1
|
Takenouchi T, Masujin K, Ikeda R, Haraguchi S, Suzuki S, Uenishi H, Onda E, Kokuho T. Establishment and characterization of an immortalized red river hog blood-derived macrophage cell line. Front Immunol 2024; 15:1465952. [PMID: 39324137 PMCID: PMC11422137 DOI: 10.3389/fimmu.2024.1465952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Red river hogs (RRHs) (Potamochoerus porcus), a wild species of Suidae living in Africa with a major distribution in the Guinean and Congolian forests, are natural reservoirs of African swine fever virus (ASFV) and typically are asymptomatic. Since blood and tissue macrophages of suid animals are target cell lineages of ASFV, RRH-derived macrophages are expected to play an important role in suppressing disease development in infected individuals. In the present study, we successfully isolated RRH-derived blood macrophages using co-culture techniques of RRH blood cells with porcine kidney-derived feeder cells and immortalized them by transferring SV40 large T antigen and porcine telomerase reverse transcriptase genes. The newly established macrophage cell line of the RRH-derived blood cell origin (RZJ/IBM) exhibited an Iba1-, CD172a-, and CD203a-positive typical macrophage-like phenotype and up-regulated the phosphorylation of nuclear factor-κB p65 subunit and p38 mitogen-activated protein kinase in response to the bacterial cell wall components, lipopolysaccharide (LPS) and muramyl dipeptide. In addition, RZJ/IBM cells produced the precursor form of interleukin (IL)-1β and IL-18 upon a stimulation with LPS, leading to the conversion of IL-18, but not IL-1β, into the mature form. Time-lapse live cell imaging with pHrodo dye-conjugated Escherichia coli BioParticles demonstrated the phagocytotic activity of RZJ/IBM cells. It is important to note that RZJ/IBM cells are clearly susceptible to ASFV infection and support viral replication in vitro. Therefore, the RZJ/IBM cell line provides a unique model for investigating the pathogenesis of ASFV.
Collapse
Affiliation(s)
- Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kentaro Masujin
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Rina Ikeda
- Kyusyu Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Seiki Haraguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Shunichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Eiji Onda
- Yokohama Zoological Gardens, ZOORASIA, Yokohama, Japan
| | - Takehiro Kokuho
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| |
Collapse
|
2
|
Takenouchi T, Masujin K, Suzuki S, Haraguchi S, Hiramatsu K, Kokuho T, Uenishi H. Establishment and characterization of the immortalized porcine lung-derived mononuclear phagocyte cell line. Front Vet Sci 2022; 9:1058124. [PMID: 36467652 PMCID: PMC9715978 DOI: 10.3389/fvets.2022.1058124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 08/27/2023] Open
Abstract
Mononuclear phagocytes (MNP), including monocytes, dendritic cells (DC), and macrophages, play critical roles in innate immunity. MNP are abundant in the lungs and contribute to host defense against airborne agents and pulmonary immune homeostasis. In this study, we isolated porcine lung-derived MNP (PLuM) from primary cultures of parenchymal lung cells and then immortalized them by transferring the SV40 large T antigen gene and porcine telomerase reverse transcriptase gene using lentiviral vectors. The established cell line, immortalized PLuM (IPLuM), expressed DC/macrophage markers; i.e., CD163, CD172a, and major histocompatibility complex class II, whereas they did not express a porcine monocyte-specific marker, CD52. The expression patterns of these cell surface markers indicate that IPLuM originate from the DC/macrophage lineage rather than the monocyte lineage. The bacterial cell wall components muramyl dipeptide and lipopolysaccharide induced the production of the interleukin-1 family of pro-inflammatory cytokines in IPLuM. Phagocytotic activity was also detected by time-lapse fluorescence imaging of live cells when IPLuM were cultured in the presence of pHrodo dye-conjugated E. coli BioParticles. It is worth noting that IPLuM are susceptible to African swine fever virus infection and support the virus' efficient replication in vitro. Taken together, the IPLuM cell line may be a useful model for investigating host-agent interactions in the respiratory microenvironments of the porcine lung.
