1
|
Ye L, Liu R, Li Q, Zhou C, Tan X. Dysregulated VEGF/VEGFR-2 Signaling and Plexogenic Lesions in the Embryonic Lungs of Chickens Predisposed to Pulmonary Arterial Hypertension. Int J Mol Sci 2024; 25:4489. [PMID: 38674074 PMCID: PMC11049811 DOI: 10.3390/ijms25084489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Plexiform lesions are a hallmark of pulmonary arterial hypertension (PAH) in humans and are proposed to stem from dysfunctional angioblasts. Broiler chickens (Gallus gallus) are highly susceptible to PAH, with plexiform-like lesions observed in newly hatched individuals. Here, we reported the emergence of plexiform-like lesions in the embryonic lungs of broiler chickens. Lung samples were collected from broiler chickens at embryonic day 20 (E20), hatch, and one-day-old, with PAH-resistant layer chickens as controls. Plexiform lesions consisting of CD133+/vascular endothelial growth factor receptor type-2 (VEGFR-2)+ angioblasts were exclusively observed in broiler embryos and sporadically in layer embryos. Distinct gene profiles of angiogenic factors were observed between the two strains, with impaired VEGF-A/VEGFR-2 signaling correlating with lesion development and reduced arteriogenesis. Pharmaceutical inhibition of VEGFR-2 resulted in enhanced lesion development in layer embryos. Moreover, broiler embryonic lungs displayed increased activation of HIF-1α and nuclear factor erythroid 2-related factor 2 (Nrf2), indicating a hypoxic state. Remarkably, we found a negative correlation between lung Nrf2 activation and VEGF-A and VEGFR-2 expression. In vitro studies indicated that Nrf2 overactivation restricted VEGF signaling in endothelial progenitor cells. The findings from broiler embryos suggest an association between plexiform lesion development and impaired VEGF system due to aberrant activation of Nrf2.
Collapse
Affiliation(s)
- Lujie Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinghao Li
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunzhen Zhou
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Potential contribution of early endothelial progenitor cell (eEPC)-to-macrophage switching in the development of pulmonary plexogenic lesion. Respir Res 2022; 23:290. [PMID: 36274148 PMCID: PMC9590182 DOI: 10.1186/s12931-022-02210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background Plexiform lesions, which have a dynamic appearance in structure and cellular composition, are the histological hallmark of severe pulmonary arterial hypertension in humans. The pathogenesis of the lesion development remains largely unknown, although it may be related to local inflammation and dysfunction in early progenitor endothelial cells (eEPCs). We tested the hypothesis that eEPCs contribute to the development of plexiform lesions by differentiating into macrophages in the setting of chronic inflammation. Methods The eEPC markers CD133 and VEGFR-2, macrophage lineage marker mannose receptor C-type 1 (MRC1), TNFα and nuclear factor erythroid 2-related factor 2 (Nrf2) in plexiform lesions in a broiler model were determined by immunohistochemistry. eEPCs derived from peripheral blood mononuclear cells were exposed to TNFα, and macrophage differentiation and angiogenic capacity of the cells were evaluated by phagocytotic and Matrigel plug assays, respectively. The role of Nrf2 in eEPC-to-macrophage transition as well as in MRC1 expression was also evaluated. Intratracheal installation of TNFα was conducted to determine the effect of local inflammation on the formation of plexiform lesions. Results Cells composed of the early lesions have a typical eEPC phenotype whereas those in more mature lesions display molecular and morphological characteristics of macrophages. Increased TNFα production in plexiform lesions was observed with lesion progression. In vitro studies showed that chronic TNFα challenge directed eEPCs to macrophage differentiation accompanied by hyperactivation of Nrf2, a stress-responsive transcription factor. Nrf2 activation (Keap1 knockdown) caused a marked downregulation in CD133 but upregulation in MRC1 mRNA. Dual luciferase reporter assay demonstrated that Nrf2 binds to the promoter of MRC1 to trigger its expression. In good agreement with the in vitro observation, TNFα exposure induced macrophage differentiation of eEPCs in Matrigel plugs, resulting in reduced neovascularization of the plugs. Intratracheal installation of TNFα resulted in a significant increase in plexiform lesion density. Conclusions This work provides evidence suggesting that macrophage differentiation of eEPCs resulting from chronic inflammatory stimulation contributes to the development of plexiform lesions. Given the key role of Nrf2 in the phenotypic switching of eEPCs to macrophages, targeting this molecular might be beneficial for intervention of plexiform lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02210-7.
