1
|
Ghodasara P, Satake N, Sadowski P, Kopp S, Mills PC. Investigation of cattle plasma proteome in response to pain and inflammation using next generation proteomics technique, SWATH-MS. Mol Omics 2021; 18:133-142. [PMID: 34860232 DOI: 10.1039/d1mo00354b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pain assessment in farm animals has primarily relied on a combination of behavioral and physiological responses, although these are relatively subjective and difficult to quantify. It is essential to develop more effective biomarkers of pain in production animals since they are frequently exposed to routine surgical husbandry procedures. More effective biomarkers of pain would improve welfare, limit the loss of productivity associated with pain and permit better assessment of analgesics. This study aimed to investigate the use of a modern mass spectrometry data independent acquisition strategy, termed Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS), to detect candidate protein biomarkers that are known to associate with nociceptive and inflammatory processes in cattle, which could then be used to assess the efficacy of potential analgesics. Calves were randomly divided into two groups that were either surgically dehorned or subjected to restraint stress, without provision of anaesthesia or analgesia in accordance with current industry standards. Samples were analysed before and after dehorning at multiple timepoints. Significant changes in protein concentrations were detected predominantly at 24 and 96 h following dehorning, including kininogens, proteins associated with the coagulation and complement cascades and serine protease inhibitors. Gene ontology analysis revealed that the identified candidate biomarkers were associated with stress, wound healing, immune response, blood coagulation and the inflammatory and acute phase responses, which could be expected following surgical damage to tissues, but can now be more objectively assessed. These results offer more definitive and quantitative monitoring of response to tissue injury induced pain and inflammation.
Collapse
Affiliation(s)
- Priya Ghodasara
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,VIDO-InterVac, University of Saskatchewan, Saskatoon, Canada
| | - Nana Satake
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia.,School of Agriculture and Food Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Steven Kopp
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| | - Paul C Mills
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, Australia
| |
Collapse
|
2
|
Schalich KM, Herren AW, Selvaraj V. Analysis of differential strategies to enhance detection of low-abundance proteins in the bovine serum proteome. Anim Sci J 2020; 91:e13388. [PMID: 32578273 DOI: 10.1111/asj.13388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/29/2020] [Accepted: 04/19/2020] [Indexed: 12/28/2022]
Abstract
Serum-based biomarkers hold propitious applications for addressing livestock health, and management. However, discovery of protein biomarkers in complex biological fluids like serum is wholly intractable due to the large dynamic range of protein concentrations; that is, ˜10-12 high abundance proteins constitute >90% of the total protein content and effectively mask proteomic detection of low-abundance biomarkers. Toward addressing this limitation, we test a continuous elution size-based fractionation method, and two approaches that use affinity interaction-based separation of proteins in preparing bovine serum, and compare liquid chromatography tandem mass spectrometry protein identification to neat serum. Our results identify the high-abundance proteins in bovine serum, and demonstrate dynamic range compression and improved protein identification with the different enrichment methods. Although these findings indicate the highest protein number identified in bovine serum (445 proteins, all methods combined), and by any single sample processing method (312 proteins) to date, they still remain lower than levels deemed necessary for biomarker discovery. As such, this investigation revealed limitations to resolving the bovine serum proteome, and the need for species-specific tools for immunodepleting high-abundance proteins. In concert, this study represents a step toward advancing sample preparation methods for bovine serum biomarker identification.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Guo L, Tian H, Yao J, Ren H, Yin Q, Cao Y. Leucine improves α-amylase secretion through the general secretory signaling pathway in pancreatic acinar cells of dairy calves. Am J Physiol Cell Physiol 2020; 318:C1284-C1293. [PMID: 32320287 DOI: 10.1152/ajpcell.00396.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study aimed to elucidate the mechanisms by which leucine impacts the secretion of pancreatic enzymes, especially amylase, by studying the proteomics profiles of pancreatic acinar (PA) cells from dairy cows. PA cells, the experimental model, were treated with four concentrations of leucine (0, 0.23, 0.45, and 0.90 mM). The abundance of different proteins in the four leucine treatment groups was detected. Label-free proteomic analysis enabled the identification of 1,906 proteins in all four treatment groups, and 1,350 of these proteins showed common expression across the groups. The primary effects of leucine supplementation were increased (P < 0.05) citrate synthase and ATPase activity, which enlarged the cytosolic ATP pool, and the upregulation of secretory protein 61 (Sec61) expression, which promoted protein secretion. In summary, these results suggest that leucine increases citrate synthase in the TCA cycle and ATPase activity and promotes the Sec signaling pathway to increase the exocrine function of PA cells.