Collapse
Affiliation(s)
- Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kentaro Masujin
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Shunichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiki Haraguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kanae Hiramatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiro Kokuho
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tokyo, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
3
|
Takenouchi T, Masujin K, Miyazaki A, Suzuki S, Takagi M, Kokuho T, Uenishi H. Isolation and immortalization of macrophages derived from fetal porcine small intestine and their susceptibility to porcine viral pathogen infections. Front Vet Sci 2022; 9:919077. [PMID: 35923820 PMCID: PMC9339801 DOI: 10.3389/fvets.2022.919077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages are a heterogeneous population of cells that are present in all vertebrate tissues. They play a key role in the innate immune system, and thus, in vitro cultures of macrophages provide a valuable model for exploring their tissue-specific functions and interactions with pathogens. Porcine macrophage cultures are often used for the identification and characterization of porcine viral pathogens. Recently, we have developed a simple and efficient method for isolating primary macrophages from the kidneys and livers of swine. Here, we applied this protocol to fetal porcine intestinal tissues and demonstrated that porcine intestinal macrophages (PIM) can be isolated from mixed primary cultures of porcine small intestine-derived cells. Since the proliferative capacity of primary PIM is limited, we attempted to immortalize them by transferring the SV40 large T antigen and porcine telomerase reverse transcriptase genes using lentiviral vectors. Consequently, immortalized PIM (IPIM) were successfully generated and confirmed to retain various features of primary PIM. We further revealed that IPIM are susceptible to infection by the African swine fever virus and the porcine reproductive and respiratory syndrome virus and support their replication. These findings suggest that the IPIM cell line is a useful tool for developing in vitro models that mimic the intestinal mucosal microenvironments of swine, and for studying the interactions between porcine pathogens and host immune cells.
Collapse
Affiliation(s)
- Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- *Correspondence: Takato Takenouchi
| | - Kentaro Masujin
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
- Kentaro Masujin
| | - Ayako Miyazaki
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
- Ayako Miyazaki
| | - Shunichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Michihiro Takagi
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiro Kokuho
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
4
|
Oh T, Do DT, Vo HV, Kwon HI, Lee SC, Kim MH, Nguyen DTT, Le QTV, Tran TM, Nguyen TT, Lee JY, Chae C. The Isolation and Replication of African Swine Fever Virus in Primary Renal-Derived Swine Macrophages. Front Vet Sci 2021; 8:645456. [PMID: 33816588 PMCID: PMC8017199 DOI: 10.3389/fvets.2021.645456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 02/04/2023] Open
Abstract
African swine fever virus (ASFV) causes hemorrhagic disease in domestic pigs by replicating mainly in monocyte/macrophage lineages. Various primary cells including pulmonary alveolar macrophages have been used for the propagation of ASFV on this account. However, ethical constraints and consistency problems exist as it is necessary to harvest same phenotype of primary cells in order to continue a study. We suggested renal-derived swine macrophages as a novel primary cell candidate to address these issues. These primary cells proved to be permissive to both cell adapted ASFV and a wild-type ASFV. Compared to the commercial cell line MA-104, the renal-derived macrophages were more suitable to isolate the field virus. The consistent molecular characteristics of the renal-derived macrophages were demonstrated by immunocytochemistry with antibodies against macrophage cell surface markers including CD163, CD172a, and Iba-1. Viral protein p30 and p72 expression in ASFV infected macrophages was confirmed by immunocytochemistry by use of specific monoclonal antibodies. We observed increase of cell-free viral DNA and infectious virus titer in infected cell supernatant in successive days-post-infection. These results demonstrated that primary renal-derived swine macrophages are useful for ASFV isolation and propagation in terms of cell phenotypes, susceptibility to the virus, and virus production.