Collapse
|
3
|
Shao F, Liu R, Tan X, Zhang Q, Ye L, Yan B, Zhuang Y, Xu J. MSC Transplantation Attenuates Inflammation, Prevents Endothelial Damage and Enhances the Angiogenic Potency of Endogenous MSCs in a Model of Pulmonary Arterial Hypertension. J Inflamm Res 2022; 15:2087-2101. [PMID: 35386223 PMCID: PMC8977867 DOI: 10.2147/jir.s355479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Pulmonary arterial hypertension (PAH) is a progressive and fatal pulmonary vascular disease initiated by endothelial dysfunction. Mesenchymal stromal cells (MSCs) have been shown to ameliorate PAH in various rodent models; however, these models do not recapitulate all the histopathological alterations observed in human PAH. Broiler chickens (Gallus gallus) can develop PAH spontaneously with neointimal and plexogenic arteriopathy strikingly similar to that in human patients. Herein, we examined the protective effects of MSC transplantation on the development of PAH in this avian model. Methods Mixed-sex broilers at 15 d of age were received 2×106 MSCs or PBS intravenously. One day later, birds were exposed to cool temperature with excessive salt in their drinking water to induce PAH. Cumulative morbidity from PAH and right-to-left ventricle ratio were recorded. Lung histologic features were evaluated for the presence of endothelial damage, endothelial proliferation and plexiform lesions. Expression of proinflammatory mediators and angiogenic factors in the lung was detected. Matrigel tube formation assay was performed to determine the angiogenic potential of endogenous MSCs. Results MSC administration reduced cumulative PAH morbidity and attenuated endothelial damage, plexiform lesions and production of inflammatory mediators in the lungs. No significant difference in the expression of paracrine angiogenic factors including VEGF-A and TGF-β was determined between groups, suggesting that they are not essential for the beneficial effect of MSC transplantation. Interestingly, the endogenous MSCs from birds receiving MSC transplantation demonstrated endothelial differentiatial capacity in vitro whereas those from the mock birds did not. Conclusion Our results support the therapeutic use of MSC transplantation for PAH treatment and suggest that exogenous MSCs produce beneficial effects through modulating inflammation and endogenous MSC-mediated vascular repair.
Collapse
Affiliation(s)
- Fengjin Shao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Qiaoyan Zhang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lujie Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bingxuan Yan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhuang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiaxue Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
4
|
Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933910000711] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Shao FJ, Ying YT, Tan X, Zhang QY, Liao WT. Metabonomics Profiling Reveals Biochemical Pathways Associated with Pulmonary Arterial Hypertension in Broiler Chickens. J Proteome Res 2018; 17:3445-3453. [DOI: 10.1021/acs.jproteome.8b00316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Feng-Jin Shao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yi-Tian Ying
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiao-Yan Zhang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wen-Ting Liao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
6
|
Cui H, Liu J, Xu G, Ren X, Li Z, Li Y, Ning Z. Altered Expression of Zinc Transporter ZIP12 in Broilers of Ascites Syndrome Induced by Intravenous Cellulose Microparticle Injection. Biochem Genet 2018; 57:159-169. [PMID: 30073576 DOI: 10.1007/s10528-018-9876-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/14/2018] [Indexed: 12/13/2022]
Abstract
Ascites syndrome (AS) is a harmful disease in fast-growing broilers characterized by heart failure and serious fluid accumulation in the abdominal cavity. One of the known functions of zinc transporter ZIP12 is an important regulator in pulmonary hypertension (PH) in rat. Whether chicken ZIP12 is involved in the process of AS need to be explored. Here, chicken ZIP12 was sequenced and expression pattern and histological distribution were detected in broilers of AS induced by intravenous cellulose microparticle injection. Phylogenetic analysis showed that ZIP12 was significantly different between chicken and mammalian. The relative mRNA expression level of ZIP12 in the liver and lung in AS and pre-ascites (PAS) groups were significantly higher (P < 0.01) than that in control. The immunohistological staining using rabbit anti-chicken ZIP12 IgG and integrated optical density analysis showed the positive cells of ZIP12 distributed in detected tissues and the expression level of ZIP12 protein increased in AS and PAS groups compared to control. The results will provide the basic data of ZIP12 in the pathological process of AS in broiler chickens and offer an important reference for prevention and control of the disease.
Collapse
Affiliation(s)
- Hao Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jianxin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Guming Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xujiao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhenbiao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
7
|
Tan X, Shao FJ, Fan GJ, Ying YT. Expression of angiogenic factors and plexiform lesions in the lungs of broiler and layer chickens: A comparison. Poult Sci 2018; 97:1526-1535. [DOI: 10.3382/ps/pey008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/06/2018] [Indexed: 01/05/2023] Open
|
8
|
Jiang YB, Yang YR. Trifolium pratense isoflavones improve pulmonary vascular remodelling in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2015; 100:1159-1168. [PMID: 26671194 DOI: 10.1111/jpn.12424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
