1
|
Hu S, Song Y, Li X, Chen Q, Tang B, Chen J, Yang G, Yan H, Wang J, Wang W, Hu J, He H, Li L, Wang J. Comparative transcriptomics analysis identifies crucial genes and pathways during goose spleen development. Front Immunol 2024; 15:1327166. [PMID: 38375472 PMCID: PMC10875100 DOI: 10.3389/fimmu.2024.1327166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
As the largest peripheral lymphoid organ in poultry, the spleen plays an essential role in regulating the body's immune capacity. However, compared with chickens and ducks, information about the age- and breed-related changes in the goose spleen remains scarce. In this study, we systematically analyzed and compared the age-dependent changes in the morphological, histological, and transcriptomic characteristics between Landes goose (LG; Anser anser) and Sichuan White goose (SWG; Anser cygnoides). The results showed a gradual increase in the splenic weights for both LG and SWG until week 10, while their splenic organ indexes reached the peak at week 6. Meanwhile, the splenic histological indexes of both goose breeds continuously increased with age, reaching the highest levels at week 30. The red pulp (RP) area was significantly higher in SWG than in LG at week 0, while the splenic corpuscle (AL) diameter was significantly larger in LG than in SWG at week 30. At the transcriptomic level, a total of 1710 and 1266 differentially expressed genes (DEGs) between week 0 and week 30 were identified in spleens of LG and SWG, respectively. Meanwhile, a total of 911 and 808 DEGs in spleens between LG and SWG were identified at weeks 0 and 30, respectively. Both GO and KEGG enrichment analysis showed that the age-related DEGs of LG or SWG were dominantly enriched in the Cell cycle, TGF-beta signaling, and Wnt signaling pathways, while most of the breed-related DEGs were enriched in the Neuroactive ligand-receptor interaction, Cytokine-cytokine receptor interaction, ECM-receptor interaction, and metabolic pathways. Furthermore, through construction of protein-protein interaction networks using significant DEGs, it was inferred that three hub genes including BUB1, BUB1B, and TTK could play crucial roles in regulating age-dependent goose spleen development while GRIA2, GRIA4, and RYR2 could be crucial for the breed-specific goose spleen development. These data provide novel insights into the splenic developmental differences between Chinese and European domestic geese, and the identified crucial pathways and genes are helpful for a better understanding of the mechanisms regulating goose immune functions.
Collapse
Affiliation(s)
- Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yang Song
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaopeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingliang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bincheng Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiasen Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guang Yang
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haoyu Yan
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Junqi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wanxia Wang
- Department of Animal Production, General Station of Animal Husbandry of Sichuan Province, Chengdu, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Chakraborty S, Woldemariam NT, Visnovska T, Rise ML, Boyce D, Santander J, Andreassen R. Characterization of miRNAs in Embryonic, Larval, and Adult Lumpfish Provides a Reference miRNAome for Cyclopterus lumpus. BIOLOGY 2022; 11:biology11010130. [PMID: 35053128 PMCID: PMC8773022 DOI: 10.3390/biology11010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Simple Summary Lumpfish (Cyclopterus lumpus) is an emergent aquaculture species, and its miRNA repertoire is still unknown. miRNAs are critical post-transcriptional modulators of teleost gene expression. Therefore, a lumpfish reference miRNAome was characterized by small RNA sequencing and miRDeep analysis of samples from different organs and developmental stages. The resulting miRNAome, an essential reference for future expression analyses, consists of 443 unique mature miRNAs from 391 conserved and eight novel miRNA genes. Enrichment of