and HSIC Lasso, a machine learning-based nonlinear feature selection method, we attempted to identify neural differentiation-associated differentially methylated sites. Results Epigenome-wide unsupervised clustering cannot distinguish hiPSCs with varying differentiation efficiencies. In contrast, HSIC Lasso identified 62 CpG sites that could explain the neural differentiation efficiency of hiPSCs. Features selected by HSIC Lasso were particularly enriched within 3 Mbp of chromosome 5, harboring IRX1, IRX2, and C5orf38 genes. Within this region, DNA methylation rates were correlated with neural differentiation efficiency and were negatively correlated with gene expression of the IRX1/2 genes, particularly in female hiPSCs. In addition, forced expression of the IRX1/2 impaired the neural differentiation ability of hiPSCs in both sexes. Conclusion We for the first time showed that the DNA methylation state of the IRX1/2 genes of hiPSCs is a predictive biomarker of their potential for neural differentiation. The predictive markers for neural differentiation efficiency identified in this study may be useful for the selection of suitable undifferentiated hiPSCs prior to differentiation induction.
Collapse
|
4
|
Roh J, Kim S, Cheong JW, Jeon SH, Kim HK, Kim MJ, Kim HO. Erythroid Differentiation of Induced Pluripotent Stem Cells Co-cultured with OP9 Cells for Diagnostic Purposes. Ann Lab Med 2022; 42:457-466. [PMID: 35177566 PMCID: PMC8859560 DOI: 10.3343/alm.2022.42.4.457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Reagent red blood cells (RBCs) are prepared from donated whole blood, resulting in various combinations of blood group antigens. This inconsistency can be resolved by producing RBCs with uniform antigen expression. Induced pluripotent stem cells (iPSCs) generated directly from mature cells constitute an unlimited source for RBC production. We aimed to produce erythroid cells from iPSCs for diagnostic purposes. We hypothesized that cultured erythroid cells express surface antigens that can be recognized by blood group antibodies. Methods iPSCs were co-cultured with OP9 stromal cells to stimulate differentiation into the erythroid lineage. Cell differentiation was examined using microscopy and flow cytometry. Hemoglobin electrophoresis and oxygen-binding capacity testing were performed to verify that the cultured erythroid cells functioned normally. The agglutination reactions of the cultured erythroid cells to antibodies were investigated to confirm that the cells expressed blood group antigens. Results The generated iPSCs showed stemness characteristics and could differentiate into the erythroid lineage. As differentiation progressed, the proportion of nucleated RBCs increased. Hemoglobin electrophoresis revealed a sharp peak in the hemoglobin F region. The oxygen-binding capacity test results were similar between normal RBCs and cultured nucleated RBCs. ABO and Rh-Hr blood grouping confirmed similar antigen expression between the donor RBCs and cultured nucleated RBCs. Conclusions We generated blood group antigen-expressing nucleated RBCs from iPSCs co-cultured with OP9 cells that can be used for diagnostic purposes. iPSCs from rare blood group donors could serve as an unlimited source for reagent production.
Collapse
Affiliation(s)
- Juhye Roh
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Hee Jeon
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Kyung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Jung Kim
- Department of Laboratory Medicine, Myongji Hospital, Goyang, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Xenogeneic-Free Human Intestinal Organoids for Assessing Intestinal Nutrient Absorption. Nutrients 2022; 14:nu14030438. [PMID: 35276796 PMCID: PMC8838315 DOI: 10.3390/nu14030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Since many nutrients, including the three major ones of glucose, dipeptides, and cholesterol, are mainly absorbed in the small intestine, the assessment of their effects on intestinal tissue is important for the study of food absorption. However, cultured intestinal cell lines, such as Caco-2 cells, or animal models, which differ from normal human physiological conditions, are generally used for the evaluation of intestinal absorption and digestion. Therefore, it is necessary to develop an alternative in vitro method for more accurate analyses. In this study, we demonstrate inhibitory effects on nutrient absorption through nutrient transporters using three-dimensional xenogeneic-free human intestinal organoids (XF-HIOs), with characteristics of the human intestine, as we previously reported. We first show that the organoids absorbed glucose, dipeptide, and cholesterol in a transporter-dependent manner. Next, we examine the inhibitory effect of natural ingredients on the absorption of glucose and cholesterol. We reveal that glucose absorption was suppressed by epicatechin gallate or nobiletin, normally found in green tea catechin or citrus fruits, respectively. In comparison, cholesterol absorption was not inhibited by luteolin and quercetin, contained in some vegetables. Our findings highlight the usefulness of screening for the absorption of functional food substances using XF-HIOs.
