1
|
Kavaka V, Mutschler L, de la Rosa Del Val C, Eglseer K, Gómez Martínez AM, Flierl-Hecht A, Ertl-Wagner B, Keeser D, Mortazavi M, Seelos K, Zimmermann H, Haas J, Wildemann B, Kümpfel T, Dornmair K, Korn T, Hohlfeld R, Kerschensteiner M, Gerdes LA, Beltrán E. Twin study identifies early immunological and metabolic dysregulation of CD8 + T cells in multiple sclerosis. Sci Immunol 2024; 9:eadj8094. [PMID: 39331727 DOI: 10.1126/sciimmunol.adj8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory neurological disease of the central nervous system with a subclinical phase preceding frank neuroinflammation. CD8+ T cells are abundant within MS lesions, but their potential role in disease pathology remains unclear. Using high-throughput single-cell RNA sequencing and single-cell T cell receptor analysis, we compared CD8+ T cell clones from the blood and cerebrospinal fluid (CSF) of monozygotic twin pairs in which the cotwin had either no or subclinical neuroinflammation (SCNI). We identified peripheral MS-associated immunological and metabolic alterations indicative of an enhanced migratory, proinflammatory, and activated CD8+ T cell phenotype, which was also evident in cotwins with SCNI and in an independent validation cohort of people with MS. Together, our in-depth single-cell analysis indicates a disease-driving proinflammatory role of infiltrating CD8+ T cells and identifies potential immunological and metabolic therapeutic targets in both prodromal and definitive stages of the disease.
Collapse
Affiliation(s)
- Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Luisa Mutschler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Clara de la Rosa Del Val
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Ana M Gómez Martínez
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Mortazavi
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanna Zimmermann
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
2
|
Mathisen AF, Vacaru AM, Unger L, Lamba EM, Mardare OAM, Daian LM, Ghila L, Vacaru AM, Chera S. Molecular profiling of NOD mouse islets reveals a novel regulator of insulitis onset. Sci Rep 2024; 14:14669. [PMID: 38918575 PMCID: PMC11199597 DOI: 10.1038/s41598-024-65454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Non-obese diabetes (NOD) mice are an established, spontaneous model of type 1 diabetes in which diabetes develops through insulitis. Using next-generation sequencing, coupled with pathway analysis, the molecular fingerprint of early insulitis was mapped in a cohort of mice ranging from 4 to 12 weeks of age. The resulting dynamic timeline revealed an initial decrease in proliferative capacity followed by the emergence of an inflammatory signature between 6 and 8 weeks that increased to a regulatory plateau between 10 and 12 weeks. The inflammatory signature is identified by the activation of central immunogenic factors such as Infg, Il1b, and Tnfa, and activation of canonical inflammatory signaling. Analysis of the regulatory landscape revealed the transcription factor Atf3 as a potential novel modulator of inflammatory signaling in the NOD islets. Furthermore, the Hedgehog signaling pathway correlated with Atf3 regulation, suggesting that the two play a role in regulating islet inflammation; however, further studies are needed to establish the nature of this connection.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Lucas Unger
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway
| | - Elena Mirela Lamba
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Oana-Ana-Maria Mardare
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Luiza Ghila
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.
| | - Simona Chera
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Garcia OA, Arslanian K, Whorf D, Thariath S, Shriver M, Li JZ, Bigham AW. The Legacy of Infectious Disease Exposure on the Genomic Diversity of Indigenous Southern Mexicans. Genome Biol Evol 2023; 15:7023365. [PMID: 36726304 PMCID: PMC10016042 DOI: 10.1093/gbe/evad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
To characterize host risk factors for infectious disease in Mesoamerican populations, we interrogated 857,481 SNPs assayed using the Affymetrix 6.0 genotyping array for signatures of natural selection in immune response genes. We applied three statistical tests to identify signatures of natural selection: locus-specific branch length (LSBL), the cross-population extended haplotype homozygosity (XP-EHH), and the integrated haplotype score (iHS). Each of the haplotype tests (XP-EHH and iHS) were paired with LSBL and significance was determined at the 1% level. For the paired analyses, we identified 95 statistically significant windows for XP-EHH/LSBL and 63 statistically significant windows for iHS/LSBL. Among our top immune response loci, we found evidence of recent directional selection associated with the major histocompatibility complex (MHC) and the peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. These findings illustrate that Mesoamerican populations' immunity has been shaped by exposure to infectious disease. As targets of selection, these variants are likely to encode phenotypes that manifest themselves physiologically and therefore may contribute to population-level variation in immune response. Our results shed light on past selective events influencing the host response to modern diseases, both pathogenic infection as well as autoimmune disorders.
