1
|
Moreno-Jiménez E, Morgado N, Gómez-García M, Sanz C, Gil-Melcón M, Isidoro-García M, Dávila I, García-Sánchez A. TSLP and TSLPR Expression Levels in Peripheral Blood as Potential Biomarkers in Patients with Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2025; 26:1227. [PMID: 39940994 PMCID: PMC11818291 DOI: 10.3390/ijms26031227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
TSLP is an alarmin released upon activation of epithelia in response to various external stimuli and is involved in type 2 cytokine-mediated pathological disorders. The formation of a high-affinity heterodimeric receptor complex, comprising the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα, is required for signaling. This study investigated whether TSLP and TSLPR expression in peripheral blood or nasal polyps could provide a valuable approach for the molecular phenotyping of patients with chronic rhinosinusitis with nasal polyps (CRSwNP). The study population comprised 156 unrelated Caucasian individuals, including 45 controls and 111 patients with CRSwNP. Quantitative PCR analysis of TSLP and TSLPR was performed on the population study's peripheral blood and nasal biopsy. The data were analyzed for potential associations, and possible use as a biomarker was studied. Significant differences were observed in TSLP and TSLPR blood expression between the control group and patients. Similarly, the expression of TSLP observed in biopsy samples was statistically significantly elevated in the polyp tissue of the patient compared with healthy controls. The combination of TSLP and TSLPR expression testing with peripheral blood eosinophils represents a more specific biomarker in patients exhibiting low eosinophil values. Further investigation of TSLP/TSLPR mRNA levels in peripheral blood may yield new minimally invasive biomarkers.
Collapse
Affiliation(s)
- Emma Moreno-Jiménez
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Microbiology and Genetics Department, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Morgado
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Microbiology and Genetics Department, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Manuel Gómez-García
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Catalina Sanz
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Microbiology and Genetics Department, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
| | - María Gil-Melcón
- Otorhinolaryngology and Head and Neck Surgery Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain;
| | - María Isidoro-García
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
- Medicine Department, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ignacio Dávila
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
- Biomedical and Diagnostics Sciences Department, Universidad de Salamanca, 37007 Salamanca, Spain
- Allergy Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Asunción García-Sánchez
- Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain; (E.M.-J.); (N.M.); (M.G.-G.); (M.I.-G.); (I.D.); (A.G.-S.)
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias—RICORS, 28029 Madrid, Spain
- Biomedical and Diagnostics Sciences Department, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Połomska J, Sikorska-Szaflik H, Drabik-Chamerska A, Sozańska B, Dębińska A. Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children. J Clin Med 2024; 13:2542. [PMID: 38731070 PMCID: PMC11084404 DOI: 10.3390/jcm13092542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
As the burden of mild asthma is not well understood, the significance of expanding research in the group of patients with mild asthma is emphasized. Thymic stromal lymphopoietin (TSLP) and interleukin 33 (IL-33) are involved in the pathogenesis of atopy and the immune response to inhaled environmental insults, such as allergens, in asthmatic patients. Objectives: The objective of this study was to explore the correlation between specific polymorphisms within the genes encoding TSLP and IL-33, as well as the concentrations of TSLP and IL-33 in the serum, and the occurrence of pediatric mild asthma. Methods: The analysis encompassed 52 pediatric patients diagnosed with mild bronchial asthma, including both atopic and non-atopic cases, and a control group of 26 non-asthmatic children. Recruitment was conducted through a comprehensive questionnaire. Parameters such as allergic sensitization, serum levels of circulating TSLP and IL-33, and the identification of single-nucleotide polymorphisms in TSLP (rs11466750 and rs2289277) and IL-33 (rs992969 and rs1888909) were assessed for all participants. Results: Significantly lower mean serum TSLP concentrations were observed in asthmatic subjects compared to the control group, with atopic asthma patients showing even lower TSLP levels than non-atopic counterparts. No significant differences were found in mean serum IL-33 concentrations between the two groups. Considering the allele model, for both tested SNPs of IL-33, we observed that patients with asthma, atopic asthma, and atopy statistically less frequently possess the risk allele. Conclusions: Our study findings suggest that IL-33 and TSLP do not serve as ideal biomarkers for mild asthma in children. Their effectiveness as biomarkers might be more relevant for assessing disease severity rather than identifying asthma in pediatric patients. Further research focusing on the association between TSLP and IL-33 gene polymorphisms and asthma is expected to significantly advance disease management.