Collapse
Affiliation(s)
- Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Duy Tien Do
- Faculty of Animal Sciences and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Hung Van Vo
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Hyeok-Il Kwon
- ChoongAng Vaccine Laboratories, Daejeon, South Korea
| | | | - Min Ho Kim
- ChoongAng Vaccine Laboratories, Daejeon, South Korea
| | - Dung Thi Thu Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Quang Tin Vinh Le
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tan Minh Tran
- Department of Animal Health, Center for Veterinary Diagnostics, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Toan Tat Nguyen
- Faculty of Animal Sciences and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Joo Young Lee
- ChoongAng Vaccine Laboratories, Daejeon, South Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Schäfer A, Hühr J, Schwaiger T, Dorhoi A, Mettenleiter TC, Blome S, Schröder C, Blohm U. Porcine Invariant Natural Killer T Cells: Functional Profiling and Dynamics in Steady State and Viral Infections. Front Immunol 2019; 10:1380. [PMID: 31316500 PMCID: PMC6611438 DOI: 10.3389/fimmu.2019.01380] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Pigs are important livestock and comprehensive understanding of their immune responses in infections is critical to improve vaccines and therapies. Moreover, similarities between human and swine physiology suggest that pigs are a superior animal model for immunological studies. However, paucity of experimental tools for a systematic analysis of the immune responses in pigs represent a major disadvantage. To evaluate the pig as a biomedical model and additionally expand the knowledge of rare immune cell populations in swine, we established a multicolor flow cytometry analysis platform of surface marker expression and cellular responses for porcine invariant Natural Killer T cells (iNKT). In humans, iNKT cells are among the first line defenders in various tissues, respond to CD1d-restricted antigens and become rapidly activated. Naïve porcine iNKT cells were CD3+/CD4−/CD8+ or CD3+/CD4−/CD8− and displayed an effector- or memory-like phenotype (CD25+/ICOS+/CD5hi/CD45RA−/CCR7 ± /CD27+). Based on their expression of the transcription factors T bet and the iNKT cell-specific promyelocytic leukemia zinc finger protein (PLZF), porcine iNKT cells were differentiated into functional subsets. Analogous to human iNKT cells, in vitro stimulation of porcine leukocytes with the CD1d ligand α-galactosylceramide resulted in rapid iNKT cell proliferation, evidenced by an increase in frequency and Ki-67 expression. Moreover, this approach revealed CD25, CD5, ICOS, and the major histocompatibility complex class II (MHC II) as activation markers on porcine iNKT cells. Activated iNKT cells also expressed interferon-γ, upregulated perforin expression, and displayed degranulation. In steady state, iNKT cell frequency was highest in newborn piglets and decreased with age. Upon infection with two viruses of high relevance to swine and humans, iNKT cells expanded. Animals infected with African swine fever virus displayed an increase of iNKT cell frequency in peripheral blood, regional lymph nodes, and lungs. During Influenza A virus infection, iNKT cell percentage increased in blood, lung lymph nodes, and broncho-alveolar lavage. Our in-depth characterization of porcine iNKT cells contributes to a better understanding of porcine immune responses, thereby facilitating the design of innovative interventions against infectious diseases. Moreover, we provide new evidence that endorses the suitability of the pig as a biomedical model for iNKT cell research.