Pulmonary arterial remodelling is a pathological characteristic of pulmonary arterial hypertension (PAH), which contributes to the development of sustained pulmonary hypertension. The aim of this study was to investigate the effects of dietary Trifolium pratense isoflavones on pulmonary vascular remodelling in experimental broiler pulmonary hypertension syndrome. Exposure to sub-thermoneutral environmental temperatures increased broiler's pulmonary hypertension syndrome incidence and raised expression levels of nitric oxide, endothelin and endothelial nitric oxide synthase. Dietary supplementation (20 mg/kg basal diet) with Trifolium pratense isoflavones reduced pulmonary hypertension syndrome incidence and improved pulmonary vascular remodelling without affecting growth performance. The beneficial effect likely came from isoflavone improved pulmonary vascular remodelling. Isoflavone induced inducible nitric oxide synthase expression, which led to increased nitric oxide level. The nitric oxide could mediate vasorelaxation in the lungs. At the same time, the expression of endothelin was downregulated by isoflavone. Dietary supplementation of Trifolium pratense isoflavone might be a potential therapeutic strategy for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Y B Jiang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Y R Yang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Ascites Syndrome in Broiler Chickens: A Review on the Aspect of Endogenous and Exogenous Factors Interactions. J Poult Sci 2014. [DOI: 10.2141/jpsa.0130063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Saki A, Haghighat M, Khajali F. Supplemental arginine administeredin ovoor in the feed reduces the susceptibility of broilers to pulmonary hypertension syndrome. Br Poult Sci 2013; 54:575-80. [DOI: 10.1080/00071668.2013.811716] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Bautista-Ortega J, Stallone JN, Ruiz-Feria CA. Effects of arginine and antioxidant vitamins on pulmonary artery reactivity to phenylephrine in the broiler chicken. Poult Sci 2013; 92:1062-72. [PMID: 23472029 DOI: 10.3382/ps.2012-02472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of supplemental l-arginine (Arg), vitamin E (VE), and vitamin C (VC) on vascular reactivity to phenylephrine (PE) were examined in clinically healthy hypoxemic male broiler chickens. One-day-old chicks were housed in wire cages and randomly allocated to 1 of 3 dietary treatments: control (CTL; n = 80; 3,200 kcal of ME/kg, 23% CP, 1.55% Arg and 40 IU of VE/kg of feed), high-Arg (HA; n = 40; CTL + 0.8% Arg), or high-Arg and high antioxidant-vitamin diet (AEC; n = 40; HA + 200 IU of VE/kg of feed and 500 mg of VC/kg of feed). At d 14, 40 CTL birds and all the HA and AEC birds had a primary pulmonary bronchus surgically occluded (PBO). Forty CTL broilers underwent surgery without occluding the bronchus (SHAM). Pulmonary artery (PA) rings were mounted for isometric tension recordings 14 to 21 d postsurgery. The HA-PBO and AEC-PBO PA were immersed in Krebs-Henseleit buffer plus a vehicle (VehCtl) or Krebs-Henseleit buffer plus supplemental Arg, or Arg, VE, and VC (A-E-C). Maximal contractile response to PE of the CTL-SHAM PA (16 ± 14 mg/mg of dry tissue) was one-tenth compared with that of the CTL-PBO PA (159 ± 13 mg/mg), whereas the PA contractility in the supplemented groups was one-ninth compared with those of the CTL-PBO (17.9 ± 13.0 mg/mg, 17.90 ± 13.0 mg/mg for the HA-PBO+Arg and AEC-PBO+A-E-C treatments, respectively). Supplementing the bath with Arg did not change the maximal response to PE compared with the vehicle control (16.7 ± 12.2 mg/mg for HA-PBO-VehCtl). However, supplementing the bath with A-E-C produced a one-fourth reactivity compared with that of the vehicle control (80.7 ± 13.0 mg/mg for AEC-PBO-VehCtl). The PBO increased PA reactivity to PE, but supplemental Arg plus VE and VC significantly reduced it. Differential reactivity responses to PE may have been the result of protective effects of Arg, VE, and VC, implicating oxidative stress in endothelial dysfunction as well as in the upregulation of smooth muscle contractility.
Collapse
Affiliation(s)
- J Bautista-Ortega
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
12
|
Wideman RF, Rhoads DD, Erf GF, Anthony NB. Pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Poult Sci 2013; 92:64-83. [PMID: 23243232 DOI: 10.3382/ps.2012-02745] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) syndrome in broilers (also known as ascites syndrome and pulmonary hypertension syndrome) can be attributed to imbalances between cardiac output and the anatomical capacity of the pulmonary vasculature to accommodate ever-increasing rates of blood flow, as well as to an inappropriately elevated tone (degree of constriction) maintained by the pulmonary arterioles. Comparisons of PAH-susceptible and PAH-resistant broilers do not consistently reveal differences in cardiac output, but PAH-susceptible broilers consistently have higher pulmonary arterial pressures and pulmonary vascular resistances compared with PAH-resistant broilers. Efforts clarify the causes of excessive pulmonary vascular resistance have focused on evaluating the roles of chemical mediators of vasoconstriction and vasodilation, as well as on pathological (structural) changes occurring within the pulmonary arterioles (e.g., vascular remodeling and pathology) during the pathogenesis of PAH. The objectives of this review are to (1) summarize the pathophysiological progression initiated by the onset of pulmonary hypertension and culminating in terminal ascites; (2) review recent information regarding the factors contributing to excessively elevated resistance to blood flow through the lungs; (3) assess the role of the immune system during the pathogenesis of PAH; and (4) present new insights into the genetic basis of PAH. The cumulative evidence attributes the elevated pulmonary vascular resistance in PAH-susceptible broilers to an anatomically inadequate pulmonary vascular capacity, to excessive vascular tone reflecting the dominance of pulmonary vasoconstrictors over vasodilators, and to vascular pathology elicited by excessive hemodynamic stress. Emerging evidence also demonstrates that the pathogenesis of PAH includes characteristics of an inflammatory/autoimmune disease involving multifactorial genetic, environmental, and immune system components. Pulmonary arterial hypertension susceptibility appears to be multigenic and may be manifested in aberrant stress sensitivity, function, and regulation of pulmonary vascular tissue components, as well as aberrant activities of innate and adaptive immune system components. Major genetic influences and high heritabilities for PAH susceptibility have been demonstrated by numerous investigators. Selection pressures rigorously focused to challenge the pulmonary vascular capacity readily expose the genetic basis for spontaneous PAH in broilers. Chromosomal mapping continues to identify regions associated with ascites susceptibility, and candidate genes have been identified. Ongoing immunological and genomic investigations are likely to continue generating important new knowledge regarding the fundamental biological bases for the PAH/ascites syndrome.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, FAyetteville 72701, USA.