Collapse
Affiliation(s)
- Obed A Garcia
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Data Science, Stanford University, Stanford, California
| | | | - Daniel Whorf
- College of Medicine, University of Illinois, Peoria, Illinois
| | - Serena Thariath
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | - Mark Shriver
- Department of Anthropology, Penn State University, State College, Pennsylvania
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, California
| |
Collapse
|
4
|
Krogvold L, Leete P, Mynarek IM, Russell MA, Gerling IC, Lenchik NI, Mathews C, Richardson SJ, Morgan NG, Dahl-Jørgensen K. Detection of Antiviral Tissue Responses and Increased Cell Stress in the Pancreatic Islets of Newly Diagnosed Type 1 Diabetes Patients: Results From the DiViD Study. Front Endocrinol (Lausanne) 2022; 13:881997. [PMID: 35957810 PMCID: PMC9360491 DOI: 10.3389/fendo.2022.881997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Aims/hypothesis The Diabetes Virus Detection (DiViD) study has suggested the presence of low-grade enteroviral infection in pancreatic tissue collected from six of six live adult patients newly diagnosed with type 1 diabetes. The present study aimed to compare the gene and protein expression of selected virally induced pathogen recognition receptors and interferon stimulated genes in islets from these newly diagnosed type 1 diabetes (DiViD) subjects vs age-matched non-diabetic (ND) controls. Methods RNA was extracted from laser-captured islets and Affymetrix Human Gene 2.0 ST arrays used to obtain gene expression profiles. Lists of differentially expressed genes were subjected to a data-mining pipeline searching for enrichment of canonical pathways, KEGG pathways, Gene Ontologies, transcription factor binding sites and other upstream regulators. In addition, the presence and localisation of specific viral response proteins (PKR, MxA and MDA5) were examined by combined immunofluorescent labelling in sections of pancreatic tissue. Results The data analysis and data mining process revealed a significant enrichment of gene ontologies covering viral reproduction and infectious cycles; peptide translation, elongation and initiation, as well as oxidoreductase activity. Enrichment was identified in the KEGG pathways for oxidative phosphorylation; ribosomal and metabolic activity; antigen processing and presentation and in canonical pathways for mitochondrial dysfunction, oxidative phosphorylation and EIF2 signaling. Protein Kinase R (PKR) expression did not differ between newly diagnosed type 1 diabetes and ND islets at the level of total RNA, but a small subset of β-cells displayed markedly increased PKR protein levels. These PKR+ β-cells correspond to those previously shown to contain the viral protein, VP1. RNA encoding MDA5 was increased significantly in newly diagnosed type 1 diabetes islets, and immunostaining of MDA5 protein was seen in α- and certain β-cells in both newly diagnosed type 1 diabetes and ND islets, but the expression was increased in β-cells in type 1 diabetes. In addition, an uncharacterised subset of synaptophysin positive, but islet hormone negative, cells expressed intense MDA5 staining and these were more prevalent in DiViD cases. MxA RNA was upregulated in newly diagnosed type 1 diabetes vs ND islets and MxA protein was detected exclusively in newly diagnosed type 1 diabetes β-cells. Conclusion/interpretation The gene expression signatures reveal that pathways associated with cellular stress and increased immunological activity are enhanced in islets from newly diagnosed type 1 diabetes patients compared to controls. The increases in viral response proteins seen in β-cells in newly diagnosed type 1 diabetes provide clear evidence for the activation of IFN signalling pathways. As such, these data strengthen the hypothesis that an enteroviral infection of islet β-cells contributes to the pathogenesis of type 1 diabetes.