Collapse
|
7
|
Ohira M, Kikuchi E, Mizuta S, Yoshida N, Onodera M, Nakanishi M, Okuyama T, Mashima R. Production of therapeutic iduronate-2-sulfatase enzyme with a novel single-stranded RNA virus vector. Genes Cells 2021; 26:891-904. [PMID: 34480399 DOI: 10.1111/gtc.12894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 11/28/2022]
Abstract
The Sendai virus vector has received a lot of attention due to its broad tropism for mammalian cells. As a result of efforts for genetic studies based on a mutant virus, we can now express more than 10 genes of up to 13.5 kilo nucleotides in a single vector with high protein expression efficiency. To prove this benefit, we examined the efficacy of the novel ribonucleic acid (RNA) virus vector harboring the human iduronate-2-sulfatase (IDS) gene with 1,653 base pairs, a causative gene for mucopolysaccharidosis type II, also known as a disorder of lysosomal storage disorders. As expected, this novel RNA vector with the human IDS gene exhibited its marked expression as determined by the expression of enhanced green fluorescent protein and IDS enzyme activity. While these cells exhibited a normal growth rate, the BHK-21 transformant cells stably expressing the human IDS gene persistently generated an active human IDS enzyme extracellularly. The human IDS protein produced failed to be incorporated into the lysosome when cells were pretreated with mannose-6-phosphate, demonstrating that this human IDS enzyme has potential for therapeutic use by cross-correction. These results suggest that our novel RNA vector may be applicable for further clinical settings.
Collapse
Affiliation(s)
- Mari Ohira
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Emika Kikuchi
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | | | | | - Masafumi Onodera
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
8
|
Nishino K, Takasawa K, Okamura K, Arai Y, Sekiya A, Akutsu H, Umezawa A. Identification of an epigenetic signature in human induced pluripotent stem cells using a linear machine learning model. Hum Cell 2020; 34:99-110. [PMID: 33047283 PMCID: PMC7788050 DOI: 10.1007/s13577-020-00446-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
The use of human induced pluripotent stem cells (iPSCs), used as an alternative to human embryonic stem cells (ESCs), is a potential solution to challenges, such as immune rejection, and does not involve the ethical issues concerning the use of ESCs in regenerative medicine, thereby enabling developments in biological research. However, comparative analyses from previous studies have not indicated any specific feature that distinguishes iPSCs from ESCs. Therefore, in this study, we established a linear classification-based learning model to distinguish among ESCs, iPSCs, embryonal carcinoma cells (ECCs), and somatic cells on the basis of their DNA methylation profiles. The highest accuracy achieved by the learned models in identifying the cell type was 94.23%. In addition, the epigenetic signature of iPSCs, which is distinct from that of ESCs, was identified by component analysis of the learned models. The iPSC-specific regions with methylation fluctuations were abundant on chromosomes 7, 8, 12, and 22. The method developed in this study can be utilized with comprehensive data and widely applied to many aspects of molecular biology research.