| | | | | | | |
Collapse
|
13
|
Bautista-Ortega J, Ruiz-Feria C. Pulmonary vascular remodeling in broiler and Leghorn chickens after unilateral pulmonary artery occlusion. Poult Sci 2012; 91:2904-11. [DOI: 10.3382/ps.2012-02399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Fouad A, El-Senouse H, Yang X, Yao J. Role of Dietary L-Arginine in Poultry Production. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ijps.2012.718.729] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Hamal KR, Erf GF, Anthony NB, Wideman RF. Immunohistochemical examination of plexiform-like complex vascular lesions in the lungs of broiler chickens selected for susceptibility to idiopathic pulmonary arterial hypertension. Avian Pathol 2012; 41:211-9. [PMID: 22515539 DOI: 10.1080/03079457.2012.663077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a disease of unknown cause that is characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance, and by extensive vascular remodelling. In human IPAH patients, remodelling of the pulmonary vasculature results in the formation of plexiform lesions in the terminal pulmonary arterioles. Various molecules are expressed in the human plexiform lesions, including alpha smooth muscle actin, von Willebrand factor, vascular endothelial growth factor, vascular endothelial growth factor receptor type 2, hypoxia inducible factor-1α, survivin, tenascin, collagen, fibronectin, and various immune/inflammatory cells such as, cytotoxic lymphocytes, B lymphocytes, MHC class II cells, and monocytes/macrophages are also present. Plexiform lesions rarely develop in the lungs of laboratory animals, but plexiform-like complex vascular lesions (CVL) do develop spontaneously in the lungs of broiler chickens from an IPAH-susceptible line. To examine angioproliferative and immune-system-related activities associated with CVL in broiler lungs, paraformaldehyde-fixed, paraffin-embedded lung sections from 8-week-old to 24-week-old broiler chickens were stained immunohistochemically using monoclonal or polyclonal antibodies specific for angioproliferative molecules and immune/inflammatory cells. The CVL in the lungs of broiler chickens exhibited positive staining for both angioproliferative molecules and immune/inflammatory cells. These observations combined with the close histological resemblance of broiler CVL to the plexiform lesions of human IPAH patients further validates chickens from our IPAH-susceptible line as an excellent animal model of spontaneous plexogenic arteriopathy.
Collapse
Affiliation(s)
- Krishna R Hamal
- Department of Poultry Science, University of Arkansas, 1260 West Maple, Fayetteville, AR 72701, USA.
| | | | | | | |
Collapse
|
16
|
Tan X, Chai J, Bi SC, Li JJ, Li WW, Zhou JY. Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension. Vet J 2012; 193:420-5. [PMID: 22377328 DOI: 10.1016/j.tvjl.2012.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/11/2012] [Accepted: 01/18/2012] [Indexed: 11/15/2022]
Abstract
Medial hypertrophy of pulmonary arterioles during pulmonary arterial hypertension (PAH) in humans is associated with enhanced proliferation of smooth muscle cells (SMCs). Elevated matrix metalloproteinase (MMP)-2 has been found in pulmonary artery SMCs (PA-SMCs) in humans with idiopathic PAH, leading to the hypothesis that MMP-2 contributes to the proliferation and migration of vascular SMCs in the pathogenesis of PAH. Rapidly growing meat-type (broiler) chickens provide a model of spontaneous PAH. The present study was conducted to determine whether MMP-2 is involved in the medial hypertrophy of pulmonary arterioles in this model. Cultured PA-SMCs from normal birds were used to evaluate the effect of MMPs on cell proliferation. Gelatin zymography showed that endothelin (ET)-1-induced proliferation of PA-SMCs was concomitant with increased pro- and active MMP-2 production. Reverse transcription PCR demonstrated upregulation of MMP-2 mRNA. However, PA-SMC proliferation was inhibited by the MMP inhibitors doxycycline and cis-9-octadecenoyl-N-hydroxylamide. In vivo experiments revealed a significant increase of MMP-2 expression in hypertrophied pulmonary arterioles of PAH broiler chickens, which was positively correlated with wall thickness and medial hypertrophy. MMP-2 may contribute to medial hypertrophy in pulmonary arterioles during PAH in broiler chickens by enhancing the proliferation of vascular SMCs.
Collapse
Affiliation(s)
- Xun Tan
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
17
|
Wideman RF, Hamal KR, Bayona MT, Lorenzoni AG, Cross D, Khajali F, Rhoads DD, Erf GF, Anthony NB. Plexiform lesions in the lungs of domestic fowl selected for susceptibility to pulmonary arterial hypertension: incidence and histology. Anat Rec (Hoboken) 2011; 294:739-55. [PMID: 21448992 DOI: 10.1002/ar.21369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/07/2010] [Accepted: 01/31/2010] [Indexed: 11/11/2022]
Abstract
Plexiform lesions develop in the pulmonary arteries of humans suffering from idiopathic pulmonary arterial hypertension (IPAH). Plexogenic arteriopathy rarely develops in existing animal models of IPAH. In this study, plexiform lesions developed in the lungs of rapidly growing meat-type chickens (broiler chickens) that had been genetically selected for susceptibility to IPAH. Plexiform lesions developed spontaneously in: 42% of females and 40% of males; 35% of right lungs, and 45% of left lungs; and, at 8, 12, 16, 20, 24, and 52 weeks of age the plexiform lesion incidences averaged 52%, 50%, 51%, 40%, 36%, and 22%, respectively. Plexiform lesions formed distal to branch points in muscular interparabronchial pulmonary arteries exhibiting intimal proliferation. Perivascular mononuclear cell infiltrates consistently surrounded the affected arteries. Proliferating intimal cells fully or partially occluded the arterial lumen adjacent to plexiform lesions. Broilers reared in clean stainless steel cages exhibited a 50% lesion incidence that did not differ from the 64% incidence in flock mates grown on dusty floor litter. Microparticles (30 μm diameter) were injected to determine if physical occlusion and focal inflammation within distal pulmonary arteries might initiate plexiform lesion development. Three months postinjection no plexiform lesions were observed in the vicinity of persisting microparticles. Broiler chickens selected for innate susceptibility to IPAH represent a new animal model for investigating the mechanisms responsible for spontaneous plexogenic arteriopathy.
