1
|
Gainor K, Ghosh S. A comprehensive review of viruses in terrestrial animals from the Caribbean islands of Greater and Lesser Antilles. Transbound Emerg Dis 2022; 69:e1299-e1325. [PMID: 35578793 DOI: 10.1111/tbed.14595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Viruses pose a major threat to animal health worldwide, causing significant mortalities and morbidities in livestock, companion animals and wildlife, with adverse implications on human health, livelihoods, food safety and security, regional/national economies, and biodiversity. The Greater and Lesser Antilles consist of a cluster of islands between the North and South Americas and is habitat to a wide variety of animal species. This review is the first to put together decades of information on different viruses circulating in companion animals, livestock, and wildlife from the Caribbean islands of Greater and Lesser Antilles. Although animal viral diseases have been documented in the Caribbean region since the 1940s, we found that studies on different animal viruses are limited, inconsistent, and scattered. Furthermore, a significant number of the reports were based on serological assays, yielding preliminary data. The available information was assessed to identify knowledge gaps and limitations, and accordingly, recommendations were made, with the overall goal to improve animal health and production, and combat zoonoses in the region. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| |
Collapse
|
2
|
Chauhan RP, Gordon ML. A systematic review of influenza A virus prevalence and transmission dynamics in backyard swine populations globally. Porcine Health Manag 2022; 8:10. [PMID: 35287744 PMCID: PMC8919175 DOI: 10.1186/s40813-022-00251-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
Background Backyard swine farming is critical to generating subsistence and food security in rural and peri-urban households in several developing countries. The objective of this systematic review was to analyze the molecular and serological prevalence of influenza A virus (IAV) in backyard swine populations globally. Results We identified 34 full-text research articles in NCBI-PubMed and Google Scholar databases that have reported IAV sero- and/or virological prevalence in backyard swine up to 11 July 2021. The highest number of studies were reported from Asia (n = 11) followed by North America (n = 10), South America (n = 6), Africa (n = 6), and Europe (n = 1). While the maximum number of studies (44.12%) reported human-to-swine transmission of IAV, swine-to-human (5.88%), poultry-to-swine (5.88%), and wild birds-to-swine (2.94%) transmissions were also reported. An overall higher IAV seroprevalence (18.28%) in backyard swine was detected compared to the virological prevalence (1.32%). The human-origin pandemic A(H1N1)pdm09 virus clade 1A.3.3.2 was the more frequently detected IAV subtype in virological studies (27.27%) than serological studies (18.92%). In addition, the avian-origin highly pathogenic H5N1 and H5N8 viruses were also detected, which further substantiated the evidence of avian–swine interactions in the backyards. Conclusion Human–swine and avian–swine interactions in backyards may transmit IAV between species. Monitoring the circulation and evolution of IAV in backyard swine would help stakeholders make informed decisions to ensure sustainable backyard swine farming and public safety.
Collapse
|
3
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
4
|
Gonzalez-Reiche AS, Ramírez AL, Müller ML, Orellana D, Sosa SM, Ola P, Paniagua J, Ortíz L, Hernandez J, Cordón-Rosales C, Perez DR. Origin, distribution, and potential risk factors associated with influenza A virus in swine in two production systems in Guatemala. Influenza Other Respir Viruses 2017; 11:182-192. [PMID: 27860313 PMCID: PMC5304577 DOI: 10.1111/irv.12437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 01/02/2023] Open
Abstract
Background Guatemala is the country with the largest swine production in Central America; however, evidence of influenza A virus (IAV) in pigs has not been clearly delineated. Objectives In this study, we analyzed the presence and spatial distribution of IAV in commercial and backyard swine populations. Methods Samples from two nationwide surveys conducted in 2010 and 2011 were tested using virological (rRT‐PCR and virus isolation) and serological (ELISA and hemagglutination inhibition) assays to detect IAV. Results Influenza A virus was detected in 15.7% of the sampled pigs (30.6% of herds) in 2010 and in 11.7% (24.2% of herds) in 2011. The percentage of seropositive pigs was 10.6% (16.1% of herds) and 1.4% (3.1% of herds) for each year, respectively. Three pandemic H1N1 and one seasonal human‐like H3N2 viruses were isolated. Antibodies against viruses from different genetic clusters were detected. No reassortant strains with swine viruses were detected. The H3N2 virus was closely related to human viruses that circulated in Central America in 2010, distinct to the most recent human seasonal vaccine lineages. Spatial clusters of rRT‐PCR positive herds were detected each year by scan statistics. Conclusions Our results demonstrate circulation of IAV throughout Guatemala and identify commercial farms, animal health status, and age as potential risk factors associated with IAV infection and exposure. Detection of human‐origin viruses in pigs suggests a role for humans in the molecular epidemiology of IAV in swine in Guatemala and evidences gaps in local animal and human surveillance.