Collapse
Affiliation(s)
- Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jane Hühr
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Theresa Schwaiger
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Alvestegui A, Olivares-Morales M, Muñoz E, Smith R, Nataro JP, Ruiz-Perez F, Farfan MJ. TLR4 Participates in the Inflammatory Response Induced by the AAF/II Fimbriae From Enteroaggregative Escherichia coli on Intestinal Epithelial Cells. Front Cell Infect Microbiol 2019; 9:143. [PMID: 31131263 PMCID: PMC6509964 DOI: 10.3389/fcimb.2019.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) infections are one of the most frequent causes of persistent diarrhea in children, immunocompromised patients and travelers worldwide. The most prominent colonization factors of EAEC are aggregative adherence fimbriae (AAF). EAEC prototypical strain 042 harbors the AAF/II fimbriae variant, which mediates adhesion to intestinal epithelial cells and participates in the induction of an inflammatory response against this pathogen. However, the mechanism and the cell receptors implicated in eliciting this response have not been fully characterized. Since previous reports have shown that TLR4 recognize fimbriae from different pathogens, we evaluated the role of this receptor in the response elicited against EAEC by intestinal cells. Using a mutual antagonist against TLR2 and TLR4 (OxPAPC), we observed that blocking of these receptors significantly reduces the secretion of the inflammatory marker IL-8 in response to EAEC and AAF/II fimbrial extract in HT-29 cells. Using a TLR4-specific antagonist (TAK-242), we observed that the secretion of this cytokine was significantly reduced in HT-29 cells infected with EAEC or incubated with AAF/II fimbrial extract. We evaluated the participation of AAF/II fimbriae in the TLR4-mediated secretion of 38 cytokines, chemokines, and growth factors involved in inflammation. A reduction in the secretion of IL-8, GRO, and IL-4 was observed. Our results suggest that TLR4 participates in the secretion of several inflammation biomarkers in response to AAF/II fimbriae.
Collapse
Affiliation(s)
- Alejandra Alvestegui
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Mauricio Olivares-Morales
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Ernesto Muñoz
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Rachel Smith
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mauricio J Farfan
- Departamento de Pediatría, Facultad de Medicina, Centro de Estudios Moleculares, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Perera NCN, Godahewa GI, Jung S, Kim MJ, Nam BH, Lee J. Identification and characterization of a carboxypeptidase N1 from red lip mullet (Liza haematocheila); revealing its immune relevance. FISH & SHELLFISH IMMUNOLOGY 2019; 84:223-232. [PMID: 30300741 DOI: 10.1016/j.fsi.2018.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Complement system orchestrates the innate and adaptive immunity via the activation, recruitment, and regulation of immune molecules to destroy pathogens. However, regulation of the complement is essential to avoid injuries to the autologous tissues. The present study unveils the characteristic features of an important complement component, anaphylatoxin inactivator from red lip mullet at its molecular and functional level. Mullet carboxypeptidase N1 (MuCPN1) cDNA sequence possessed an open reading frame of 1347 bp, which encoded a protein of 449 amino acids with a predicted molecular weight of 51 kDa. In silico analysis discovered two domains of PM14-Zn carboxypeptidase and a C-terminal domain of M14 N/E carboxypeptidase, two zinc-binding signature motifs, and an N-glycosylation site in the MuCPN1 sequence. Homology analysis revealed that most of the residues in the sequence are conserved among the other selected homologs. Phylogeny analysis showed that MuCPN1 closely cladded with the Maylandia zebra CPN1 and clustered together with the teleostean counterparts. A challenge experiment showed modulated expression of MuCPN1 upon polyinosinic:polycytidylic acid and Lactococcus garviae in head kidney, spleen, gill, and liver tissues. The highest upregulation of MuCPN1 was observed 24 h post infection against poly I:C in each tissue. Moreover, the highest relative expressions upon L. garviae challenge were observed at 24 h post infection in head kidney tissue and 48 h post infection in spleen, gill, and liver tissues. MuCPN1 transfected cells triggered a 2.2-fold increase of nitric oxide (NO) production upon LPS stimulation compared to the un-transfected controls suggesting that MuCPN1 is an active protease which releases arginine from complement C3a, C4a, and C5a. These results have driven certain way towards enhancing the understanding of immune role of MuCPN1 in the complement defense mechanism of red lip mullet.
Collapse
Affiliation(s)
- N C N Perera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
8
|
Gao J, Scheenstra MR, van Dijk A, Veldhuizen EJA, Haagsman HP. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages. Vet Immunol Immunopathol 2018; 200:7-15. [PMID: 29776615 DOI: 10.1016/j.vetimm.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. METHODS Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM3CSK4 stimulation. Human monocyte-derived macrophages were used as control. RESULTS Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. CONCLUSION Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research.