Collapse
Affiliation(s)
- Robert F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wideman RF, Hamal KR. Idiopathic pulmonary arterial hypertension: an avian model for plexogenic arteriopathy and serotonergic vasoconstriction. J Pharmacol Toxicol Methods 2011; 63:283-95. [PMID: 21277983 DOI: 10.1016/j.vascn.2011.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 01/18/2011] [Indexed: 01/15/2023]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a disease of unknown cause that is characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance attributable to vasoconstriction and vascular remodeling of small pulmonary arteries. Vascular remodeling includes hypertrophy and hyperplasia of smooth muscle (medial hypertrophy) accompanied in up to 80% of the cases by the formation of occlusive plexiform lesions (plexogenic arteriopathy). Patients tend to be unresponsive to vasodilator therapy and have a poor prognosis for survival when plexogenic arteriopathy progressively obstructs their pulmonary arteries. Research is needed to understand and treat plexogenic arteriopathy, but advances have been hindered by the absence of spontaneously developing lesions in existing laboratory animal models. Young domestic fowl bred for meat production (broiler chickens, broilers) spontaneously develop IPAH accompanied by semi-occlusive endothelial proliferation that progresses into fully developed plexiform lesions. Plexiform lesions develop in both female and male broilers, and lesion incidences (lung sections with lesions/lung sections examined) averaged approximately 40% in 8 to 52 week old birds. Plexiform lesions formed distal to branch points in muscular interparabronchial pulmonary arteries, and were associated with perivascular mononuclear cell infiltrates. Serotonin (5-hydroxytryptamine, 5-HT) is a potent vasoconstrictor and mitogen known to stimulate vascular endothelial and smooth muscle cell proliferation. Serotonin has been directly linked to the pathogenesis of IPAH in humans, including IPAH linked to serotonergic anorexigens that trigger the formation of plexiform lesions indistinguishable from those observed in primary IPAH triggered by other causes. Serotonin also plays a major role in the susceptibility of broilers to IPAH. This avian model of spontaneous IPAH constitutes a new animal model for biomedical research focused on the pathogenesis of IPAH and plexogenic arteriopathy.
Collapse
Affiliation(s)
- Robert F Wideman
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
19
|
Bautista-Ortega J, Ruiz-Feria CA. L-arginine and antioxidant vitamins E and C improve the cardiovascular performance of broiler chickens grown under chronic hypobaric hypoxia. Poult Sci 2010; 89:2141-6. [PMID: 20852105 DOI: 10.3382/ps.2010-00764] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two hundred broiler chicks were randomly assigned to 3 dietary treatments: control [CTL; 3,200 kcal of ME/kg, 23% CP, 1.55% Arg, and 40 IU of vitamin E (VE)/kg of feed], high-Arg (HA; CTL+0.8% Arg), or high-Arg and high antioxidant-vitamin diet (AEC; HA+200 IU of VE/kg of feed and 500 mg of vitamin C/L of water). The chicks were housed in wire cages in hypobaric chambers simulating 3,000 m above sea level. From d 28 to 42, clinically healthy birds were selected for cardiovascular performance (n=7 to 12/treatment). After surgery, pulmonary arterial pressure (PAP) and mean arterial pressure (MAP) readings were taken at 180, 120, and 60 s (basal values) before an epinephrine (EPI) challenge and then at 30, 60, 120, 180, 300, 600, and 1,200 s after the challenge, followed by a second EPI challenge with similar sample readings. There were no differences in the basal PAP values among chicken groups. The PAP increased within 30 s after both EPI challenges in all groups. It took 180 s after the first EPI challenge for the CTL chickens to return to the basal PAP values, whereas HA and AEC chickens returned to basal PAP values in 120 s. After the second EPI challenge, it took 60, 180, and 300 s for the AEC, HA, and CTL groups, respectively, to return to basal PAP values. The MAP response pattern to the EPI challenges mimicked that of PAP, but there were no differences among treatments in MAP at any sampling point. Supplemental Arg, VE, and vitamin C did not reduce ascites incidence in hypoxic broilers. In conclusion, supplemental Arg improved the pulmonary vascular performance of hypoxic broiler chickens and its effects were further improved by the addition of the antioxidant VE and vitamin C. Arginine and antioxidant vitamins may have played synergistic roles to increase NO bioavailability and reduce oxidative stress damage, thus improving cardiopulmonary performance.