Collapse
Affiliation(s)
- Koichiro Nishino
- Laboratory of Veterinary Biochemistry and Molecular Biology, Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan. .,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.
| | - Ken Takasawa
- Laboratory of Veterinary Biochemistry and Molecular Biology, Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshikazu Arai
- Laboratory of Veterinary Biochemistry and Molecular Biology, Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Asato Sekiya
- Laboratory of Veterinary Biochemistry and Molecular Biology, Graduate School of Medicine and Veterinary Medicine/Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
9
|
iPS-Derived Early Oligodendrocyte Progenitor Cells from SPMS Patients Reveal Deficient In Vitro Cell Migration Stimulation. Cells 2020; 9:cells9081803. [PMID: 32751289 PMCID: PMC7463559 DOI: 10.3390/cells9081803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
The most challenging aspect of secondary progressive multiple sclerosis (SPMS) is the lack of efficient regenerative response for remyelination, which is carried out by the endogenous population of adult oligoprogenitor cells (OPCs) after proper activation. OPCs must proliferate and migrate to the lesion and then differentiate into mature oligodendrocytes. To investigate the OPC cellular component in SPMS, we developed induced pluripotent stem cells (iPSCs) from SPMS-affected donors and age-matched controls (CT). We confirmed their efficient and similar OPC differentiation capacity, although we reported SPMS-OPCs were transcriptionally distinguishable from their CT counterparts. Analysis of OPC-generated conditioned media (CM) also evinced differences in protein secretion. We further confirmed SPMS-OPC CM presented a deficient capacity to stimulate OPC in vitro migration that can be compensated by exogenous addition of specific components. Our results provide an SPMS-OPC cellular model and encouraging venues to study potential cell communication deficiencies in the progressive form of multiple sclerosis (MS) for future treatment strategies.
Collapse
|
10
|
Green DW, Watson JA, Watson GS, Stamboulis A. Sequenced Somatic Cell Reprogramming and Differentiation Inside Nested Hydrogel Droplets. ACTA ACUST UNITED AC 2020; 4:e2000071. [PMID: 32597033 DOI: 10.1002/adbi.202000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Indexed: 11/08/2022]
Abstract
The efficient genesis of pluripotent cells or therapeutic cells for regenerative medicine involves several external manipulations and conditioning protocols, which drives down clinical applicability. Automated programming of the genesis by microscale physical forces and chronological biochemistry can increase clinical success. The design and fabrication of nested polysaccharide droplets (millimeter-sized) with cell sustaining properties of natural tissues and intrinsic properties for time and space evolution of cell transformation signals between somatic cells, pluripotent cells and differentiated therapeutic cells in a swift and efficient manner without the need for laborious external manipulation are reported. Cells transform between phenotypic states by having single and double nested droplets constituted with extracellular matrix proteins and reprogramming, and differentiation factors infused chronologically across the droplet space. The cell transformation into germ layer cells and bone cells is successfully tested in vitro and in vivo and promotes the formation of new bone tissues. Thus, nested droplets with BMP-2 loaded guests synthesize mineralized bone tissue plates along the length of a cranial non-union bone defect at 4 weeks. The advantages of sequenced somatic cell reprogramming and differentiation inside an individual hydrogel module without external manipulation, promoted by formulating tissue mimetic physical, mechanical, and chemical microenvironments are shown.
Collapse
Affiliation(s)
- David W Green
- School of Metallurgy and Materials, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jolanta A Watson
- School of Science and Engineering, University of the Sunshine Coast, Fraser Coast, Hervey Bay, QLD, 4655, Australia
| | - Gregory S Watson
- School of Science and Engineering, University of the Sunshine Coast, Fraser Coast, Hervey Bay, QLD, 4655, Australia
| | - Artemis Stamboulis
- School of Metallurgy and Materials, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
Gorlin syndrome-induced pluripotent stem cells form medulloblastoma with loss of heterozygosity in PTCH1. Aging (Albany NY) 2020; 12:9935-9947. [PMID: 32436863 PMCID: PMC7288908 DOI: 10.18632/aging.103258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Gorlin syndrome is a rare autosomal dominant hereditary disease with a high incidence of tumors such as basal cell carcinoma and medulloblastoma. Disease-specific induced pluripotent stem cells (iPSCs) and an animal model have been used to analyze disease pathogenesis. In this study, we generated iPSCs derived from fibroblasts of four patients with Gorlin syndrome (Gln-iPSCs) with heterozygous mutations of the PTCH1 gene. Gln-iPSCs from the four patients developed into medulloblastoma, a manifestation of Gorlin syndrome, in 100% (four out of four), of teratomas after implantation into immunodeficient mice, but none (0/584) of the other iPSC-teratomas did so. One of the medulloblastomas showed loss of heterozygosity in the PTCH1 gene while the benign teratoma, i.e. the non-medulloblastoma portion, did not, indicating a close clinical correlation between tumorigenesis in Gorlin syndrome patients and Gln-iPSCs.