Collapse
Affiliation(s)
- Long Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,State Key Laboratory of Grassland Agro-Ecosystems of Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Huibin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hao Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qinyan Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Ghaffari MH, Schuh K, Kuleš J, Guillemin N, Horvatić A, Mrljak V, Eckersall PD, Dusel G, Koch C, Sadri H, Sauerwein H. Plasma proteomic profiling and pathway analysis of normal and overconditioned dairy cows during the transition from late pregnancy to early lactation. J Dairy Sci 2020; 103:4806-4821. [PMID: 32173013 DOI: 10.3168/jds.2019-17897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
This study applied a quantitative proteomics approach along with bioinformatics analyses to investigate changes in the plasma proteome of normal and overconditioned dairy cows during the transition period. Fifteen weeks before their anticipated calving date, 38 multiparous Holstein cows were selected based on their current and previous body condition scores (BCS) and allocated to either a high or a normal BCS group (19 cows each). They received different diets until dry-off to reach targeted differences in BCS and back fat thickness (BFT) until dry-off. At dry-off, normal BCS cows had a BCS <3.5 (minimum, 2.75) and BFT <1.2 cm (minimum, 0.58), and the high BCS cows had a BCS >3.75 (maximum, 4.50) and BFT >1.4 cm (maximum, 2.90). The proteomics study used a subset of 5 animals from each group. These cows were selected based on their circulating concentrations of fatty acids (FA) on d 14 postpartum and β-hydroxybutyrate (BHB) on d 21 postpartum, representing the greater or the lower extreme values within their BCS group, respectively. The high BCS subset (HE-HBCS) had 4.50 < BCS > 3.75, FA = 1.17 ± 0.46 mmol/L, and BHB = 2.15 ± 0.42 mmol/L (means ± SD), and the low BCS subset (LE-NBCS) had 3.50 < BCS > 2.75, FA = 0.51 ± 0.28 mmol/L, and BHB = 0.84 ± 0.17 mmol/L. Plasma samples from d -49, +7, and +21 relative to parturition were used for proteome profiling by applying the quantitative tandem mass tags (TMT) approach. Nondepleted plasma samples were subjected to reduction and digestion and then labeled with TMT 10plex reagents. High-resolution liquid chromatography-tandem mass spectrometry analysis of TMT-labeled peptides was carried out, and the acquired spectra were analyzed for protein identification and quantification. In total, 254 quantifiable proteins (criteria: 2 unique peptides and 5% false discovery rate) were identified in the plasma samples. From these, 24 differentially abundant proteins (14 more abundant, 10 less abundant) were observed in the LE-NBCS cows compared with the HE-HBCS cows during the transition period. Plasma α-2-macroglobulins were more abundant in HE-HBCS versus LE-NBCS cows at d +7 and +21. Gene Ontology enrichment analyses of differentially abundant proteins revealed that the acute inflammatory response, regulation of complement activation, protein activation cascade, and regulation of humoral immune response were the most enriched terms in the LE-NBCS group compared with the HE-HBCS group. In addition, we identified 24 differentially abundant proteins (16 in the LE-NBCS group, and 8 in the HE-HBCS group) during the transition period. The complement components C1q and C5 were less abundant, while C3 and C3d were more abundant in LE-NBCS compared with HE-HBCS cows. Overall, overconditioning around calving was associated with alterations in protein pathways related to acute inflammatory response and regulation of complement and coagulation cascades in transition cows.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition, and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Josipa Kuleš
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Nicolas Guillemin
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Anita Horvatić
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Vladimir Mrljak
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Peter David Eckersall
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Georg Dusel
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
5
|
Boschetti E, Hernández-Castellano LE, Righetti PG. Progress in farm animal proteomics: The contribution of combinatorial peptide ligand libraries. J Proteomics 2019; 197:1-13. [DOI: 10.1016/j.jprot.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
|
6
|
Pacheco HA, da Silva S, Sigdel A, Mak CK, Galvão KN, Texeira RA, Dias LT, Peñagaricano F. Gene Mapping and Gene-Set Analysis for Milk Fever Incidence in Holstein Dairy Cattle. Front Genet 2018; 9:465. [PMID: 30364193 PMCID: PMC6192420 DOI: 10.3389/fgene.2018.00465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Milk fever is an important metabolic disorder that affects dairy cows around parturition. It is associated with a breakdown in the mechanisms of calcium homeostasis, resulting in very low blood calcium levels (hypocalcemia). The main objective of this study was to dissect the genetic basis underlying milk fever incidence in Holstein cattle. Data consisted of 31.6 k producer-recorded lactation incidence records from 15.3 k cows. The analysis included a whole-genome scan and a subsequent gene-set analysis in order to reveal individual genes, genetic mechanisms and biological pathways implicated in the incidence of periparturient hypocalcemia. The association analysis identified at least eight different genomic regions that explain considerable amounts of additive genetic variance for milk fever incidence. Notably, some of these regions harbor genes, such as CYP27A1, CYP2J2, GC, SNAI2, and PIM1, that are directly involved in vitamin D metabolic pathway. Moreover, the gene-set analysis revealed several functional terms, such as calcium ion binding, calcium ion transportation, T cell differentiation, B cell activation, protein phosphorylation, apoptosis, and protein kinase activity, among others, that could be implicated in the development of periparturient hypocalcemia. Overall, this comprehensive study contributes to a better understanding of the genetic control of this complex disease. In addition, these findings may contribute to the development of novel breeding strategies for reducing the incidence of milk fever in dairy cattle.