specific miRNAs in particular organs and developmental stages indicates that some conserved lumpfish miRNAs regulate organ and developmental stage-specific functions reported in other teleosts. Abstract MicroRNAs (miRNAs) are endogenous small RNA molecules involved in the post-transcriptional regulation of protein expression by binding to the mRNA of target genes. They are key regulators in teleost development, maintenance of tissue-specific functions, and immune responses. Lumpfish (Cyclopterus lumpus) is becoming an emergent aquaculture species as it has been utilized as a cleaner fish to biocontrol sea lice (e.g., Lepeophtheirus salmonis) infestation in the Atlantic Salmon (Salmo salar) aquaculture. The lumpfish miRNAs repertoire is unknown. This study identified and characterized miRNA encoding genes in lumpfish from three developmental stages (adult, embryos, and larvae). A total of 16 samples from six different adult lumpfish organs (spleen, liver, head kidney, brain, muscle, and gill), embryos, and larvae were individually small RNA sequenced. Altogether, 391 conserved miRNA precursor sequences (discovered in the majority of teleost fish species reported in miRbase), eight novel miRNA precursor sequences (so far only discovered in lumpfish), and 443 unique mature miRNAs were identified. Transcriptomics analysis suggested organ-specific and age-specific expression of miRNAs (e.g., miR-122-1-5p specific of the liver). Most of the miRNAs found in lumpfish are conserved in teleost and higher vertebrates, suggesting an essential and common role across teleost and higher vertebrates. This study is the first miRNA characterization of lumpfish that provides the reference miRNAome for future functional studies.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Nardos T. Woldemariam
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Matthew L. Rise
- Department of Ocean Sciences, Faculty of Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL A1C 5S7, Canada;
- Correspondence: (J.S.); (R.A.)
| | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet–Oslo Metropolitan University, Pilestredet 50, N-0130 Oslo, Norway;
- Correspondence: (J.S.); (R.A.)
| |
Collapse
|
3
|
Hong Y, Truong AD, Lee J, Vu TH, Lee S, Song KD, Lillehoj HS, Hong YH. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. Vet Res 2021; 52:36. [PMID: 33658079 PMCID: PMC7931527 DOI: 10.1186/s13567-021-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/02/2021] [Indexed: 12/31/2022] Open
Abstract
Exosomes are membrane vesicles containing proteins, lipids, DNA, mRNA, and micro RNA (miRNA). Exosomal miRNA from donor cells can regulate the gene expression of recipient cells. Here, Ri chickens were divided into resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) trait by genotyping of Mx and BF2 genes. Then, Ri chickens were infected with H5N1, a highly pathogenic avian influenza virus (HPAIV). Exosomes were purified from blood serum of resistant chickens for small RNA sequencing. Sequencing data were analysed using FastQCv0.11.7, Cutadapt 1.16, miRBase v21, non-coding RNA database, RNAcentral 10.0, and miRDeep2. Differentially expressed miRNAs were determined using statistical methods, including fold-change, exactTest using edgeR, and hierarchical clustering. Target genes were predicted using miRDB. Gene ontology analysis was performed using gProfiler. Twenty miRNAs showed significantly different expression patterns between resistant control and infected chickens. Nine miRNAs were up-regulated and 11 miRNAs were down-regulated in the infected chickens compared with that in the control chickens. In target gene analysis, various immune-related genes, such as cytokines, chemokines, and signalling molecules, were detected. In particular, mitogen-activated protein kinase (MAPK) pathway molecules were highly controlled by differentially expressed miRNAs. The result of qRT-PCR for miRNAs was identical with sequencing data and miRNA expression level was higher in resistant than susceptible chickens. This study will help to better understand the host immune response, particularly exosomal miRNA expression against HPAIV H5N1 and could help to determine biomarkers for disease resistance.
