1
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Cardoso CL, King A, Chapwanya A, Esposito G. Ante-Natal and Post-Natal Influences on Neonatal Immunity, Growth and Puberty of Calves-A Review. Animals (Basel) 2021; 11:ani11051212. [PMID: 33922339 PMCID: PMC8144962 DOI: 10.3390/ani11051212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The objective of this review is to give the reader an overview of interactions between immunity, growth and puberty in calves and highlight how these influence future performances. The risk of morbidity and mortality is high during the first four weeks of age. Adaption to extra-uterine life starts early during embryonic development and is underpinned by optimal maternal nutrition. It is known that colostrum is paramount to neonate nutrition and passive immunity. Good colostrum management allows the calf to develop coping mechanisms to efficiently utilize feed resources for optimal growth. A deeper understanding of these interactions paves the way for developing strategies to improve immune responses to environmental pathogens, optimal growth and timely attainment of puberty in calves. The literature reviewed here shows that there are opportunities to enhance future performance of cattle paying attention to the interaction of nutrition and immunity at early developmental stages. This then guarantees efficient neonate nutrition and profitable cattle production. Abstract Calf immunity, growth and puberty are important factors affecting heifer productivity. The first four weeks of age are critical for reducing calf morbidity and mortality. It is well documented that colostrum is paramount to neonatal nutrition and passive immunity, however, adaptation to extra-uterine life starts early during embryonic development. Therefore, successful calf rearing strategies are underpinned by adequate maternal nutrition during gestation, and good colostrum management. A deeper understanding of these interactions paves the way for developing strategies to improve immune responses to environmental pathogens, optimal growth and timely attainment of puberty in calves. The literature reviewed here shows that there are opportunities to enhance the future performance of cattle paying attention to the interaction of nutrition and immunity at each developmental stage. Therefore, the objective of this review is to give the reader an overview of interactions between immunity, growth and puberty in dairy calves and highlight how these influence future performances.
Collapse
Affiliation(s)
- Claudia L. Cardoso
- Ruminant Health and Production, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110 Pretoria, South Africa;
| | - Ailbhe King
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Farm Road, 42123 Basseterre, Saint Kitts and Nevis; (A.K.); (A.C.)
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Farm Road, 42123 Basseterre, Saint Kitts and Nevis; (A.K.); (A.C.)
| | - Giulia Esposito
- RUM&N Sas, Via Sant’Ambrogio, 42123 Reggio Emilia (RE), Italy
- Department of Animal Sciences, Stellenbosch University, 7600 Stellenbosch, South Africa
- Correspondence: ; Tel.: +39-328-973-5009
| |
Collapse
|
3
|
Incorporation of a bi-functional protein FimH enhances the immunoprotection of chitosan-pVP1 vaccine against coxsackievirus B3-induced myocarditis. Antiviral Res 2017; 140:121-132. [DOI: 10.1016/j.antiviral.2017.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/12/2023]
|
4
|
Wang M, Gao Z, Zhang Z, Pan L, Zhang Y. Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 2015; 10:3544-51. [PMID: 25483705 DOI: 10.4161/hv.36174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system plays a crucial part in the control of infection. Exposure of humans and animals to potential pathogens generally occurs through mucosal surfaces, thus, strategies that target the mucosa seem rational and efficient vaccination measures. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity compared with parenteral vaccination. M cells are capable of transporting luminal antigens to the underlying lymphoid tissues and can be exploited by pathogens as an entry portal to invade the host. Therefore, targeting M-cell-specific molecules might enhance antigen entry, initiate the immune response, and induce protection against mucosal pathogens. Here, we outline our understanding of the distribution and function of M cells, and summarize the advances in mucosal vaccine strategies that target M cells.
