1
|
Zhou XP, Li QW, Shu ZZ, Liu Y. PML Regulated HIF1AN Ubiquitination and Activated PI3K/AKT Pathway to Promote Bone Marrow Mesenchymal Stem Cells Osteogenic Differentiation. Int J Stem Cells 2025; 18:146-157. [PMID: 40059075 PMCID: PMC12122243 DOI: 10.15283/ijsc24110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 06/02/2025] Open
Abstract
Osteoporosis (OP) is a metabolic disease caused by osteogenesis and bone resorption disorders. Promyelocytic leukemia protein (PML) was a vital regulator of cellular functions. However, the function of PML in OP remains unknown. Our research aimed to illustrate the molecular mechanism of PML in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation. The BMSCs were identified by using flow cytometry analysis. The osteoblast differentiation ability of BMSCs was assessed through using alkaline phosphatase and Alizarin red S stainings. The relationship between hypoxia-inducible factor-1α (HIF1α) and superoxide dismutase 3 (SOD3) were confirmed by using chromatin immunoprecipitation and dual-luciferase reporter assays. The binding association between PML and hypoxia-inducible factor 1α inhibitor (HIF1AN) proteins was verified by using co-immunoprecipitation assay and immunofluorescence staining. Western blot was used for protein detection. PML was up-regulated in osteogenic differentiation of BMSCs. Functionally, PML negatively regulated HIF1AN expression by enhancing HIF1AN ubiquitination degradation. PML knockdown or HIF1AN up-regulation suppressed the osteogenic differentiation of BMSCs. Furthermore, HIF1α directly bound to the SOD3 promoter region. PML or SOD3 overexpression remarkably promoted the BMSCs osteoblast differentiation under osteogenic medium, which was reversed by LY294002. PML acts as a significant regulator in the BMSCs osteogenic differentiation by regulating the HIF1AN/HIF1α/SOD3 axis and phosphatidylinositol 3 kinase/protein kinase B pathway.
Collapse
Affiliation(s)
- Xian-Pei Zhou
- Department of Hand and Foot Surgery, The Second People’s Hospital of Hunan Province, Brain Hospital of Hunan Province, Changsha, China
| | - Qi-Wei Li
- Department of Hand and Foot Surgery, The Second People’s Hospital of Hunan Province, Brain Hospital of Hunan Province, Changsha, China
| | - Zi-Zhen Shu
- Department of Hand and Foot Surgery, The Second People’s Hospital of Hunan Province, Brain Hospital of Hunan Province, Changsha, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Guo Y, Shen K, Li Z, Niu C, Luo Y. MiR-147b-3p promotes osteogenesis by targeting NDUFA4 and PI3K/AKT pathway. J Orthop Surg Res 2025; 20:235. [PMID: 40038790 PMCID: PMC11881348 DOI: 10.1186/s13018-025-05598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Osteoporosis (OP) is a progressive metabolic bone disease characterized by impaired bone microarchitecture, decreased bone strength, and dysregulated bone remodeling, leading to an increased risk of fractures. Among osteoporotic fractures, osteoporotic vertebral compression fractures (OVCF) are the most common and can significantly impact patients' quality of life. Growing evidence suggests that microRNAs (miRNAs) play a crucial role in bone homeostasis by regulating osteoblast differentiation, bone metabolism, and remodeling processes. Notably, miR-147b-3p has been found to be downregulated in OVCF; however, its specific role in osteogenic regulation remains largely unknown. Therefore, further investigation is warranted to elucidate the function and underlying mechanism of miR-147b-3p in osteogenic differentiation. METHODS The GSE93883 and GSE74209 datasets were retrieved from the Gene Expression Omnibus (GEO) database to investigate specific microRNAs involved in the regulation of osteogenesis. Differential expression of miR-147b-3p and NDUFA4 was assessed between healthy controls and patients with osteoporotic vertebral compression fractures (OVCF) using real-time quantitative PCR.To modulate the expression levels of miR-147b-3p in MC3T3-E1 cells, both the miR-147b-3p mimic and inhibitor were utilized. Cell viability was evaluated via the CCK-8 assay to assess the impact of miR-147b-3p on MC3T3-E1 cell proliferation. Real-time PCR and Western blot analysis were conducted to quantify the expression levels of osteogenic markers across different experimental groups. Alizarin red staining (ARS) was employed to examine the effect of miR-147b-3p on the mineralization capacity of MC3T3-E1 cells. In vivo experiments were performed to evaluate the functional role of miR-147b-3p. Bioinformatics databases were used to predict the potential target gene of miR-147b-3p (NDUFA4), and the