Collapse
Affiliation(s)
- J Bautista-Ortega
- Department of Poultry Science, Texas A&M University, College Station 77843-2472, USA
| | | |
Collapse
|
20
|
Expression of PDGF-β receptor in broilers with pulmonary hypertension induced by cold temperature and its association with pulmonary vascular remodeling. Res Vet Sci 2010; 88:116-21. [DOI: 10.1016/j.rvsc.2009.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/23/2009] [Accepted: 05/28/2009] [Indexed: 11/17/2022]
|
21
|
Hamal KR, Wideman RF, Anthony NB, Erf GF. Differential expression of vasoactive mediators in microparticle-challenged lungs of chickens that differ in susceptibility to pulmonary arterial hypertension. Am J Physiol Regul Integr Comp Physiol 2009; 298:R235-42. [PMID: 19907003 DOI: 10.1152/ajpregu.00451.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary hypertension syndrome (PHS; ascites) in fast growing meat-type chickens (broilers) is characterized by the onset of idiopathic pulmonary arterial hypertension (IPAH) leading to right-sided congestive heart failure and terminal ascites. Intravenous microparticle (MP) injection is a tool used by poultry geneticists to screen for the broilers that are resistant (RES) or susceptible (SUS) to IPAH in a breeding population. MPs occlude pulmonary arterioles and initiate focal inflammation, causing local tissues and responding leukocytes to release vasoactive mediators such as serotonin (5-HT), endothelin-1 (ET-1), and nitric oxide (NO). RT-PCR was used to examine the differences between RES and SUS broilers in terms of gene expression of ET-1, ET receptor types A and B (ET(A) and ET(B)), the serotonin transporter (SERT), serotonin receptors (5-HT(1A), 5-HT(2A), 5-HT(1B), 5-HT(2B)), endothelial NO synthase (eNOS), and inducible NOS (iNOS) in the lungs of these broilers before (0 h) and after (2, 6, 12, 24, and 48 h) MP injection. In SUS broilers MP injection elicited higher (P < 0.05) pulmonary expression of 5-HT(1A), 5-HT(2B), and ET-1, which promote vasoconstriction and proliferation of pulmonary arterial smooth muscle cells (PASMC). In RES broilers the MP injection elicited higher expression of eNOS, iNOS, and ET(B), which promote vasodilation and inhibit PASMC proliferation. These observations support the hypothesis that the resistance of broiler chickens to IPAH may be due to the higher expression of vasoactive mediators that favor enhanced vasodilation and attenuated vasoconstriction during MP injection challenges to the pulmonary vasculature.
Collapse
Affiliation(s)
- Krishna R Hamal
- Dept. of Poultry Science, Univ. of Arkansas, POSC-420, 1260 W. Maple, Fayetteville, AR 72701, USA.
| | | | | | | |
Collapse
|
22
|
Nematbakhsh M, Haghjooyjavanmard S, Mahmoodi F, Monajemi AR. The prevention of endothelial dysfunction through endothelial cell apoptosis inhibition in a hypercholesterolemic rabbit model: the effect of L-arginine supplementation. Lipids Health Dis 2008; 7:27. [PMID: 18673573 PMCID: PMC2533308 DOI: 10.1186/1476-511x-7-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/02/2008] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The impact of L-arginine on atherogenesis and its ability to prevent endothelial dysfunction have been studied extensively during the past years. L-arginine is a substance for nitric oxide synthesis which involves in apoptosis. Hypercholesterolemia promotes endothelial dysfunction, and it is hypothesized that L-arginine prevents endothelial dysfunction through endothelial cells apoptosis inhibition. To test this hypothesis, thirty rabbits were assigned into two groups. The control group received 1% cholesterol diet for 4 weeks, and the L-arginine group received same diets plus 3% L-arginine in drinking water. RESULTS No significant differences were observed in cholesterol level between two groups, but the nitrite concentration in L-arginine group was significantly higher than other group (control group: 11.8 +/- 1; L-arginine group: 14.7 +/- 0.5 micromol/l); (p < 0.05). The aorta score of fatty streak in control group was 0.875 +/- 0.35, but no fatty streak lesion was detected in L-arginine group (p < 0.05). The number of intimal apoptotic cells/500 cells of aorta in two groups of experiment were statistically different (control group: 39.3 +/- 7.6; L-arginine group: 21.5 +/- 5.3) (p < 0.05). CONCLUSION The inhibition of endothelial cells apoptosis by L-arginine restores endothelial function in a model of hypercholesterolemia.
Collapse
Affiliation(s)
- Mehdi Nematbakhsh
- Deparment of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | |
Collapse
|
23
|
Tan X, Hu SH, Wang XL. Possible role of nitric oxide in the pathogenesis of pulmonary hypertension in broilers: a synopsis. Avian Pathol 2007; 36:261-7. [PMID: 17620170 DOI: 10.1080/03079450701460765] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) produced by vascular endothelial cells is an important determinant of the basal tone of small arteries and arterioles. Impaired endothelial NO production has been implicated in the pathophysiology of pulmonary hypertension in humans. Available data suggest that reduction of endothelial NO synthesis, with evidence of reduced endothelial NO synthase expression in pulmonary arterioles, is associated with increased pulmonary vasomotor tone and vascular remodelling in hypertensive broilers. Supplemental l-arginine, a precursor of NO, has been shown to induce flow-dependent pulmonary vasodilation, to prevent reduced endothelial NO synthase expression and to inhibit vascular remodelling in broilers with pulmonary hypertension. Nevertheless, its effect on pulmonary hypertension syndrome incidence is limited. It appears that impaired production of NO is a secondary rather than a causative factor in the pathogenesis of pulmonary hypertension in broilers.