Collapse
Key Words
- ANX, Annexin; BALT, bronchus-associated lymphoid tissue
- C5aR, C5a receptor
- DCs, dendritic cells
- DENV, dengue virus
- EDIII, envelope domain III
- FAE, follicle-associated epithelium
- GALT, gut-associated lymphoid tissue
- GENALT, genital-associated lymphoid tissue
- GP2, Glycoprotein 2
- Hsp60, heat shock protein 60
- LPS, lipopolysaccharide
- M cells
- M cells, microfold cells
- MALT, mucosa-associated lymphoid tissue
- NALT, nasopharynx- or nose-associated lymphoid tissue
- OVA, ovalbumin
- OmpH, outer membrane protein H
- PP, Peyer's patches
- PRRs, pathogen recognition receptors
- PrPC, cellular prion protein
- SELEX, Systematic Evolution of Ligands by EXponential enrichment
- SIgA secretory IgA
- TLR-4, Toll-like receptor-4
- UEA-1,Ulex europaeus agglutinin-1
- antigen
- infection
- mucosal immunity
- pσ1, reovirus surface protein σ1
- vaccine
Collapse
Affiliation(s)
- Miao Wang
- a State Key Laboratory of Veterinary Etiological Biology; National Foot-and-Mouse Disease Reference Laboratory; Lanzhou Veterinary Research Institute; CAAS ; Lanzhou , Gansu , China
| | | | | | | | | |
Collapse
|
5
|
Kanaya T, Ohno H. The Mechanisms of M-cell Differentiation. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2014; 33:91-7. [PMID: 25032083 PMCID: PMC4098651 DOI: 10.12938/bmfh.33.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/28/2014] [Indexed: 11/05/2022]
Abstract
Intestinal M (microfold or membranous) cells are an enigmatic lineage of intestinal epithelial cells that initiate mucosal immune responses through the uptake and transcytosis of luminal antigens. Due to their rarity, the mechanisms of M-cell function and differentiation are poorly understood. To overcome this problem, experimental strategies to enrich for M-cells have been established. Transcriptome analyses have provided valuable insight, especially on the receptors for antigen uptake, and such studies have broadened our knowledge of M-cell function. In another line of investigation, we and others have begun to dissect the molecular pathways of M-cell differentiation. Among them, receptor activator of NF-κB ligand (RANKL) has been identified as an essential factor for M-cell differentiation. We have focused on the M-cell inducible activity of RANKL and have been able to observe temporal transitions during M-cell differentiation by using in vivo ectopic M-cell differentiation induced by exogenous RANKL treatment. We have found that the ets-family transcription factor Spi-B is essential for functional maturation of M cells. In the absence of Spi-B, the immune response to Salmonella Typhimurium is severely impaired, suggesting that M cells are important for maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RCAI, Riken Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RCAI, Riken Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
6
|
Kudva IT, Stasko JA. Bison and bovine rectoanal junctions exhibit similar cellular architecture and Escherichia coli O157 adherence patterns. BMC Vet Res 2013; 9:266. [PMID: 24373611 PMCID: PMC3878412 DOI: 10.1186/1746-6148-9-266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/18/2013] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Escherichia coli O157 (E. coli O157) has been isolated from bison retail meat, a fact that is important given that bison meat has been implicated in an E. coli O157-multistate outbreak. In addition, E. coli O157 has also been isolated from bison feces at slaughter and on farms. Cattle are well documented as E. coli O157 reservoirs, and the primary site of E. coli O157 persistence in such reservoirs is the rectoanal junction (RAJ), located at the distal end of the bovine gastrointestinal tract. Since bison and cattle share many genetic similarities manifested as common lineage, susceptibility to infection and the nature of immune responses to infectious agents, we decided to evaluate whether the RAJ of these animals were comparable both in terms of cellular architecture and as sites for adherence of E. coli O157. Specifically, we compared the histo-morphologies of the RAJ and evaluated the E. coli O157 adherence characteristics to the RAJ squamous epithelial (RSE) cells, from these two species. RESULTS We found that the RAJ of both bison and cattle demonstrated similar distribution of epithelial cell markers villin, vimentin, cytokeratin, E-cadherin and N-cadherin. Interestingly, N-cadherin predominated in the stratified squamous epithelium reflecting its proliferative nature. E. coli O157 strains 86-24 SmR and EDL 933 adhered to RSE cells from both animals with similar diffuse and aggregative patterns, respectively. CONCLUSION Our observations further support the fact that bison are likely 'wildlife' reservoirs for E. coli O157, harboring these bacteria in their gastrointestinal tract. Our results also extend the utility of the RSE-cell assay, previously developed to elucidate E. coli O157-cattle RAJ interactions, to studies in bison, which are warranted to determine whether these observations in vitro correlate with those occurring in vivo at the RAJ within the bison gastrointestinal tract.