Collapse
Affiliation(s)
- Joanna Połomska
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland; (H.S.-S.); (A.D.-C.); (B.S.); (A.D.)
| | | | | | | | | |
Collapse
|
3
|
Andreasson LM, Dyhre-Petersen N, Hvidtfeldt M, Jørgensen GØ, Von Bülow A, Klein DK, Uller L, Erjefält J, Porsbjerg C, Sverrild A. Airway hyperresponsiveness correlates with airway TSLP in asthma independent of eosinophilic inflammation. J Allergy Clin Immunol 2024; 153:988-997.e11. [PMID: 38081546 DOI: 10.1016/j.jaci.2023.11.915] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is released from the airway epithelium in response to various environmental triggers, inducing a type-2 inflammatory response, and is associated with airway inflammation, airway hyperresponsiveness (AHR), and exacerbations. TSLP may also induce AHR via a direct effect on airway smooth muscle and mast cells, independently of type-2 inflammation, although association between airway TSLP and AHR across asthma phenotypes has been described sparsely. OBJECTIVES This study sought to investigate the association between AHR and levels of TSLP in serum, sputum, and bronchoalveolar lavage in patients with asthma with and without type-2 inflammation. METHODS A novel ultrasensitive assay was used to measure levels of TSLP in patients with asthma (serum, n = 182; sputum, n = 81; bronchoalveolar lavage, n = 85) and healthy controls (serum, n = 47). The distribution and association among airway and systemic TSLP, measures of AHR, type-2 inflammation, and severity of disease were assessed. RESULTS TSLP in sputum was associated with AHR independently of levels of eosinophils and fractional exhaled nitric oxide (ρ = 0.49, P = .005). Serum TSLP was higher in both eosinophil-high and eosinophil-low asthma compared to healthy controls: geometric mean: 1600 fg/mL (95% CI: 1468-1744 fg/mL) and 1294 fg/mL (95% CI: 1167-1435 fg/mL) versus 846 fg/mL (95% CI: 661-1082 fg/mL), but did not correlate with the level of AHR. Increasing age, male sex, and eosinophils in blood were associated with higher levels of TSLP in serum, whereas lung function, inhaled corticosteroid dose, and symptom score were not. CONCLUSIONS The association between TSLP in sputum and AHR to mannitol irrespective of markers of type-2 inflammation further supports a role of TSLP in AHR that is partially independent of eosinophilic inflammation.
Collapse
Affiliation(s)
- Louise Munkholm Andreasson
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Nanna Dyhre-Petersen
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Gustav Ørting Jørgensen
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anna Von Bülow
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ditte Kjærsgaard Klein
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
4
|
Nedeva D, Kowal K, Mihaicuta S, Guidos Fogelbach G, Steiropoulos P, Jose Chong-Neto H, Tiotiu A. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17:773-786. [PMID: 37746733 DOI: 10.1080/17476348.2023.2262920] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.