Collapse
Affiliation(s)
- Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, PR China
| | | | | |
Collapse
|
24
|
Wideman RF, Chapman ME, Hamal KR, Bowen OT, Lorenzoni AG, Erf GF, Anthony NB. An inadequate pulmonary vascular capacity and susceptibility to pulmonary arterial hypertension in broilers. Poult Sci 2007; 86:984-98. [PMID: 17435037 DOI: 10.1093/ps/86.5.984] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Broilers are susceptible to pulmonary hypertension syndrome (PHS; ascites syndrome) when their pulmonary vascular capacity is anatomically or functionally inadequate to accommodate the requisite cardiac output without an excessive elevation in pulmonary arterial pressure. The consequences of an inadequate pulmonary vascular capacity have been demonstrated experimentally and include elevated pulmonary vascular resistance (PVR) attributable to noncompliant, fully engorged vascular channels; sustained pulmonary arterial hypertension (PAH); systemic hypoxemia and hypercapnia; specific right ventricular hypertrophy, and right atrioventricular valve failure (regurgitation), leading to central venous hypertension and hepatic cirrhosis. Pulmonary vascular capacity is broadly defined to encompass anatomical constraints related to the compliance and effective volume of blood vessels, as well as functional limitations related to the tone (degree of constriction) maintained by the primary resistance vessels (arterioles) within the lungs. Surgical occlusion of 1 pulmonary artery halves the anatomical pulmonary vascular capacity, doubles the PVR, triggers PAH, eliminates PHS-susceptible broilers, and reveals PHS-resistant survivors whose lungs are innately capable of handling sustained increases in pulmonary arterial pressure and cardiac output. We currently are using i.v. microparticle injections to increase the PVR and trigger PAH sufficient in magnitude to eliminate PHS-susceptible individuals while allowing PHS-resistant individuals to survive as progenitors of robust broiler lines. The microparticles obstruct pulmonary arterioles and cause local tissues and responding leukocytes to release vasoactive substances, including the vasodilator NO and the highly effective vasoconstrictors thromboxane A(2) and serotonin [5-hydroxytryptamine (5-HT)]. Nitric oxide is the principal vasodilator responsible for modulating (attenuating) the PAH response and ensuing mortality triggered by i.v. microparticle injections, whereas microparticle-induced increases in PVR can be attributed principally to 5-HT. Our observations support the hypothesis that susceptibility to PHS is a consequence of anatomically inadequate pulmonary vascular capacity combined with the functional predominance of the vasoconstrictor 5-HT over the vasodilator NO. The contribution of TxA(2) remains to be determined. Selecting broiler lines for resistance to PHS depends upon improving both anatomical and functional components of pulmonary vascular capacity.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This article briefly reviews the background of endothelium-dependent vasorelaxation, describes the nitric oxide/cGMP/protein kinase pathway and its role in modulating pulmonary vascular tone and remodeling, and describes three approaches that target the nitric oxide/cGMP pathway in the treatment of patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary Sleep and Critical Care Medicine, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
26
|
Julian RJ. The Response of the Heart and Pulmonary Arteries to Hypoxia, Pressure, and Volume. A Short Review. Poult Sci 2007; 86:1006-11. [PMID: 17435039 DOI: 10.1093/ps/86.5.1006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pulmonary arterioles react to hypoxia by contraction and to increased pressure and volume by hypertrophy of the muscular wall, referred to as pulmonary vascular remodeling, both of which increase vascular resistance and result in increased pulmonary arterial pressure. Heart muscle reacts to increased pressure by hypertrophy of cardiac myocytes and thickening of the muscular wall. The heart responds to increased volume by dilation of the chamber that may result in physiologic or pathologic hypertrophy of the muscle wall. Heart muscle cells are very sensitive to hypoxia or other insults, and this may result in death of individual cardiac myocytes with lengthening and thinning of the remaining heart muscle cells and dilation of the chamber in a process called dilated cardiomyopathy.
Collapse
Affiliation(s)
- R J Julian
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
27
|
Tan X, Sun WD, Hu YX, Li JC, Pan JQ, Wang JY, Wang XL. Changes in pulmonary arteriole protein kinase cαexpression associated with supplementalL-arginine in broilers during cool temperature exposure. Br Poult Sci 2007; 47:230-6. [PMID: 16641035 DOI: 10.1080/00071660600611227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study was conducted to examine the effect of supplemental L-arginine on pulmonary arteriole protein kinase Calpha (PKCalpha) expression in broilers exposed to cool temperature, to investigate further the molecular mechanisms of supplemental L-arginine on modulating pulmonary vascular functions in hypertensive broilers. Broilers were subjected to sub-thermoneutral (cool) temperature to induce pulmonary hypertension syndrome (PHS), and an additional 10 g/kg L-arginine was added to the basal diet to evaluate the effects of supplemental L-arginine on PHS mortality, plasma nitric oxide (NO) production and pulmonary arterioles PKCalpha expression. Supplemental L-arginine reduced PHS mortality but did not affect right/total ventricle (RV/TV) ratios in clinically healthy birds. Birds fed additional L-arginine had increased plasma NO and decreased PKCalpha protein expression in pulmonary arterioles; NO production was negatively correlated with PKCalpha expression. These results demonstrated that supplemental L-arginine diminished PKCalpha expression in birds exposed to cool temperature. It is suggested that NO-induced loss of PKCalpha expression might be partially responsible for its effects on dilating pulmonary vasculature and inhibiting pulmonary vascular remodelling in vivo.