Collapse
Affiliation(s)
- Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Vietnam
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sooyeon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
4
|
Yang J, Huang X, Liu Y, Zhao D, Han K, Zhang L, Li Y, Liu Q. Analysis of the microRNA expression profiles of chicken dendritic cells in response to H9N2 avian influenza virus infection. Vet Res 2020; 51:132. [PMID: 33069243 PMCID: PMC7568386 DOI: 10.1186/s13567-020-00856-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (miRNA) plays a key role in virus-host interactions. Here, we employed deep sequencing technology to determine cellular miRNA expression profiles in chicken dendritic cells infected with H9N2 avian influenza virus (AIV). A total of 66 known and 36 novel miRNAs were differently expressed upon H9N2 infection, including 72 up-regulated and 30 down-regulated miRNAs. Functional analysis showed that the predicted targets of these miRNAs were significantly enriched in several pathways including endocytosis, notch, lysosome, p53, RIG-I-like and NOD-like receptor signaling pathways. These data provide valuable information for further investigating the roles of miRNA in AIV pathogenesis and host defense response.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Lijiao Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.,Jiangsu University, Zhenjiang, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
5
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
6
|
Duan X, Wang L, Sun G, Yan W, Yang Y. Understanding the cross-talk between host and virus in poultry from the perspectives of microRNA. Poult Sci 2020; 99:1838-1846. [PMID: 32241464 PMCID: PMC7587795 DOI: 10.1016/j.psj.2019.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
In poultry, viral infections (e.g., Marek's disease virus, avian leukosis virus, influenza A virus, and so on) can cause devastating mortality and economic losses. Because viruses are solely dependent on host cells to propagate, they alter the host intracellular microenvironment. Thus, understanding the virus-host interaction is important for antiviral immunity and drug development in the poultry industry. MicroRNAs are crucial posttranscriptional regulators of gene expression in a wide spectrum of biological processes, including viral infection. Recently, microRNAs have been identified as key players in virus-host interactions. In this review, we will discuss the intricacies involved in the virus-host cross-talk mediated by host and viral microRNAs in poultry (i.e., chicken and ducks), as well as recent trends and challenges in this field. These findings may provide some insights into the rapidly developing area of research regarding viral pathogenesis and antiviral immunity in poultry production.
Collapse
Affiliation(s)
- Xiujun Duan
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Lihua Wang
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Guobo Sun
- Department of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; National Gene Bank of Waterfowl Resources, Taizhou 225300, China
| | - Wenying Yan
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou 215123, China.
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that inhibit protein translation from target mRNAs. Accumulating evidence suggests that miRNAs can regulate a broad range of biological pathways, including cell differentiation, apoptosis, and carcinogenesis. With the development of miRNAs, the investigation of miRNA functions has emerged as a hot research field. Due to the intensive farming in recent decades, chickens are easily influenced by various pathogen transmissions, and this has resulted in large economic losses. Recent reports have shown that miRNAs can play critical roles in the regulation of chicken diseases. Therefore, the aim of this review is to briefly discuss the current knowledge regarding the effects of miRNAs on chickens suffering from common viral diseases, mycoplasmosis, necrotic enteritis, and ovarian tumors. Additionally, the detailed targets of miRNAs and their possible functions are also summarized. This review intends to highlight the key role of miRNAs in regard to chickens and presents the possibility of improving chicken disease resistance through the regulation of miRNAs.
Collapse
|
8
|
Yakovlev AF. The Role of miRNA in Differentiation, Cell Proliferation, and Pathogenesis of Poultry Diseases. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Gao S, Jiang H, Sun J, Diao Y, Tang Y, Hu J. Integrated Analysis of miRNA and mRNA Expression Profiles in Spleen of Specific Pathogen-Free Chicken Infected with Avian Reticuloendotheliosis Virus Strain SNV. Int J Mol Sci 2019; 20:ijms20051041. [PMID: 30818863 PMCID: PMC6429403 DOI: 10.3390/ijms20051041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The Reticuloendotheliosis virus (REV) primarily causes avian severe immunosuppression, in addition to other symptoms, which include avian dwarfing syndrome and chronic tumors in lymphoid and other tissue. To date, REV’s molecular mechanisms leading to immunosuppression have not been fully elucidated. In the current study, we aimed to elucidate the role of microRNAs (miRNA) in regulating gene expression during REV infections. Therefore, we used a high-dose spleen necrosis virus (SNV) model of REV to inoculate one-day-old specific pathogen-free (SPF) chickens, thereby inducing congenital infections. We analyzed miRNA and mRNA expression profiles using Next Generation Sequencing (NGS) in a total of 19 spleen samples that were collected at 7, 14, and 21 days post infection (dpi). The results showed that 63 differentially expressed miRNAs (DEmiRNAs) (30 known miRNAs and 33 novel miRNAs) and 482 differentially expressed target genes (DETGs) were identified. Integration analysis identified 886 known miRNA–mRNA and 580 novel miRNA–mRNA interaction pairs, which involved miRNAs that were inversely correlated with the above DETGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DETGs were considerably enriched in the immune-relevant pathways category, such as immune system, cell growth and death, signaling molecules and interaction, signal transduction, etc. We further verified selected immune-relevant miRNA and their DETGs while using quantitative RT-PCR (qRT-PCR). Overall, our data revealed valuable immune-related miRNA–mRNA interaction information that occurred during REV infections, thereby broadening our understanding of the REV-induced immunosuppression.