Collapse
Affiliation(s)
- Hendyel A Pacheco
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Simone da Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Anil Sigdel
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Chun Kuen Mak
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Rodrigo A Texeira
- Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Laila T Dias
- Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Misra N, Pu X, Holt DN, McGuire MA, Tinker JK. Immunoproteomics to identify Staphylococcus aureus antigens expressed in bovine milk during mastitis. J Dairy Sci 2018; 101:6296-6309. [PMID: 29729920 DOI: 10.3168/jds.2017-14040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/18/2018] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen affecting both human and animal species. An effective vaccine to prevent S. aureus bovine disease and transmission would have positive effects on animal well-being, food production, and human health. The objective of this study was to identify multiple antigens that are immunoreactive during udder colonization and disease for exploration as vaccine antigens to prevent bovine mastitis. Staphylococcus aureus produces several cell wall-anchored and surface-associated virulence factors that play key roles in the pathogenesis of mastitis. Many of these proteins are conserved between different strains of S. aureus and represent promising vaccine candidates. We used an immunoproteomics approach to identify antigenic proteins from the surface of S. aureus. The expression of cell wall and surface proteins from S. aureus was induced under low iron conditions, followed by trypsin extraction and separation by 2-dimensional electrophoresis. The separated proteins were blotted with antibodies from mastitic bovine milk and identified by liquid chromatography-mass spectrometry. Thirty-eight unique proteins were identified, of which 8 were predicted to be surface exposed and involved in S. aureus virulence. Two surface proteins, iron-regulated surface determinant protein C (IsdC) and ESAT-6 secretion system extracellular protein (EsxA), were cloned, expressed, and purified from Escherichia coli for confirmation of immune reactivity by ELISA. A PCR of 37 bovine S. aureus isolates indicated that the presence of esxA and isdC is conserved, and amino acid alignments revealed that IsdC and EsxA sequences are highly conserved. The immunoproteomics technique used in this study generated reproducible results and identified surface exposed and reactive antigens for further characterization.
Collapse
Affiliation(s)
- N Misra
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - X Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725
| | - D N Holt
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725
| | - M A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844
| | - J K Tinker
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725; Department of Biological Sciences, Boise State University, Boise, ID 83725.
| |
Collapse
|
8
|
Ceciliani F, Lecchi C, Urh C, Sauerwein H. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J Proteomics 2017; 178:92-106. [PMID: 29055723 DOI: 10.1016/j.jprot.2017.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/04/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023]
Abstract
The transition from late pregnancy to early lactation is a critical period in a dairy cow's life due to the rapidly increasing drain of nutrients from the maternal organism towards the foetus and into colostrum and milk. In order to cope with the challenges of parturition and lactation, comprehensive adaptive reactions comprising the endocrine and the immune system need to be accomplished. There is high variation in this coping ability and both metabolic and infectious diseases, summarized as "production diseases", such as hypocalcaemia (milk fever), fatty liver syndrome, laminitis and ketosis, may occur and impact welfare, productive lifespan and economic outcomes. Proteomics and metabolomics have emerged as valuable techniques to characterize proteins and metabolite assets from tissue and biological fluids, such as milk, blood and urine. In this review we provide an overview on metabolic status and physiological changes during the transition period and the related production diseases in dairy cows, and summarize the state of art on proteomics and metabolomics of biological fluids and tissues involved in metabolic stress during the peripartum period. We also provide a current and prospective view of the application of the recent achievements generated by omics for biomarker discovery and their potential in diagnosis. BIOLOGICAL SIGNIFICANCE For high-yielding dairy cows there are several "occupational diseases" that occur mainly during the metabolic challenges related to the transition from pregnancy to lactation. Such diseases and their sequelae form a major concern for dairy production, and often lead to early culling of animals. Beside the economical perspective, metabolic stress may severely influence animal welfare. There is a multitude of studies about the metabolic backgrounds of such so called production diseases like ketosis, fatty liver, or hypocalcaemia, although the investigations aiming to assess the complexity of the pathophysiological reactions are largely focused on gene expression, i.e. transcriptomics. For extending the knowledge towards the proteome and the metabolome, the respective technologies are of increasing importance and can provide an overall view of how dairy cows react to metabolic stress, which is needed for an in-depth understanding of the molecular mechanisms of the related diseases. We herein review the current findings from studies applying proteomics and metabolomics to transition-related diseases, including fatty liver, ketosis, endometritis, hypocalcaemia and laminitis. For each disease, a brief overview of the up to date knowledge about its pathogenesis is provided, followed by an insight into the most recent achievements on the proteome and metabolome of tissues and biological fluids, such as blood serum and urine, highlighting potential biomarkers. We believe that this review would help readers to be become more familiar with the recent progresses of molecular background of transition-related diseases thus encouraging research in this field.