Collapse
Affiliation(s)
- X Tan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
28
|
Lorenzoni AG, Ruiz-Feria CA. Effects of Vitamin E and l-Arginine on Cardiopulmonary Function and Ascites Parameters in Broiler Chickens Reared Under Subnormal Temperatures. Poult Sci 2006; 85:2241-50. [PMID: 17135682 DOI: 10.1093/ps/85.12.2241] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of arginine (Arg) and vitamin E (VE) on ascites (pulmonary hypertension syndrome) parameters, nitric oxide synthase (NOS) activity, and cardiopulmonary performance after an acute challenge with epinephrine (Epi). One-day-old male broilers (n = 100) were fed a commercial corn-soybean meal-based diet meeting NRC (1994) requirements, including 1.2% Arg and 40 IU of VE/kg. In experiment 1, birds were provided tap water (control), water with 0.3% Arg (HArg), water with 400 IU of VE/L (HVE), or a combination of both compounds (Arg-VE). In experiment 2, the treatment groups were similar but the VE was incorporated in the diet (400 IU/ kg of feed). At d 18, temperature was reduced to amplify the incidence of pulmonary hypertension. Body weight and hematocrit were recorded weekly. From d 28 to 42, cardiopulmonary performance was evaluated in clinically healthy, anesthetized birds (n = 7 to 8/treatment). A pulmonary artery and a systemic artery were cannulated, the birds were allowed to stabilize for 10 min (basal), an i.v. injection of Epi was applied (1 or 0.5 mg/kg of BW, experiment 1 and 2, respectively), and a second dose was applied 20 min later. Pulmonary arterial pressure (PAP), mean arterial pressure (MAP), and heart rate (HR) were recorded continuously and data were analyzed by repeated measures ANOVA. The NOS activity was estimated through the conversion of 14C-Arginine to 14C-citrulline in isolated pulmonary arteries. Right/total ventricular weight ratio (RV/TV) was recorded at the end of the experiment. Body weight, RV/TV, and hematocrit values were not significantly affected by the dietary treatments. The PAP increased (P < 0.01) within 30 s after Epi in all treatments, except the HArg treatment in experiment 2. Overall, the time taken for PAP to return to basal levels was longer in the Arg-VE birds and shorter in the HArg birds, particularly after the second challenge. However, although NOS activity was highly variable, birds fed HArg tended to have the lowest NOS activity of all groups. The levels of VE supplementation used in these experiments did not improve cardiopulmonary performance or NOS activity in isolated pulmonary arteries.
Collapse
Affiliation(s)
- A G Lorenzoni
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | | |
Collapse
|
29
|
Moreno de Sandino M, Hernández A. Pulmonary Arteriole Remodeling in Hypoxic Broilers Expressing Different Amounts of Endothelial Nitric Oxide Synthase. Poult Sci 2006; 85:899-901. [PMID: 16673769 DOI: 10.1093/ps/85.5.899] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lung samples from 30 pulmonary hypertensive chickens expressing low nitric oxide (NO) synthase activity in endothelial arteriolar cells were compared with samples taken from 30 nonhypertensive animals expressing high activity to investigate a possible relationship between the just-mentioned expressions and pulmonary vascular remodeling. The external diameter and media muscular thickness in 20 arterioles of 50- to 200-microm external diameter were measured in lung samples from 17-, 30-, and 42-d-old broilers to calculate %T (medial wall width divided by external vessel diameter x 100). The %T was higher in hypertensive chickens than in nonhypertensive (P < 0.01) chickens and was inversely related to NO synthase enzyme (P < 0.01). It can be inferred from this study that NO is involved in the remodeling process in broilers with hypoxic pulmonary hypertension syndrome.
Collapse
Affiliation(s)
- M Moreno de Sandino
- Departamento de Salud Animal Facultad de Medicina Veterinaria y de Zootecnia Universidad Nacional de Colombia, Bogotá
| | | |
Collapse
|
30
|
Toda N, Ayajiki K. Phylogenesis of constitutively formed nitric oxide in non-mammals. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 157:31-80. [PMID: 17236649 DOI: 10.1007/112_0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is widely recognized that nitric oxide (NO) in mammalian tissues is produced from L-arginine via catalysis by NO synthase (NOS) isoforms such as neuronal NOS (nNOS) and endothelial NOS (eNOS) that are constitutively expressed mainly in the central and peripheral nervous system and vascular endothelial cells, respectively. This review concentrates only on these constitutive NOS (cNOS) isoforms while excluding information about iNOS, which is induced mainly in macrophages upon stimulation by cytokines and polysaccharides. The NO signaling pathway plays a crucial role in the functional regulation of mammalian tissues and organs. Evidence has also been accumulated for the role of NO in invertebrates and non-mammalian vertebrates. Expression of nNOS in the brain and peripheral nervous system is widely determined by staining with NADPH (reduced nicotinamide adenine dinucleotide phosphate) diaphorase or NOS immunoreactivity, and functional roles of NO formed by nNOS are evidenced in the early phylogenetic stages (invertebrates and fishes). On the other hand, the endothelium mainly produces vasodilating prostanoids rather than NO or does not liberate endothelium-derived relaxing factor (EDRF) (fishes), and the ability of endothelial cells to liberate NO is observed later in phylogenetic stages (amphibians). This review article summarizes various types of interesting information obtained from lower organisms (invertebrates, fishes, amphibians, reptiles, and birds) about the properties and distribution of nNOS and eNOS and also the roles of NO produced by the cNOS as an important intercellular signaling molecule.
Collapse
Affiliation(s)
- N Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|