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Judith A Stasko
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
7
|
Araújo F, Sarmento B. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int J Pharm 2013; 458:128-34. [DOI: 10.1016/j.ijpharm.2013.10.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/30/2013] [Accepted: 10/02/2013] [Indexed: 01/25/2023]
|
8
|
Tozaki K, Kimura J, Yasuda M, Ryu N, Nasu T, Pernthaner A, Hein WR. C6, a new monoclonal antibody, reacts with the follicle-associated epithelium of calf ileal Peyer's patches. J Vet Sci 2013; 14:1-6. [PMID: 23388432 PMCID: PMC3615225 DOI: 10.4142/jvs.2013.14.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/08/2012] [Indexed: 11/20/2022] Open
Abstract
The follicle-associated epithelium (FAE) of Peyer's patches (PPs) contains M cells that are important for reducing mucosal immune responses by transporting antigens into the underlying lymphoid tissue. We generated a monoclonal antibody (C6) that reacted with the FAE of calf ileal PPs, and analyzed the characteristics of C6 using immunohistochemistry and Western blotting. FAE of the ileal PP was stained with C6 during both late fetal developmental and postnatal stages. Neither the villous epithelial cell nor intestinal crypt basal cells were stained at any developmental stage. During the prenatal stages, FAE of the jejunal PP was C6-negative. However, a few C6-positive cells were distributed diffusely in some FAE of the jejunal PPs during the postnatal stages. The protein molecular weight of the antigen recognized by C6 was approximately 45 kDa. These data show that C6 is useful for identifying the FAE in ileal PPs and further suggest that differentiation of the FAE in these areas is independent of external antigens.
Collapse
Affiliation(s)
- Kana Tozaki
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Hondo T, Kanaya T, Takakura I, Watanabe H, Takahashi Y, Nagasawa Y, Terada S, Ohwada S, Watanabe K, Kitazawa H, Rose MT, Yamaguchi T, Aso H. Cytokeratin 18 is a specific marker of bovine intestinal M cell. Am J Physiol Gastrointest Liver Physiol 2011; 300:G442-53. [PMID: 21193527 DOI: 10.1152/ajpgi.00345.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microfold (M) cells in the follicle-associated epithelium (FAE) of Peyer's patches have an important role in mucosal immune responses. A primary difficulty for investigations of bovine M cells is the lack of a specific molecular marker. To identify such a marker, we investigated the expression of several kinds of intermediate filament proteins using calf Peyer's patches. The expression patterns of cytokeratin (CK) 18 in jejunal and ileal FAE were very similar to the localization pattern of M cells recognized by scanning electron microscopy. Mirror sections revealed that jejunal CK18-positive cells had irregular and sparse microvilli, as well as pocket-like structures containing lymphocytes, typical morphological characteristic of M cells. However, CK18-negative cells had regular and dense microvilli on their surface, typical of the morphology of enterocytes. In contrast, CK20 immunoreactivity was detected in almost all villous epithelial cells and CK18-negative cells in the FAE. CK18-positive proliferating transit-amplifying cells in the crypt exchanged CK18 for CK20 above the mouth of the crypt and after moving to the villi; however, CK18-positive M cells in the crypt continued their expression of CK18 during movement to the FAE region. Terminal deoxynucleotidyl-transferase-mediated deoxyuridine-triphosphate-biotin nick-end labeling-positive apoptotic cells were specifically detected at the apical region of villi and FAE in the jejunum and ileum, and all were also stained for CK20. These data indicate that CK18 may be a molecular marker for bovine M cells in FAE and that M cells may transdifferentiate to CK20-positive enterocytes and die by apoptosis in the apex of the FAE.