Collapse
Affiliation(s)
- Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy.
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Christiane Urh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Fan Z, Shu S, Xu C, Xiao X, Wang G, Bai Y, Xia C, Wu L, Zhang H, Xu C, Yang W. Protein profiling of plasma proteins in dairy cows with subclinical hypocalcaemia. Ir Vet J 2017; 70:3. [PMID: 28116073 PMCID: PMC5242045 DOI: 10.1186/s13620-017-0082-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Subclinical hypocalcaemia (SH) is an important metabolic disease in dairy cows that has a serious impact on production performance. The objective of this study was to investigate novel aspects of pathogenesis using proteomics technology to identify proteins that are differentially expressed in diseased and healthy animals. Dairy cows were divided into an SH group (T, n = 10) and a control group (C, n = 10) based on plasma calcium concentration. A total of 398 differentially expressed proteins were identified, of which 265 proteins were overlapped in the two parallel experiments. Of these, 24 differentially expressed proteins were statistically significant. Gene Ontology analysis yielded 74 annotations, including 7 cellular component, 55 biological process and 12 molecular function categories. Bioinformatics analysis indicated that calcium regulation, immune and inflammatory response, blood coagulation and complement pathway were all related to SH. Our iTRAQ/LC-MS/MS (isobaric tags for relative and absolute quantification/liquid chromatography-mass spectrometry/mass spectrometry) approach proved highly effective for plasma protein profiling of dairy cows with SH, and the results pave the way for further studies in this area.
Collapse
Affiliation(s)
- Ziling Fan
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Shi Shu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Chuchu Xu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xinhuan Xiao
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Gang Wang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Yunlong Bai
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Cheng Xia
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Ling Wu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Hongyou Zhang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Chuang Xu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Wei Yang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| |
Collapse
|
10
|
Di Girolamo F, D'Amato A, Lante I, Signore F, Muraca M, Putignani L. Farm animal serum proteomics and impact on human health. Int J Mol Sci 2014; 15:15396-411. [PMID: 25257521 PMCID: PMC4200749 DOI: 10.3390/ijms150915396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/19/2023] Open
Abstract
Due to the incompleteness of animal genome sequencing, the analysis and characterization of serum proteomes of most farm animals are still in their infancy, compared to the already well-documented human serum proteome. This review focuses on the implications of the farm animal serum proteomics in order to identify novel biomarkers for animal welfare, early diagnosis, prognosis and monitoring of infectious disease treatment, and develop new vaccines, aiming at determining the reciprocal benefits for humans and animals.
Collapse
Affiliation(s)
- Francesco Di Girolamo
- Department of Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome 00165, Italy.
| | - Alfonsina D'Amato
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy.
| | - Isabella Lante
- Department of Laboratory Medicine, San Camillo Hospital, Viale Vittorio Veneto 18, Treviso 31100, Italy.
| | - Fabrizio Signore
- Department of Obstetrics and Gynaecology, San Camillo Forlanini Hospital, Circonvallazione Gianicolense, 87, Rome 00151, Italy.
| | - Marta Muraca
- Department of Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome 00165, Italy.
| | - Lorenza Putignani
- Parasitology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, Rome 00165, Italy.
| |
Collapse
|
11
|
Loor JJ, Bionaz M, Drackley JK. Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annu Rev Anim Biosci 2013; 1:365-92. [DOI: 10.1146/annurev-animal-031412-103728] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan J. Loor
- Department of Animal Sciences and
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, 61801;
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331;
| | - James K. Drackley
- Department of Animal Sciences and
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, 61801;
| |
Collapse
|