predictions were validated by a dual luciferase reporter gene assay.To investigate the regulatory role of the miR-147b-3p/NDUFA4 axis in osteogenic differentiation, MC3T3-E1 cells were transfected with the NDUFA4 overexpression plasmid and miR-147b-3p mimic. Western blot analysis was performed to assess the phosphorylation levels of PI3K and AKT, in order to explore whether the miR-147b-3p/NDUFA4 axis regulates osteogenic differentiation through the PI3K/AKT signaling pathway. RESULTS Our results indicated a significant downregulation of miR-147b-3p and a concurrent upregulation of NDUFA4 in patients with osteoporotic vertebral compression fractures (OVCF). A luciferase reporter assay confirmed that NDUFA4 is a direct target gene of miR-147b-3p.To examine the functional role of miR-147b-3p, both in vitro and in vivo experiments were conducted.The experimental findings revealed that the miR-147b-3p mimic significantly enhanced cell viability, increased protein expressions of Alkaline Phosphatase (ALP) and Runt-related Transcription Factor 2 (RUNX2), and promoted mineralization as evidenced by Alizarin Red S staining. Conversely, treatment with the miR-147b-3p inhibitor or overexpression plasmid for NDUFA4 (pNDUFA4) produced opposite effects.Furthermore, the miR-147b-3p/NDUFA4 axis was found to regulate the PI3K/AKT signaling pathway.The miR-147b-3p mimic significantly increased the phosphorylation levels of PI3K (p-PI3K) and AKT (p-AKT), whereas pNDUFA4 led to their reduction. CONCLUSIONS This study demonstrated that miR-147b-3p plays a crucial role in promoting osteogenic differentiation in osteoporotic vertebral compression fractures (OVCF) by targeting NDUFA4 and modulating the PI3K/AKT signaling pathway. These findings provide new insights into the molecular mechanisms underlying the progression of osteoporotic vertebral fractures.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Chongqing Medical University, Chongqing, 400016, China
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Kai Shen
- Department of Spine Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Zhijie Li
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Changchun Niu
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| | - Yang Luo
- Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 401147, China.
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, China.
| |
Collapse
|
3
|
Chen X, Tang C, Cai D, Yin Q, Xie Q, Xu P, Huang L. Diagnostic value and fracture healing-preventing effect of upregulated microRNA-4534 in patients with osteoporotic fractures. J Formos Med Assoc 2025:S0929-6646(25)00003-8. [PMID: 39809694 DOI: 10.1016/j.jfma.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/23/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Osteoporosis fracture is a common and most serious complication of osteoporosis. HYPOTHESIS This study sought to assess the level, the diagnostic potential, and the effect of circulating miR-4534 in osteoporotic fractures. METHODS GSE74209 and GSE93883 were analyzed using GEO2R online tool for differentially expressed microRNAs in osteoporotic fractures. Postmenopausal women were recruited and serum samples were determined by RT-qPCR for level of miR-4534. ROC curves were plotted to evaluate the diagnostic value of miR-4534 in osteoporotic fractures. The effects of miR-4534 on hFOB 1.19 osteogenic marker levels, proliferation, and migration were measured by RT-qPCR, CCK-8 assay and Transwell assay, respectively. The target gene for miR-4534 was predicted and rescue experiments were conducted. RESULTS miR-4534 was identified as an upregulated miR in osteoporotic fracture. Up-regulated miR-4534 had the potential to distinguish osteoporotic fracture from health, and from common osteoporosis. The up-regulated miR-4534 in hFOB 1.19 cocultured with human umbilical vein endothelial cells could inhibit cell osteogenic marker levels, proliferation and migration. CFTR was a target gene of miR-4534 and rescued the suppression of miR-4534 on hFOB 1.19 activity. CONCLUSIONS MiR-4534 is a new potential diagnostic biomarker for osteoporotic fractures. MiR-4534 can regulate osteoblast differentiation, proliferation, and migration by targeting CFTR.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Orthopedics, Wuhan Hankou Hospital, Wuhan, 430014, China
| | - Chao Tang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Dixin Cai
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, China; The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350000, China
| | - Qing Yin
- Traditonal Chinese Medicine Hospital Dianjiang Chongqing, Dianjiang, 408399, China