Collapse
Affiliation(s)
- Shuo Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Hao Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Jie Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Correspondence: (Y.T.); (J.H.); Tel.: +86-13127277623 (Y.T.); +86-15949803926 (J.H.)
| | - Jingdong Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China; (S.G.); (H.J.); (J.S.); (Y.D.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, Shandong, China
- Correspondence: (Y.T.); (J.H.); Tel.: +86-13127277623 (Y.T.); +86-15949803926 (J.H.)
| |
Collapse
|
10
|
Gga-miR-219b targeting BCL11B suppresses proliferation, migration and invasion of Marek's disease tumor cell MSB1. Sci Rep 2017; 7:4247. [PMID: 28652615 PMCID: PMC5484716 DOI: 10.1038/s41598-017-04434-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
Marek’s disease (MD), caused by Marek’s disease virus (MDV), is a lymphotropic neoplastic disease. Previous miRNAome analysis showed gga-miR-219b was significantly downregulated in MDV-induced lymphoma, and one of its potential target genes, B-cell chronic lymphocytic /lymphoma 11B (BCL11B) was predicted. In this study, we further investigated the function of gga-miR-219b, and the gain/loss of function assay showed gga-miR-219b inhibited cell migration and reduced cell proliferation by promoting apoptosis not by cell cycle arrest. Gga-miR-219b also suppressed expression of two cell invasion-related genes MMP2 and MMP9. The results indicated suppressive effect of gga-miR-219b on MD tumorigenesis. The gene BCL11B was verified as a direct target gene of gga-miR-219b. RNA interference was performed to block BCL11B. As expected, the effects triggered by BCL11B downregulation were in accordance with that triggered by gga-miR-219b overexpression, suggesting that BCL11B was a stimulative regulator of MD transformation. Moreover, both gga-miR-219b and BCL11B influenced the expression of Meq gene, the most important oncogene in MDV. Additionally, gene expression level of anti-apoptotic genes BCL2 and BCL2L1 was downregulated and pro-apoptotic gene TNFSF10 was upregulated in MSB1 cells with gga-miR-219b overexpression or BCL11B knockdown, which suggested gga-miR-219b promoted cell apoptosis via regulating gene expression in the apoptosis pathways.
Collapse
|
11
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
12
|
gga-miR-2127 downregulates the translation of chicken p53 and attenuates chp53-mediated innate immune response against IBDV infection. Vet Microbiol 2016; 198:34-42. [PMID: 28062005 DOI: 10.1016/j.vetmic.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/29/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Infectious bursal disease (IBD) is characterized by the immune suppression of infected birds. The molecular mechanism by which IBD virus (IBDV) suppresses the host immune system remains to be elucidated. The tumor suppressor protein p53 can inhibit the replication of various viruses, but its effect on IBDV remains unknown. This study established an in vitro infection model based on DF-1 cells (chicken embryo fibroblast cell line) to investigate the antiviral effects of chicken p53 (chp53) on IBDV infection. The expression level and activity of chp53 remarkably increased in IBDV-infected DF-1 cells. The overexpression of chp53 inhibited IBDV replication and upregulated the expression of multiple chicken antiviral innate immunity genes (IPS-1, IRF3, PKR, OAS, and Mx), whereas the suppression of chp53 led to the opposite effect. This result indicates that chp53 activates the antiviral innate immune response of chickens to IBDV infection. Bioinformatics analysis and dual-luciferase reporter assay showed that gga-miR-2127 targeted the 3'UTR of chp53. qRT-PCR and western blot revealed that gga-miR-2127 overexpression in DF-1 cells not only downregulated the expression levels of chp53 and of the antiviral innate immunity genes in chickens but also promoted IBDV replication. Our results suggest that gga-miR-2127 downregulates chp53 mRNA translation by targeting its 3'UTR and attenuates chp53-mediated antiviral innate immune response against IBDV.