Collapse
|
12
|
Ikehara H, Fujii K, Miyashita T, Ikemoto Y, Nagamine M, Shimojo N, Umezawa A. Establishment of a Gorlin syndrome model from induced neural progenitor cells exhibiting constitutive GLI1 expression and high sensitivity to inhibition by smoothened (SMO). J Transl Med 2020; 100:657-664. [PMID: 31758086 DOI: 10.1038/s41374-019-0346-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
The hedgehog signaling pathway is a vital factor for embryonic development and stem cell maintenance. Dysregulation of its function results in tumor initiation and progression. The aim of this research was to establish a disease model of hedgehog-related tumorigenesis with Gorlin syndrome-derived induced pluripotent stem cells (GS-iPSCs). Induced neural progenitor cells from GS-iPSCs (GS-NPCs) show constitutive high GLI1 expression and higher sensitivity to smoothened (SMO) inhibition compared with wild-type induced neural progenitor cells (WT-NPCs). The differentiation process from iPSCs to NPCs may have similarity in gene expression to Hedgehog signal-related carcinogenesis. Therefore, GS-NPCs may be useful for screening compounds to find effective drugs to control Hedgehog signaling activity.
Collapse
Affiliation(s)
- Hajime Ikehara
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiyuki Miyashita
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yu Ikemoto
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Marina Nagamine
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
13
|
Arai Y, Umeyama K, Okazaki N, Nakano K, Nishino K, Nagashima H, Ohgane J. DNA methylation ambiguity in the Fibrillin-1 (FBN1) CpG island shore possibly involved in Marfan syndrome. Sci Rep 2020; 10:5287. [PMID: 32210272 PMCID: PMC7093481 DOI: 10.1038/s41598-020-62127-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/09/2020] [Indexed: 11/15/2022] Open
Abstract
Fibrillin-1 (FBN1) is responsible for haploinsufficient and autosomal dominant Marfan syndrome. Even in the same Marfan pedigree, penetrance and expressivity in heterozygous individuals can differ and result in variable disease onset and severity. Thus, other factors in addition to mutations in FBN1 are likely to contribute to the disease. In this study, we examined the regulation of FBN1 in porcine Marfan syndrome model, focusing on DNA methylation patterns distinguishable as wild-type (WT) and FBN1 null (KO) alleles in heterozygous cells. Most importantly, the ratio of the transcriptionally active hypomethylated WT allele was altered during cellular passage and highly correlated with FBN1 mRNA level compared with that in the KO allele. Transcribed FBN1 RNA from the KO allele was abolished after splicing coupled with translational initiation, suggesting that the functional FBN1 mRNA levels were affected by DNA methylation of the WT allele.