Collapse
Affiliation(s)
- Ana S Gonzalez-Reiche
- Department of Population Health, Poultry Diagnostic and Research Center Athens, University of Georgia, Athens, GA, USA.,Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Ana L Ramírez
- Universidad del Valle de Guatemala, Guatemala City, Guatemala.,Prince Leopold Institute of Tropical Medicine, Antwerp, Belgium
| | - María L Müller
- Department of Population Health, Poultry Diagnostic and Research Center Athens, University of Georgia, Athens, GA, USA.,Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - David Orellana
- Ministerio de Agricultura Ganadería y Alimentación, Guatemala city, Guatemala
| | - Silvia M Sosa
- Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Pablo Ola
- Ministerio de Agricultura Ganadería y Alimentación, Guatemala city, Guatemala
| | - Jorge Paniagua
- Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Lucía Ortíz
- Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | | | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center Athens, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Nelson M, Culhane MR, Rovira A, Torremorell M, Guerrero P, Norambuena J. Novel Human-like Influenza A Viruses Circulate in Swine in Mexico and Chile. PLOS CURRENTS 2015; 7. [PMID: 26345598 PMCID: PMC4551470 DOI: 10.1371/currents.outbreaks.c8b3207c9bad98474eca3013fa933ca6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Further understanding of the genetic diversity and evolution of influenza A viruses circulating in swine (IAV-S) is important for the development of effective vaccines and our knowledge of pandemic threats. Until recently, very little was known of IAV-S diversity in Latin America, owing to a lack of surveillance. METHODS To address this gap, we sequenced and conducted a phylogenetic analysis of 69 hemagglutinin (HA) sequences from IAV-S isolates collected in swine in Mexico and Chile during 2010-2014, including the H1N1, H1N2, and H3N2 subtypes. RESULTS Our analysis identified multiple IAV-S lineages that appear to have been circulating undetected in swine for decades, including four novel IAV-S lineages of human seasonal virus origin that have not been previously identified in any swine populations globally. We also found evidence of repeated introductions of pandemic H1N1 viruses from humans into swine in Mexico and Chile since 2009, and incursions of H1 and H3 viruses from North American swine into Mexico. DISCUSSION Overall, our findings indicate that at least 12 genetically distinct HA lineages circulate in Latin American swine herds, only two of which have been found in North American swine herds. Human-to-swine transmission, spatial migration via swine movements, and genomic reassortment are the key evolutionary mechanisms that generate this viral diversity. Additional antigenic characterization and whole-genome sequencing is greatly needed to understand the diversity and independent evolution of IAV-S in Latin America.
Collapse
Affiliation(s)
- Martha Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Albert Rovira
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
6
|
Pérez LJ, Perera CL, Coronado L, Rios L, Vega A, Frías MT, Ganges L, Núñez JI, Díaz de Arce H. Molecular epidemiology study of swine influenza virus revealing a reassorted virus H1N1 in swine farms in Cuba. Prev Vet Med 2015; 119:172-8. [PMID: 25745869 DOI: 10.1016/j.prevetmed.2015.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
In this report, we describe the emergence of reassorted H1N1 swine influenza virus, originated from a reassortment event between the H1N1 pandemic influenza virus (H1N1p/2009) and endemic swine influenza virus in Cuban swine population. In November 2010, a clinical respiratory outbreak was reported on a pig fattening farm in Cuba. Phylogenetic analysis showed that all the genes of one of the isolate obtained, with the exception of neuraminidase, belonged to the H1N1p/2009 cluster. This finding suggests that H1N1pdm has been established in swine and has become a reservoir of reassortment that may produce new viruses with both animal and public health risks.
Collapse
Affiliation(s)
- Lester J Pérez
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba.
| | | | - Liani Coronado
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Liliam Rios
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Armando Vega
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Maria T Frías
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - José Ignacio Núñez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Heidy Díaz de Arce
- Centro Nacional de Sanidad Agropecuaria (CENSA), La Habana, Cuba; Hospital Italiano de Buenos Aires, Juan D. Perón 4190, C1181ACH Buenos Aires, Argentina
| |
Collapse
|
7
|
Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface. Trends Microbiol 2015; 23:142-53. [PMID: 25564096 DOI: 10.1016/j.tim.2014.12.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023]
Abstract
The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, US Department of Agriculture (USDA) Agricultural Research Service (ARS), Ames, IA 50010, USA
| |
Collapse
|
8
|
He L, Wu Q, Jiang K, Duan Z, Liu J, Xu H, Cui Z, Gu M, Wang X, Liu X, Liu X. Differences in transmissibility and pathogenicity of reassortants between H9N2 and 2009 pandemic H1N1 influenza A viruses from humans and swine. Arch Virol 2014; 159:1743-54. [DOI: 10.1007/s00705-014-2009-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/26/2014] [Indexed: 12/19/2022]
|