Collapse
|
13
|
Mete A, Gharpure R, Pitesky ME, Famini D, Sverlow K, Dunn J. Marek's Disease in Backyard Chickens, A Study of Pathologic Findings and Viral Loads in Tumorous and Nontumorous Birds. Avian Dis 2016; 60:826-836. [DOI: 10.1637/11458-062216-reg] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Luo J, Liu J, Liu H, Zhang T, Wang J, He H, Han C. Enrichment and verification of differentially expressed miRNAs in bursa of Fabricius in two breeds of duck. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:920-929. [PMID: 27660025 PMCID: PMC5495669 DOI: 10.5713/ajas.16.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/03/2022]
Abstract
Objective The bursa of Fabricius (BF) is a central humoral immune organ belonging specifically to avians. Recent studies had suggested that miRNAs were active regulators involved in the immune processes. This study was to investigate the possible differences of the BF at miRNA level between two genetically disparate duck breeds. Methods Using Illumina next-generation sequencing, the miRNAs libraries of ducks were established. Results The results showed that there were 66 differentially expressed miRNAs and 28 novel miRNAs in bursa. A set of abundant miRNAs (i.e., let-7, miR-146a-5p, miR-21-5p, miR-17~92) which are involved in immunity and disease were detected and the predicted target genes of the novel miRNAs were associated with duck high anti-adversity ability. By gene ontology analysis and enriching KEGG pathway, the targets of differential expressed miRNAs were mainly involved in immunity and disease, supporting that there were differences in the BF immune functions between the two duck breeds. In addition, the metabolic pathway had the maximum enriched target genes and some enriched pathways that were related to cell cycle, protein synthesis, cell proliferation and apoptosis. It indicted that the difference of metabolism may be one of the reasons leading the immune difference between the BF of two duck breeds. Conclusion This data lists the main differences in the BF at miRNAs level between two genetically disparate duck breeds and lays a foundation to carry out molecular assisted breeding of poultry in the future.
Collapse
Affiliation(s)
- Jun Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Junying Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Tao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
15
|
Han B, Lian L, Li X, Zhao C, Qu L, Liu C, Song J, Yang N. Chicken gga-miR-130a targets HOXA3 and MDFIC and inhibits Marek's disease lymphoma cell proliferation and migration. Mol Biol Rep 2016; 43:667-76. [PMID: 27178573 DOI: 10.1007/s11033-016-4002-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
Marek's disease (MD) is an infectious disease of chickens caused by MD virus (MDV), which is a herpesvirus that initiates tumor formation. Studies have indicated that microRNAs (miRNAs) are linked with the development of cancers or tumors. Previously, gga-miR-130a was discovered downregulated in MDV-infected tissues. Here, we aimed to explore the further function of gga-miR-130a in MD. The expression of gga-miR-130a in MDV-infected and uninfected spleens was detected by quantitative real-time PCR (qRT-PCR). Subsequently, proliferation and migration assays of MDV-transformed lymphoid cells (MSB1) were carried out by transfecting gga-miR-130a. The target genes of gga-miR-130a were predicted using TargetScan and miRDB and clustered through Gene Ontology analysis. The target genes were validated by western blot, qRT-PCR, and a dual luciferase reporter assay. Our results show that the expression of gga-miR-130a was reduced in MDV-infected spleens. Gga-miR-130a showed an inhibitory effect on MSB1 cell proliferation and migration. Two target genes, homeobox A3 (HOXA3) and MyoD family inhibitor domain containing (MDFIC), were predicted and clustered to cell proliferation. Results indicate that gga-miR-130a regulates HOXA3 and MDFIC at the protein level but not at the mRNA level. Moreover, the gga-miR-130a binding sites of two target genes have been confirmed. We conclude that gga-miR-130a can arrest MSB1 cell proliferation and migration, and target HOXA3 and MDFIC, which are both involved in the regulation of cell proliferation. Collectively, gga-miR-130a plays a critical role in the tumorigenesis associated with chicken MD.