Collapse
Affiliation(s)
- Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Department of Internal Medicine and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine and Pharmacy, University of Medicine and Pharmacy, Timisoara, Romania
- Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clinicas Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Vandœuvre-lès-Nancy, France
- Development, Adaptation and Disadvantage. Cardiorespiratory regulations and motor control (EA 3450 DevAH), University of Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
5
|
Garcia-Garcia ML, Sastre B, Arroyas M, Beato M, Alonso P, Rodrigo-Muñoz JM, Del Pozo V, Casas I, Calvo C. Nasal TSLP and periostin in infants with severe bronchiolitis and risk of asthma at 4 years of age. Respir Res 2023; 24:26. [PMID: 36694181 PMCID: PMC9872300 DOI: 10.1186/s12931-023-02323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Severe bronchiolitis is often associated with subsequent respiratory morbidity, mainly recurrent wheezing and asthma. However, the underlying immune mechanisms remain unclear. The main goal of this study was to investigate the association of nasal detection of periostin and thymic stromal lymphopoietin (TSLP) during severe bronchiolitis with the development of asthma at 4 years of age. METHODS Observational, longitudinal, post-bronchiolitis, hospital-based, follow-up study. Children hospitalized for bronchiolitis between October/2013 and July/2017, currently aged 4 years, included in a previous study to investigate the nasal airway secretion of TSLP and periostin during bronchiolitis, were included. Parents were contacted by telephone, and were invited to a clinical interview based on a structured questionnaire to obtain information on the respiratory evolution. The ISAAC questionnaire for asthma symptoms for 6-7-year-old children, was also employed. RESULTS A total of 248 children were included (median age 4.4 years). The mean age at admission for bronchiolitis was 3.1 (IQR: 1.5-6.5) months. Overall, 21% had ever been diagnosed with asthma and 37% had wheezed in the last 12 months. Measurable nasal TSLP was detected at admission in 27(11%) cases and periostin in 157(63%). The detection of nasal TSLP was associated with the subsequent prescription of maintenance asthma treatment (p = 0.04), montelukast (p = 0.01), and the combination montelukast/inhaled glucocorticosteroids (p = 0.03). Admissions for asthma tended to be more frequent in children with TSLP detection (p = 0.07). In the multivariate analysis, adjusting for potential confounders, the detection of TSLP remained independently associated with chronic asthma treatment prescription (aOR:2.724; CI 1.051-7.063, p:0.04) and with current asthma (aOR:3.41; CI 1.20-9.66, p:0.02). Nasal detection of periostin was associated with lower frequency of ever use of short-acting beta2-agonists (SABA) (p = 0.04), lower prevalence of current asthma (p = 0.02), less prescription of maintenance asthma treatment in the past 12 months (p = 0.02, respectively). In the multivariate analysis, periostin was associated with lower risk of asthma at 4 years, independently of the atopic status (aOR:0.511 CI 95% 0.284-0.918, p:0.025). CONCLUSIONS Our results show a positive correlation between nasal TSLP detection in severe bronchiolitis and the presence of current asthma, prescription of asthma maintenance treatment and respiratory admissions up to the age of 4 years. By contrast, we found a protective association between nasal periostin detection and current asthma at 4 years, ever diagnosis of asthma, maintenance asthma treatment prescription, and respiratory admissions.
Collapse
Affiliation(s)
- Maria Luz Garcia-Garcia
- grid.411361.00000 0001 0635 4617Pediatrics Department, Hospital Universitario Severo Ochoa, Avenida Orellana s/n, 28911 Leganés, Madrid Spain ,grid.73221.350000 0004 1767 8416Fundación para la Investigación Biomédica, Hospital Universitario Puerta de Hierro, Majadahonda, Spain ,grid.512890.7CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain ,Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Beatriz Sastre
- grid.419651.e0000 0000 9538 1950Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Maria Arroyas
- grid.411361.00000 0001 0635 4617Pediatrics Department, Hospital Universitario Severo Ochoa, Avenida Orellana s/n, 28911 Leganés, Madrid Spain ,grid.73221.350000 0004 1767 8416Fundación para la Investigación Biomédica, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Maite Beato
- grid.411361.00000 0001 0635 4617Pediatrics Department, Hospital Universitario Severo Ochoa, Avenida Orellana s/n, 28911 Leganés, Madrid Spain ,grid.73221.350000 0004 1767 8416Fundación para la Investigación Biomédica, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Patricia Alonso
- grid.411361.00000 0001 0635 4617Pediatrics Department, Hospital Universitario Severo Ochoa, Avenida Orellana s/n, 28911 Leganés, Madrid Spain ,grid.73221.350000 0004 1767 8416Fundación para la Investigación Biomédica, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - José Manuel Rodrigo-Muñoz
- grid.419651.e0000 0000 9538 1950Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain ,grid.512891.6CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Victoria Del Pozo
- grid.419651.e0000 0000 9538 1950Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain ,grid.512891.6CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Inmaculada Casas
- grid.413448.e0000 0000 9314 1427Respiratory Virus and Influenza Unit, National Microbiology Centre (ISCIII), Madrid, Spain
| | - Cristina Calvo
- grid.512890.7CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain ,Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain ,grid.81821.320000 0000 8970 9163Pediatric Infectious Diseases Department, Hospital Universitario La Paz, Madrid, Spain ,Fundación IdiPaz, Madrid, Spain ,TEDDY Network (European Network of Excellence for Pediatric Clinical Research), Madrid, Spain
| |
Collapse
|