Collapse
Affiliation(s)
- Lars Krogvold
- Pediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Odontology, University of Oslo, Oslo, Norway
| | - Pia Leete
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Ida M. Mynarek
- Pediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mark A. Russell
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Ivan C. Gerling
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nataliya I. Lenchik
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Clayton Mathews
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Sarah J. Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Noel G. Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
STAT4 sequence variant and elevated gene expression are associated with type 1 diabetes in Polish children. Cent Eur J Immunol 2020; 45:22-28. [PMID: 32425676 PMCID: PMC7226553 DOI: 10.5114/ceji.2019.92492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022] Open
Abstract
Introduction Type 1 diabetes (T1D) is caused by the autoimmune destruction of pancreatic β cells, resulting from coincident genetic predisposition and some environmental triggers. Signal transducer and activator of transcription 4 (STAT4) gene encodes a transcription factor, which promotes Th1 cell differentiation, interferon γ production, and development of Th17 cells. Polymorphisms of STAT4 are associated with several autoimmune conditions, while studies in T1D provided inconsistent results. This analysis was designed to investigate the association of STAT4 rs7574865 with T1D in Polish children and to assess STAT4 expression in newly diagnosed subjects. Material and methods Rs7574865 was genotyped in 656 T1D children and 782 healthy individuals. STAT4 mRNA expression was analyzed in peripheral blood mononuclear cells (PBMCs) from 29 children with T1D and 27 age-matched controls. β-cell and thyroid-specific serum autoantibodies were assessed with radioimmunoassays. Results The distribution of rs7574865 genotypes and alleles demonstrated significant difference (p = 0.002, p < 0.001, respectively) between patients vs. controls. Carriers of the minor T allele presented earlier T1D onset (p = 0.017). No differences were found in γ-cell autoantibody in genotype-stratified patients (p > 0.050), while anti-thyroid antibodies were more frequent in carriers of the minor allele(p = 0.039 for anti-thyroperoxidase, p = 0.007 for anti-thyroglobulin antibodies, respectively). STAT4 was overexpressed in PBMCs from T1D patients (p = 0.008), especially subjects with two/three circulating β-cell antibodies (p < 0.001). Conclusions The study confirms an association of STAT4 rs7574865 with T1D in Polish patients, and provides an evidence for its relationship with an earlier disease onset and concomitant thyroid autoimmunity. STAT4 expression appears elevated in T1D, especially with more severe reaction against β-cell antigens.
Collapse
|
6
|
Zinc finger protein 593 is upregulated during skeletal muscle atrophy and modulates muscle cell differentiation. Exp Cell Res 2019; 383:111563. [PMID: 31442450 DOI: 10.1016/j.yexcr.2019.111563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
Abstract
Skeletal muscle atrophy is a debilitating condition that can arise due to aging, cancer, corticosteroid use, and denervation. To better characterize the molecular genetic events of neurogenic atrophy, a previous study analyzed gene expression patterns in gastrocnemius muscle following sciatic nerve transection and found for the first time that Zinc Finger Protein 593 (Zfp593) is expressed in skeletal muscle and is induced in response to denervation. Quantitative PCR and Western blot analyses confirmed that Zfp593 is expressed in both proliferating myoblasts and differentiated myotubes. To assess sub-cellular location, GFP-tagged Zfp593 was expressed in C2C12 cells and found to localize to the nucleus. The Zfp593 protein possesses a putative zinc finger domain and is believed to function as a modulator of the Oct-2 transcription factor. Interestingly, ectopic expression of Zfp593 did not affect the ability of Oct-1 or Oct-2 to inhibit an Oct reporter gene in muscle cells. Finally, Zfp593 overexpression in cultured muscle cells resulted in significant repression of muscle cell differentiation and attenuation of ERK1/2 and p38 phosphorylation, but did not vitiate protein synthesis. The discovery that Zfp593 is expressed in skeletal muscle combined with the observation that it is induced in response to neurogenic atrophy furthers our understanding of the molecular genetic events of muscle wasting.