| | - Qian Xie
- Department of Orthopedics, The People's Hospital of Dazu Chongqing, Dazu, 402360, China
| | - Pengfang Xu
- Department of Orthopedics, The People's Hospital of Dazu Chongqing, Dazu, 402360, China
| | - Lina Huang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| |
Collapse
|
4
|
Li Y, Dai Y, Xu J, Zhang J. Transcriptomic analysis of keratoconus in Han Chinese patients: Insights into differential gene expression and ethnic-specific patterns. Exp Eye Res 2024; 248:110118. [PMID: 39395559 DOI: 10.1016/j.exer.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Keratoconus (KC) is a progressive corneal ectatic disorder with a high prevalence among Asians. This study aimed to explore the differential gene expression patterns in Han Chinese patients with KC, focusing on mRNAs and long noncoding RNAs (lncRNAs), to provide insights into the pathogenesis of the disease. Corneal tissues from KC patients and healthy controls were collected, and RNA sequencing was performed to profile mRNA and lncRNA expression. A total of 1973 differentially expressed mRNAs (DEGs) and 386 differentially expressed lncRNAs (DELs) were identified in KC-affected corneas. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant enrichment in pathways related to ECM modulation, PI3K-Akt pathway and calcium signaling pathway. Furthermore, protein-protein interaction (PPI) network highlighted hub genes involved in ECM remodeling and inflammatory responses. Co-expression analysis of lncRNAs and mRNAs further prioritized 13 DELs linked to these hub genes. RT-qPCR validation confirmed the differential expression of select candidates. A meta-analysis integrating seven datasets from diverse ethnic backgrounds was performed and it suggested ethnic-specific differences in gene expression patterns. This study sheds new light on the molecular mechanisms underlying KC in the Han Chinese population, pinpointing potential therapeutic targets. It also emphasizes the critical role of ethnic-specific gene expression patterns in KC research, highlighting a need for tailored approaches in disease management and treatment.
Collapse
Affiliation(s)
- Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
5
|
Wang X, Jia Q, Yu L, Huang J, Wang X, Zhou L, Mijiti W, Xie Z, Dong S, Xie Z, Ma H. Filamin B knockdown impairs differentiation and function in mouse pre-osteoblasts via aberrant transcription and alternative splicing. Heliyon 2024; 10:e39334. [PMID: 39498024 PMCID: PMC11533582 DOI: 10.1016/j.heliyon.2024.e39334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Filamin B (FLNB) encodes an actin-binding protein that is known to function as a novel RNA-binding protein involved in cell movement and signal transduction and plays a pivotal role in bone growth. This study aimed to investigate possible FLNB function in the skeletal system by characterizing the effecs of FLNB knockdown in mouse preosteoblast cells. Methods Stable FLNB MC3T3-E1 knockdown cells were constructed for RNA-seq and alternative splicing event (ASE) analysis of genes involved in osteoblast differentiation and function that may be regulated by FLNB. Standard transwell, MTT, ALP, qPCR, Western blot, and alizarin red staining assays were used to assess functional changes of FLNB-knockdown MC3T3-E1 cells. Results Analysis of differentially expressed genes (DEGs) in FLNB knockdown cells revealed enrichment for genes related to osteoblast proliferation, differentiation and migration, such as ITGA10, Cebpβ, Grem1, etc. Alternative splicing (AS) analysis showed changes in the predominant mRNA isoforms of skeletal development-related genes, especially Tpx2 and Evc. Functional asslysis indicated that proliferation, migration, and differentiation were all inhibited upon FLNB knockdown in MC3T3-E1 cells compared to that in vector control cells. Conclusions FLNB participates in regulating the transcription and AS of genes required for osteoblast development and function, consequently affecting growth and development in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Jinyong Huang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Xin Wang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Lijun Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Wubulikasimu Mijiti
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zhenzi Xie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Shiming Dong
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zengru Xie
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
6
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
9
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|