Collapse
Affiliation(s)
- Bo Han
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunfang Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Ning Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Chicken gga-miR-103-3p Targets CCNE1 and TFDP2 and Inhibits MDCC-MSB1 Cell Migration. G3-GENES GENOMES GENETICS 2016; 6:1277-85. [PMID: 26935418 PMCID: PMC4856079 DOI: 10.1534/g3.116.028498] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marek’s disease (MD) is a highly contagious viral neoplastic disease caused by Marek’s disease virus (MDV), which can lead to huge economic losses in the poultry industry. Recently, microRNAs (miRNAs) have been found in various cancers and tumors. In recent years, 994 mature miRNAs have been identified through deep sequencing in chickens, but only a few miRNAs have been investigated further in terms of their function. Previously, gga-miR-103-3p was found downregulated in MDV-infected samples by using Solexa deep sequencing. In this study, we further verified the expression of gga-miR-103-3p among MDV-infected spleen, MD lymphoma from liver, noninfected spleen, and noninfected liver, by qPCR. The results showed that the expression of gga-miR-103-3p was decreased in MDV-infected tissues, which was consistent with our previous study. Furthermore, two target genes of gga-miR-103-3p, cyclin E1 (CCNE1) and transcription factor Dp-2 (E2F dimerization partner 2) (TFDP2), were predicted and validated by luciferase reporter assay, qPCR, and western blot analysis. The results suggested that CCNE1 and TFDP2 are direct targets of gga-miR-103-3p in chickens. Subsequent cell proliferation and migration assay showed that gga-miR-103-3p suppressed MDCC-MSB1 migration, but did not obviously modulate MDCC-MSB1 cell proliferation. In conclusion, gga-miR-103-3p targets the CCNE1 and TFDP2 genes, and suppresses cell migration, which indicates that it might play an important role in MD tumor transformation.
Collapse
|
17
|
Lian L, Li X, Zhao C, Han B, Qu L, Song J, Liu C, Yang N. Chicken gga-miR-181a targets MYBL1 and shows an inhibitory effect on proliferation of Marek's disease virus-transformed lymphoid cell line. Poult Sci 2016; 94:2616-21. [PMID: 26500265 DOI: 10.3382/ps/pev289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a lymphoproliferative neoplastic disease of chickens and is characterized by MD lymphoma in multiple visceral organs of chicken. It causes great damage to poultry health. Recently, miRNA has been reported to be involved in Marek's disease lymphomagenesis. Our previous study showed that gga-miR-181a was downregulated in MDV-induced lymphoma, and its target gene, v-myb myeloblastosis viral oncogene homolog-like 1 (MYBL1), was predicted. In this study, the interaction between gga-miR-181a and MYBL1 was further verified by detecting protein expression levels of MYBL1 after transfecting miR-181a mimic into MD lymphoma cell line, MSB1. The result showed that protein level of MYBL1 was lower in gga-miR-181a mimic transfecting group than that in the negative control group at 96 h post transfection, which indicated that MYBL1 was a target gene of gga-miR-181a. Additionally, we found that the expression of MYBL1 was higher in MDV-infected samples than that in non-infected controls, which agreed with the proposition that miRNA showed a negatively correlated expression pattern with its target gene. We observed the inhibitory effect of gga-miR-181a on MSB1 cell proliferation. Collectively, the aberrant expression of gga-miR-181a and MYBL1 in MD lymphoma suggested that they might be involved in MD tumor transformation and played important roles.