Collapse
|
7
|
Leslie KA, Russell MA, Taniguchi K, Richardson SJ, Morgan NG. The transcription factor STAT6 plays a critical role in promoting beta cell viability and is depleted in islets of individuals with type 1 diabetes. Diabetologia 2019; 62:87-98. [PMID: 30338340 PMCID: PMC6290857 DOI: 10.1007/s00125-018-4750-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS In type 1 diabetes, selective beta cell loss occurs within the inflamed milieu of insulitic islets. This milieu is generated via the enhanced secretion of proinflammatory cytokines and by the loss of anti-inflammatory molecules such as IL-4 and IL-13. While the actions of proinflammatory cytokines have been well-studied in beta cells, the effects of their anti-inflammatory counterparts have received relatively little attention and we have addressed this. METHODS Clonal beta cells, isolated human islets and pancreas sections from control individuals and those with type 1 diabetes were employed. Gene expression was measured using targeted gene arrays and by quantitative RT-PCR. Protein expression was monitored in cell extracts by western blotting and in tissue sections by immunocytochemistry. Target proteins were knocked down selectively with interference RNA. RESULTS Cytoprotection achieved with IL-4 and IL-13 is mediated by the early activation of signal transducer and activator of transcription 6 (STAT6) in beta cells, leading to the upregulation of anti-apoptotic proteins, including myeloid leukaemia-1 (MCL-1) and B cell lymphoma-extra large (BCLXL). We also report the induction of signal regulatory protein-α (SIRPα), and find that knockdown of SIRPα is associated with reduced beta cell viability. These anti-apoptotic proteins and their attendant cytoprotective effects are lost following siRNA-mediated knockdown of STAT6 in beta cells. Importantly, analysis of human pancreas sections revealed that STAT6 is markedly depleted in the beta cells of individuals with type 1 diabetes, implying the loss of cytoprotective responses. CONCLUSIONS/INTERPRETATION Selective loss of STAT6 may contribute to beta cell demise during the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Kaiyven A Leslie
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Mark A Russell
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| | - Kazuto Taniguchi
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
8
|
Fleischer LM, Somaiya RD, Miller GM. Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 2018; 9:683. [PMID: 29997511 PMCID: PMC6029583 DOI: 10.3389/fphar.2018.00683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
Since its discovery in 2001, the major focus of TAAR1 research has been on its role in monoaminergic regulation, drug-induced reward and psychiatric conditions. More recently, TAAR1 expression and functionality in immune system regulation and immune cell activation has become a topic of emerging interest. Here, we review the immunologically-relevant TAAR1 literature and incorporate open-source expression and cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in the immune system and cancers revealed through NCBI GEO datamining and discuss its regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss connections and logical directions for further study of TAAR1 in immunological function, and its potential role as a mediator or modulator of immune dysregulation, immunological effects of psychostimulant drugs of abuse, and cancer progression.
Collapse
Affiliation(s)
- Lisa M Fleischer
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Rachana D Somaiya
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Center for Drug Discovery, Northeastern University, Boston, MA, United States
| |
Collapse
|
9
|
Crèvecoeur I, Gudmundsdottir V, Vig S, Marques Câmara Sodré F, D'Hertog W, Fierro AC, Van Lommel L, Gysemans C, Marchal K, Waelkens E, Schuit F, Brunak S, Overbergh L, Mathieu C. Early differences in islets from prediabetic NOD mice: combined microarray and proteomic analysis. Diabetologia 2017; 60:475-489. [PMID: 28078386 DOI: 10.1007/s00125-016-4191-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is an endocrine disease where a long preclinical phase, characterised by immune cell infiltration in the islets of Langerhans, precedes elevated blood glucose levels and disease onset. Although several studies have investigated the role of the immune system in this process of insulitis, the importance of the beta cells themselves in the initiation of type 1 diabetes is less well understood. The aim of this study was to investigate intrinsic differences present in the islets from diabetes-prone NOD mice before the onset of insulitis. METHODS The islet transcriptome and proteome of 2-3-week-old mice was investigated by microarray and 2-dimensional difference gel electrophoresis (2D-DIGE), respectively. Subsequent analyses using sophisticated pathway analysis and ranking of differentially expressed genes and proteins based on their relevance in type 1 diabetes were performed. RESULTS In the preinsulitic period, alterations in general pathways related to metabolism and cell communication were already present. Additionally, our analyses pointed to an important role for post-translational modifications (PTMs), especially citrullination by PAD2 and protein misfolding due to low expression levels of protein disulphide isomerases (PDIA3, 4 and 6), as causative mechanisms that induce beta cell stress and potential auto-antigen generation. CONCLUSIONS/INTERPRETATION We conclude that the pancreatic islets, irrespective of immune differences, may contribute to the initiation of the autoimmune process. DATA AVAILABILITY All microarray data are available in the ArrayExpress database ( www.ebi.ac.uk/arrayexpress ) under accession number E-MTAB-5264.