Collapse
Affiliation(s)
- Tetsuya Hondo
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku Univ., Sendai, Miyag, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Haeger JD, Hambruch N, Dilly M, Froehlich R, Pfarrer C. Formation of bovine placental trophoblast spheroids. Cells Tissues Organs 2010; 193:274-84. [PMID: 20975254 DOI: 10.1159/000320544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2010] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In this study, we aimed to form spheroids with the bovine placental trophoblast cell line F3. Spheroids are 3-dimensional culture models which can be used to conduct versatile in vitro and in vivo experiments. MATERIALS AND METHODS The spheroids were generated using the hanging drop technique, 25% methocel and matrigel. The F3 spheroids were characterized morphologically by light microscopy and transmission (TEM) and scanning electron microscopy (SEM) and immunohistochemistry (ezrin, vimentin, cytokeratin, placental lactogen). The fluorescent dyes calcein and ethidium homodimer were used to determine the viability of the spheroidal F3 cells by immunofluorescence microscopy. RESULTS The cell line F3 only formed spheroids by the hanging drop technique when matrigel was added. The trophoblast spheroids were delimited and fully covered by extracellular matrix (light microscopy/TEM/SEM). Cells contributing to spheroids could not be discriminated from each other (light microscopy). The outer spheroidal layer consisted of cells which possessed an apical pole with microvilli that were directed to the outside (light microscopy/TEM). All of the spheroidal F3 cells expressed ezrin, vimentin and cytokeratin, but not placental lactogen. The spheroid core contained degenerating cells whilst the F3 cells of the outer rim were viable (TEM/immunofluorescence microscopy). DISCUSSION We have established a 3-dimensional spheroid model for the bovine placental trophoblast cell line F3. The developed culture model might prove valuable for future in vitro studies on the differentiation of bovine trophoblast cells.
Collapse
Affiliation(s)
- J D Haeger
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
11
|
Transcytosis of murine-adapted bovine spongiform encephalopathy agents in an in vitro bovine M cell model. J Virol 2010; 84:12285-91. [PMID: 20861256 DOI: 10.1128/jvi.00969-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSE), including bovine spongiform encephalopathy (BSE), are fatal neurodegenerative disorders in humans and animals. BSE appears to have spread to cattle through the consumption of feed contaminated with BSE/scrapie agents. In the case of an oral infection, the agents have to cross the gut-epithelial barrier. We recently established a bovine intestinal epithelial cell line (BIE cells) that can differentiate into the M cell type in vitro after lymphocytic stimulation (K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi, and H. Aso, Histochem. Cell Biol. 133:125-134, 2010). In this study, we evaluated the role of M cells in the intestinal invasion of the murine-adapted BSE (mBSE) agent using our in vitro bovine intestinal epithelial model. We demonstrate here that M cell-differentiated BIE cells are able to transport the mBSE agent without inactivation at least 30-fold more efficiently than undifferentiated BIE cells in our in vitro model. As M cells in the follicle-associated epithelium are known to have a high ability to transport a variety of macromolecules, viruses, and bacteria from gut lumen to mucosal immune cells, our results indicate the possibility that bovine M cells are able to deliver agents of TSE, not just the mBSE agent.
Collapse
|
12
|
Kanaya T, Miyazawa K, Takakura I, Itani W, Watanabe K, Ohwada S, Kitazawa H, Rose MT, McConochie HR, Okano H, Yamaguchi T, Aso H. Differentiation of a murine intestinal epithelial cell line (MIE) toward the M cell lineage. Am J Physiol Gastrointest Liver Physiol 2008; 295:G273-84. [PMID: 18556421 DOI: 10.1152/ajpgi.00378.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.
Collapse
Affiliation(s)
- Takashi Kanaya
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku Univ., 1-1 Tsutsumidori Amamiyamachi, Aoba-ku, 981-8555 Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Corr SC, Gahan CCGM, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. ACTA ACUST UNITED AC 2007; 52:2-12. [PMID: 18081850 DOI: 10.1111/j.1574-695x.2007.00359.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
M-cells are specialized cells found in the follicle-associated epithelium of intestinal Peyer's patches of gut-associated lymphoid tissue and in isolated lymphoid follicles, appendix and in mucosal-associated lymphoid tissue sites outside the gastrointestinal tract. In the gastrointestinal tract, M-cells play an important role in transport of antigen from the lumen of the small intestine to mucosal lymphoid tissues, where processing and initiation of immune responses occur. Thus, M-cells act as gateways to the mucosal immune system and this function has been exploited by many invading pathogens. Understanding the mechanism by which M-cells sample antigen will inform the design of oral vaccines with improved efficacy in priming mucosal and systemic immune responses. In this review, the origin and morphology of M-cells, and their role in mucosal immunity and pathogenesis of infections are discussed.
Collapse
Affiliation(s)
- Sinead C Corr
- Department of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|