Collapse
Affiliation(s)
- Jiye Gao
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Rongchang Campus, Southwest University, Chongqing, China
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Takenouchi T, Kitani H, Suzuki S, Nakai M, Fuchimoto DI, Tsukimoto M, Shinkai H, Sato M, Uenishi H. Immortalization and Characterization of Porcine Macrophages That Had Been Transduced with Lentiviral Vectors Encoding the SV40 Large T Antigen and Porcine Telomerase Reverse Transcriptase. Front Vet Sci 2017; 4:132. [PMID: 28871285 PMCID: PMC5566601 DOI: 10.3389/fvets.2017.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
The domestic pig is an important agricultural animal, and thus, infectious diseases that affect pigs can cause severe economic losses in the global swine industry. Various porcine pathogens target macrophages, which are classical innate immune cells. Although macrophages basically protect the host from pathogens, they also seem to contribute to infectious processes. Therefore, cultured macrophages can be used to develop in vitro models for studying not only genes associated with porcine innate immunity but also the infectious processes of porcine pathogens. However, the availability of porcine macrophage cell lines is limited. In this study, we describe a novel immortalized porcine kidney-derived macrophage (IPKM) cell line, which was generated by transferring the SV40 large T antigen (SV40LT) and porcine telomerase reverse transcriptase (pTERT) genes into primary porcine kidney-derived macrophages using lentiviral vectors. The IPKM displayed a typical macrophage morphology and was routinely passaged (doubling time: about 4 days). These cells were immunostained for macrophage markers. In addition, they exhibited substantial phagocytosis of polystyrene microbeads and released inflammatory cytokines upon lipopolysaccharide (LPS) stimulation. Furthermore, the maturation and secretion of interleukin-1β were observed after nigericin-induced inflammasome activation in LPS-primed IPKM. These findings suggest that IPKM exhibit the typical inflammatory characteristics of macrophages. By transferring the SV40LT and pTERT genes using lentiviral vectors, we also successfully immortalized macrophages derived from the peripheral blood of a low-density lipoprotein receptor-deficient pig. These results suggest that the co-expression of SV40LT and pTERT is an effective way of immortalizing porcine macrophages.
Collapse
Affiliation(s)
- Takato Takenouchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hiroshi Kitani
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Shunichi Suzuki
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Michiko Nakai
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Dai-Ichiro Fuchimoto
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | | | - Hiroki Shinkai
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Mitsuru Sato
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hirohide Uenishi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
10
|
Yoshioka M, Takenouchi T, Kitani H, Okada H, Yamanaka N. Establishment of SV40 large T antigen-immortalized bovine liver sinusoidal cell lines and their immunological responses to deoxynivalenol and lipopolysaccharide. Cell Biol Int 2016; 40:1372-1379. [PMID: 27624824 DOI: 10.1002/cbin.10682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022]
Abstract
Immortalized bovine sinusoidal cell lines provide useful tools to study the immunological responses in the liver to the gastrointestinal tract-derived toxic substances, which may cause systemic symptoms in the affected livestock. Here, we established two immortalized bovine liver sinusoidal cell lines, endothelial-like B46, and myofibroblast-like A26, from primary cultures of bovine liver cells by the transfection with SV40 large T antigen. The pro-inflammatory cytokine responses in these cell lines to deoxynivalenol (DON) and lipopolysaccharide (LPS) were then compared to those in the primary bovine Kupffer cells (BKC). BKC were highly responsive to LPS, showing increased levels of IL-1α, IL-1β, IL-6, and TNF-α mRNA 3 h after stimulation. DON induced similar pro-inflammatory cytokine responses in BKC, except for IL-6. The endothelial B46 cells exhibited upregulation of IL-1α, IL-1β, and IL-6 3 h after stimulation by LPS. In contrast to the stimulation by LPS, B46 had relatively low pro-inflammatory cytokine responses to DON, except for IL-1α, which was moderately induced at 3 h and increased at 24 h after stimulation. The myofibroblast-like A26 cells exhibited low responses in the induction of pro-inflammatory cytokines to LPS or DON; however, the expression of IL-6 was significantly observed 3 h after DON stimulation. Our results suggest that bovine liver sinusoidal cells have distinctive pro-inflammatory cytokine responses against harmful substances, and these immune responses might determine the consequence of systemic inflammations in the diseased animal.
