1
|
Malhotra N, Leyva-Castillo JM, Jadhav U, Barreiro O, Kam C, O'Neill NK, Meylan F, Chambon P, von Andrian UH, Siegel RM, Wang EC, Shivdasani R, Geha RS. RORα-expressing T regulatory cells restrain allergic skin inflammation. Sci Immunol 2018; 3:eaao6923. [PMID: 29500225 PMCID: PMC5912895 DOI: 10.1126/sciimmunol.aao6923] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/17/2018] [Indexed: 12/30/2022]
Abstract
Atopic dermatitis is an allergic inflammatory skin disease characterized by the production of the type 2 cytokines in the skin by type 2 innate lymphoid cells (ILC2s) and T helper 2 (TH2) cells, and tissue eosinophilia. Using two distinct mouse models of atopic dermatitis, we show that expression of retinoid-related orphan receptor α (RORα) in skin-resident T regulatory cells (Tregs) is important for restraining allergic skin inflammation. In both models, targeted deletion of RORα in mouse Tregs led to exaggerated eosinophilia driven by interleukin-5 (IL-5) production by ILC2s and TH2 cells. Expression of RORα in skin-resident Tregs suppressed IL-4 expression and enhanced expression of death receptor 3 (DR3), which is the receptor for tumor necrosis factor (TNF) family cytokine, TNF ligand-related molecule 1 (TL1A), which promotes Treg functions. DR3 is expressed on both ILC2s and skin-resident Tregs Upon deletion of RORα in skin-resident Tregs, we found that Tregs were no longer able to sequester TL1A, resulting in enhanced ILC2 activation. We also documented higher expression of RORα in skin-resident Tregs than in peripheral blood circulating Tregs in humans, suggesting that RORα and the TL1A-DR3 circuit could be therapeutically targeted in atopic dermatitis.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | - Unmesh Jadhav
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Barreiro
- Department of Microbiology and Immunobiology and Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas K O'Neill
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Francoise Meylan
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U964), Illkirch 67404, France
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology and Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eddie C Wang
- Department of Microbial Microbiology and Infectious Diseases, School of Medicine, Cardiff University, Cardiff, UK
| | - Ramesh Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Kang J, Song J, Shen S, Li B, Yang X, Chen M. Diisononyl phthalate aggravates allergic dermatitis by activation of NF-kB. Oncotarget 2018; 7:85472-85482. [PMID: 27863430 PMCID: PMC5356750 DOI: 10.18632/oncotarget.13403] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/27/2016] [Indexed: 01/31/2023] Open
Abstract
Several epidemiological studies have suggested a possible link between exposure to Diisononyl phthalate (DINP) and the development of allergies. These findings remain controversial since there is insufficient scientific evidence to assess the ability of DINP to influence allergic immune responses. In addition, the mechanisms behind DINP-caused allergic diseases have not been fully elucidated. In this study, Balb/c mice were orally exposed to DINP for 3 weeks and were then sensitized with fluorescein isothiocyanate (FITC). We showed that oral exposure to DINP could aggravate allergic-dermatitis-like lesions, indicated by an increase in the number of mast cells, and in increased skin edema in FITC-induced contact hypersensitivity. This deterioration was concomitant with increased total serum immunoglobulin-E and Th2 cytokines. We determined the oxidative damage and the activation of nuclear factor-kb (NF-kB). The data demonstrated that DINP could promote oxidative damage and the activation of NF-kB in the skin. The expression of thymic stromal lymphopoietin and the activation of signal transducer and activator of transcriptions 3, 5 and 6 were enhanced concomitant with exacerbated allergic dermatitis effects and the activation of NF-kB induced by DINP. These effects were alleviated by pyrollidine dithiocarbamate, an inhibitor of NF-kB. The results suggest that oral exposure to DINP aggravated allergic contact dermatitis, which was positively regulated via NF-kB.
Collapse
Affiliation(s)
- Jun Kang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Jing Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shiping Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Baizhan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
3
|
TRPA1 mediated aggravation of allergic contact dermatitis induced by DINP and regulated by NF-κB activation. Sci Rep 2017; 7:43586. [PMID: 28240277 PMCID: PMC5327402 DOI: 10.1038/srep43586] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The possible pathogenic role and mechanism of Di-iso-nonyl phthalate (DINP) in allergic dermatitis is still controversial. This work has shown that oral exposure to DINP exacerbated allergic dermatitis tissue lesions in FITC-sensitized mice. The lesions was accompanied by an enhancement of TRPA1 expression and an increase in IgG1, IL-6 and IL-13 levels. This work also found that blocking TRPA1 by HC030031 effectively prevented the development of allergic dermatitis resulting from oral exposure to DINP and/or FITC-sensitized mice. This result is marked by the down regulation of IgG1 levels, a reduction in mast cell degranulation and a decrease in IL-6 and IL-13 levels. We also showed that blocking NF-κB inhibited TRPA1 expression, and that blocking TRPA1 had no significant effect on the activation of NF-κB or TSLP expression. This study helps in understanding the role DINP exposure plays in the development of allergic dermatitis and provides new insight into the mechanisms behind the DINP-induced adjuvant effect.
Collapse
|
4
|
Shen S, Li J, You H, Wu Z, Wu Y, Zhao Y, Zhu Y, Guo Q, Li X, Li R, Ma P, Yang X, Chen M. Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem Toxicol 2017; 99:60-69. [DOI: 10.1016/j.fct.2016.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/27/2016] [Accepted: 11/17/2016] [Indexed: 11/15/2022]
|