Collapse
Affiliation(s)
- Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Valborg Gudmundsdottir
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Saurabh Vig
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | | | - Wannes D'Hertog
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Ana Carolina Fierro
- Department of Information Technology, IMinds, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IMinds, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Etienne Waelkens
- SyBioMa, KU Leuven, Leuven, Belgium
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Søren Brunak
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium.
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 bus 902, 3000, Leuven, Belgium
| |
Collapse
|
10
|
Verardo LL, Silva FF, Lopes MS, Madsen O, Bastiaansen JWM, Knol EF, Kelly M, Varona L, Lopes PS, Guimarães SEF. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways. Genet Sel Evol 2016; 48:9. [PMID: 26830357 PMCID: PMC4736284 DOI: 10.1186/s12711-016-0189-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
Abstract
Background Reproductive traits such as number of stillborn piglets (SB) and number of teats (NT) have been evaluated in many genome-wide association studies (GWAS). Most of these GWAS were performed under the assumption that these traits were normally distributed. However, both SB and NT are discrete (e.g. count) variables. Therefore, it is necessary to test for better fit of other appropriate statistical models based on discrete distributions. In addition, although many GWAS have been performed, the biological meaning of the identified candidate genes, as well as their functional relationships still need to be better understood. Here, we performed and tested a Bayesian treatment of a GWAS model assuming a Poisson distribution for SB and NT in a commercial pig line. To explore the biological role of the genes that underlie SB and NT and identify the most likely candidate genes, we used the most significant single nucleotide polymorphisms (SNPs), to collect related genes and generated gene-transcription factor (TF) networks. Results Comparisons of the Poisson and Gaussian distributions showed that the Poisson model was appropriate for SB, while the Gaussian was appropriate for NT. The fitted GWAS models indicated 18 and 65 significant SNPs with one and nine quantitative trait locus (QTL) regions within which 18 and 57 related genes were identified for SB and NT, respectively. Based on the related TF, we selected the most representative TF for each trait and constructed a gene-TF network of gene-gene interactions and identified new candidate genes. Conclusions Our comparative analyses showed that the Poisson model presented the best fit for SB. Thus, to increase the accuracy of GWAS, counting models should be considered for this kind of trait. We identified multiple candidate genes (e.g. PTP4A2, NPHP1, and CYP24A1 for SB and YLPM1, SYNDIG1L, TGFB3, and VRTN for NT) and TF (e.g. NF-κB and KLF4 for SB and SOX9 and ELF5 for NT), which were consistent with known newborn survival traits (e.g. congenital heart disease in fetuses and kidney diseases and diabetes in the mother) and mammary gland biology (e.g. mammary gland development and body length). Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0189-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucas L Verardo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570000, Brazil. .,Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Fabyano F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570000, Brazil.
| | - Marcos S Lopes
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands. .,Topigs Norsvin, Research Center, 6641 SZ, Beuningen, The Netherlands.
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - John W M Bastiaansen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH, Wageningen, The Netherlands.
| | - Egbert F Knol
- Topigs Norsvin, Research Center, 6641 SZ, Beuningen, The Netherlands.
| | - Mathew Kelly
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Luis Varona
- Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013, Saragossa, Spain.
| | - Paulo S Lopes
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570000, Brazil.
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570000, Brazil.
| |
Collapse
|