Collapse
Affiliation(s)
- Miyako Yoshioka
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| | | | - Hiroshi Kitani
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| | - Noriko Yamanaka
- National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today 2016; 22:186-193. [PMID: 27554801 DOI: 10.1016/j.drudis.2016.08.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Macrophages are a heterogeneous population of phagocytic cells present in all tissues. Recently, several drugs that target the epigenetic machinery have emerged as attractive molecules for treating infection and inflammation by modulating macrophages. Treatment of lipopolysaccharide (LPS)-challenged macrophages with epigenetic modifiers leads to phenotype switching. This could provide stimulatory/destructive (M1) or suppressive/protective (M2) therapeutic strategies, which are crucial in the cytokine milieu in which the macrophages reside. In this review, we provide an overview of macrophage functional diversity during various diseases, including infection, as well as the current status in the development and clinical utility of epigenetic modifiers.
Collapse
Affiliation(s)
- Urmi Patel
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuy Cao
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
12
|
Kitani H, Sakuma C, Takenouchi T, Sato M, Yoshioka M, Yamanaka N. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain. RESULTS IN IMMUNOLOGY 2014; 4:68-74. [PMID: 25379377 DOI: 10.1016/j.rinim.2014.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 01/10/2023]
Abstract
We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells) in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7-10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5) was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4-5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.
Collapse
Affiliation(s)
- Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Chisato Sakuma
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Mitsuru Sato
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Miyako Yoshioka
- Safety Research Team, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
| | - Noriko Yamanaka
- Safety Research Team, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
13
|
Takenouchi T, Suzuki S, Shinkai H, Tsukimoto M, Sato M, Uenishi H, Kitani H. Extracellular ATP does not induce P2X7 receptor-dependent responses in cultured renal- and liver-derived swine macrophages. RESULTS IN IMMUNOLOGY 2014; 4:62-7. [PMID: 25379376 PMCID: PMC4213840 DOI: 10.1016/j.rinim.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 11/26/2022]
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated cation channel that is abundantly expressed in monocytes/macrophages. P2X7R activation by ATP results in various cellular responses including Ca(2+) influx, membrane pore formation, and cytokine secretion. Since P2X7R has low affinity for ATP, high concentrations of ATP (in the mM range) are generally required to activate this receptor in vitro. Functional expression of P2X7R has been detected in monocytes/macrophages obtained from different animal species including humans, rodents, dogs, and bovines, but so far it has not been detected in swine (Sus scrofa). In this study, we investigated the expression and functions of P2X7R in swine macrophages, which were isolated from mixed primary cultures of swine kidney or liver tissue. The P2X7R mRNA and protein expression observed in the swine macrophages was comparable to that seen in a c-myc-immortalized mouse kidney-derived clonal macrophage cell line (KM-1). However, extracellular ATP did not induce P2X7R-dependent sustained Ca(2+) influx, membrane pore formation, or the secretion of the bioactive cytokine interleukin-1β in the swine macrophages, whereas these responses were clearly observed in the mouse KM-1 cells after stimulation with millimolar concentrations of ATP as a positive control. These findings suggest that the ATP/P2X7R pathway is impaired in swine macrophages at least in the culture conditions used in the present study.
Collapse
Affiliation(s)
- Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Shunichi Suzuki
- Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Hiroki Shinkai
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Mitsutoshi Tsukimoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mitsuru Sato
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hirohide Uenishi
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan ; Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|