Collapse
Affiliation(s)
- Yoshikazu Arai
- Laboratory of Veterinary Biochemistry and Molecular Biology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Kazuhiro Umeyama
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, 214-8571, Japan
| | - Natsumi Okazaki
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, 214-8571, Japan
| | - Koichiro Nishino
- Laboratory of Veterinary Biochemistry and Molecular Biology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan.,Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, 214-8571, Japan
| | - Jun Ohgane
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
14
|
Aoto S, Katagiri S, Wang Y, Pagnamenta AT, Sakamoto-Abutani R, Toyoda M, Umezawa A, Okamura K. Frequent retrotransposition of endogenous genes in ERCC2-deficient cells derived from a patient with xeroderma pigmentosum. Stem Cell Res Ther 2019; 10:273. [PMID: 31455402 PMCID: PMC6712803 DOI: 10.1186/s13287-019-1381-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Retrotransposition of protein-coding genes is thought to occur due to the existence of numerous processed pseudogenes in both animals and plants. Unlike retrotransposons including Alu and LINE-1, direct evidence of such retrotransposition events has not been reported to date. Even if such an event occurs in a somatic cell, it is almost impossible to detect it using bulk of cells as a sample. Single-cell analyses or other techniques are needed. METHODS In order to examine genetic stability of stem cells, we have established induced pluripotent stem cell (iPSC) lines from several patients with DNA repair-deficiency disorders, such as ataxia telangiectasia and xeroderma pigmentosum, along with healthy controls. Performing whole-exome sequencing analyses of these parental and iPSC lines, we compiled somatic mutations accumulated by the deficiency of DNA repair mechanisms. Whereas most somatic mutations cannot be detected in bulk, cell reprogramming enabled us to observe all the somatic mutations which had occurred in the cell line. Patterns of somatic mutations should be distinctive depending on which DNA repair gene is impaired. RESULTS The comparison revealed that deficiency of ATM and XPA preferentially gives rise to indels and single-nucleotide substitutions, respectively. On the other hand, deficiency of ERCC2 caused not only single-nucleotide mutations but also many retrotranspositions of endogenous genes, which were readily identified by examining removal of introns in whole-exome sequencing. Although the number was limited, those events were also detected in healthy control samples. CONCLUSIONS The present study exploits clonality of iPSCs to unveil somatic mutation sets that are usually hidden in bulk cell analysis. Whole-exome sequencing analysis facilitated the detection of retrotransposition mutations. The results suggest that retrotranspositions of human endogenous genes are more frequent than expected in somatic cells and that ERCC2 plays a defensive role against transposition of endogenous and exogenous DNA fragments.
Collapse
Affiliation(s)
- Saki Aoto
- Medical Genome Center, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
| | - Saki Katagiri
- Department of Biology, Faculty of Science, Ochanomizu University, Bunkyo, Tokyo, Japan
- Present address: Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi Japan
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | | | - Rie Sakamoto-Abutani
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
| | - Masashi Toyoda
- Research team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Setagaya, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Setagaya, Tokyo, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535 Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| |
Collapse
|
15
|
Umezawa A, Hasegawa A, Inoue M, Tanuma-Takahashi A, Kajiwara K, Makino H, Chikazawa E, Okamoto A. Amnion-derived cells as a reliable resource for next-generation regenerative medicine. Placenta 2019; 84:50-56. [PMID: 31272680 DOI: 10.1016/j.placenta.2019.06.381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
The placenta is composed of the amnion, chorionic plate, villous and smooth chorion, decidua basalis, and umbilical cord. The amnion is a readily obtainable source of a large number of cells and cell types, including epithelium, mesenchyme, and endothelium, and is thus an allogeneic resource for regenerative medicine. Endothelial cells are obtained from large arteries and veins in the amniotic membrane as well as the umbilical cord. The amnion-derived cells exhibit transdifferentiation capabilities, including chondrogenesis and cardiomyogenesis, by introduction of transcription factors, in addition to their original and potential phenotypes. The amnion is also a source for production of induced pluripotent stem cells (AM-iPSCs). The AM-iPSCs exhibit stable phenotypes, such as multipotency and immortality, and a unique gene expression pattern. Through the use of amnion-derived cells, as well as other placenta-derived cells, preclinical proof of concept has been achieved in a mouse model of muscular dystrophy.
Collapse
Affiliation(s)
- Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| | - Akihiro Hasegawa
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Momoko Inoue
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Akiko Tanuma-Takahashi
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Kazuhiro Kajiwara
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Hatsune Makino
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Emi Chikazawa
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| |
Collapse
|