Collapse
Affiliation(s)
- Ling Lian
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunfang Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Han
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Liu X, Tu J, Yuan J, Liu X, Zhao L, Dawar FU, Khattak MNK, Hegazy AM, Chen N, Vakharia VN, Lin L. Identification and Characterization of MicroRNAs in Snakehead Fish Cell Line upon Snakehead Fish Vesiculovirus Infection. Int J Mol Sci 2016; 17:ijms17020154. [PMID: 26821019 PMCID: PMC4783888 DOI: 10.3390/ijms17020154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in mediating multiple biological processes in eukaryotes and are being increasingly studied to evaluate their roles associated with cellular changes following viral infection. Snakehead fish Vesiculovirus (SHVV) has caused mass mortality in snakehead fish during the past few years. To identify specific miRNAs involved in SHVV infection, we performed microRNA deep sequencing on a snakehead fish cell line (SSN-1) with or without SHVV infection. A total of 205 known miRNAs were identified when they were aligned with the known zebrafish miRNAs, and nine novel miRNAs were identified using MiRDeep2 software. Eighteen and 143 of the 205 known miRNAs were differentially expressed at three and 24 h post-infection (poi), respectively. From the differentially-expressed miRNAs, five were randomly selected to validate their expression profiles using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and their expression profiles were consistent with the microRNA sequencing results. In addition, the target gene prediction of the SHVV genome was performed for the differentially-expressed host miRNAs, and a total of 10 and 58 differentially-expressed miRNAs were predicted to bind to the SHVV genome at three and 24 h poi, respectively. The effects of three selected miRNAs (miR-130-5p, miR-214 and miR-216b) on SHVV multiplication were evaluated using their mimics and inhibitors via qRT-PCR and Western blotting. The results showed that all three miRNAs were able to inhibit the multiplication of SHVV; whereas the mechanisms underlying the SHVV multiplication inhibited by the specific miRNAs need to be further characterized in the future.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Lijuan Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Farman Ullah Dawar
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Department of Zoology, Hazara University, Mansehra, Khyber Pakhtoonkhwa 21300, Pakistan.
| | | | - Abeer M Hegazy
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo 13621, Egypt.
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Vikram N Vakharia
- Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
19
|
Wu S, Liu L, Zohaib A, Lin L, Yuan J, Wang M, Liu X. MicroRNA profile analysis of Epithelioma papulosum cyprini cell line before and after SVCV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:124-128. [PMID: 25291211 DOI: 10.1016/j.dci.2014.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 06/03/2023]
Abstract
MicroRNAs (miRNAs) play significant roles in regulating almost all of the biological processes in eukaryotes. An accumulating body of evidence shows that miRNAs are associated with cellular changes following viral infection. Spring viremia of carp virus (SVCV) is the pathogen of Spring viremia of carp (SVC), which results in heavy losses in the cultured common carp (Cyprinus carpio) industry in many countries. To study the involvement of miRNAs during SVCV infection, we adopted the Solexa sequencing technology to sequence small RNA libraries from the Epithelioma papulosum cyprini (EPC) cell line before and after infection with SVCV. In this study, a total of 161 conserved and 26 novel miRNAs were identified. Subsequently, the expression patterns of these miRNAs were compared between the uninfected (control library, M) and SVCV-infected (infection library, E) libraries. In addition, to verify the Solexa sequencing results, the expression patterns of 14 randomly selected miRNAs were validated by qRT-PCR. The targets of the significantly differentially expressed miRNAs were then predicted, and the miRNAs that could directly target the SVCV genome were also predicted. No miRNA encoded by SVCV itself was detected. To the best of our knowledge, this study presents the first miRNA profiling assessment in association with fish rhabdovirus infection, and the data presented lay a foundation for further investigations to determine the roles of miRNAs in regulating the molecular mechanism during SVCV infection.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Liyue Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Ali Zohaib
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Hubei, Wuhan 430070, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Min Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|