1
|
Li MY, Meng WK, Ma W, Ding YL, Yang B, Zhao WH, Bayaer H, Bagen A, Chen RB, Tunala S, Zhang R, Du CG, Zhao L, Liu YH. Sheep challenged with sheep-derived type II Mycobacterium avium subsp. paratuberculosis: the first experimental model of paratuberculosis in China. BMC Vet Res 2025; 21:298. [PMID: 40301886 PMCID: PMC12039145 DOI: 10.1186/s12917-025-04765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Paratuberculosis (PTB), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is difficult to diagnose in the early stages and poses substantial challenges in prevention, control, treatment, and eradication. A well-defined animal model can help identify disease markers and serve as a platform for vaccine and drug development. This study used sheep as a ruminant model for experimental MAP infection research. METHODS Nine 3-month-old lambs with negative MAP antigen and antibody were divided into three groups (control group A and inoculated groups B and C). The inoculated groups were challenged with sheep-derived type II MAP. After exposure, we recorded clinical signs, assessed fecal shedding, tested blood MAP levels, and performed fecal cultures. We also measured MAP-specific antibodies and monitored IFN-γ and IL-10 responses in vivo. At 255 days after inoculation, we performed autopsy, tissue culture, pathomorphological observation, and bacterial organ burden (BOB) testing. RESULTS All six sheep in groups B and C were infected, regardless of the challenge dose and exhibited emaciation; two had intermittent soft stools. Intermittent MAP shedding in feces was observed from 60 to 255 days after exposure. Typical MAP colonies formed after 4-6 weeks of fecal and tissue culture, and Ziehl-Neelsen staining showed positive results. In the groups challenged with MAP, some blood samples tested positive for MAP and MAP-specific antibodies were detected in some serum samples. IFN-γ response was significantly higher in groups B and C than that in group A from day 60 post-exposure, whereas the IL-10 response was higher than that in group A from day 120 post-exposure. In the infected groups, the ileal lesions were the most severe and were classified as grade 3 PTB granulomatous inflammation (multibacillary lesions). BOB levels varied across different tissues. CONCLUSIONS To the best of our knowledge, this is the first experimental MAP challenge study on sheep in China. Polymerase chain reaction detection was more sensitive than MAP culture, whereas enzyme-linked immunosorbent assay was less sensitive for detecting MAP-specific antibodies. IFN-γ and IL-10 responses may serve as targets for monitoring PTB progression. The severity of ileal lesions and acid-fast bacilli grading play crucial roles in the understanding of infection dynamics. Currently, early PTB diagnosis requires a combination of multiple sample types and detection methods.
Collapse
Affiliation(s)
- Meng-Yuan Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Kang Meng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hasi Bayaer
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Alateng Bagen
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Rui-Bin Chen
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Siqin Tunala
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Rong Zhang
- Otok Banner Animal Disease Prevention and Control Center, Ordos, China
| | - Chen-Guang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
2
|
Jolly A, Fernández B, Mundo SL, Elguezabal N. Modeling Paratuberculosis in Laboratory Animals, Cells, or Tissues: A Focus on Their Applications for Pathogenesis, Diagnosis, Vaccines, and Therapy Studies. Animals (Basel) 2023; 13:3553. [PMID: 38003170 PMCID: PMC10668694 DOI: 10.3390/ani13223553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paratuberculosis is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. Paratuberculosis that affects a wide variety of domestic and wild animals. It is considered one of the diseases with the highest economic impact on the ruminant industry. Despite many efforts and intensive research, paratuberculosis control still remains controversial, and the existing diagnostic and immunoprophylactic tools have great limitations. Thus, models play a crucial role in understanding the pathogenesis of infection and disease, and in testing novel vaccine candidates. Ruminant animal models can be restricted by several reasons, related to space requirements, the cost of the animals, and the maintenance of the facilities. Therefore, we review the potential and limitations of the different experimental approaches currently used in paratuberculosis research, focusing on laboratory animals and cell-based models. The aim of this review is to offer a vision of the models that have been used, and what has been achieved or discovered with each one, so that the reader can choose the best model to answer their scientific questions and prove their hypotheses. Also, we bring forward new approaches that we consider worth exploring in the near future.
Collapse
Affiliation(s)
- Ana Jolly
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
| | - Bárbara Fernández
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Silvia Leonor Mundo
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario-Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
3
|
Arrazuria R, Ladero I, Molina E, Fuertes M, Juste R, Fernández M, Pérez V, Garrido J, Elguezabal N. Alternative Vaccination Routes against Paratuberculosis Modulate Local Immune Response and Interference with Tuberculosis Diagnosis in Laboratory Animal Models. Vet Sci 2020; 7:vetsci7010007. [PMID: 31936741 PMCID: PMC7157726 DOI: 10.3390/vetsci7010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Paratuberculosis (PTB) is an enteric granulomatous disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) that mainly affects ruminants. Current vaccines have shown to be cost–effective control reagents, although they are restricted due to cross-interference with bovine tuberculosis (bTB). Therefore, novel vaccination strategies are needed and this study is focused on evaluating alternative vaccination routes and their effect on the local immune response. The MAP oral challenge rabbit model was used to evaluate and compare an experimental inactivated MAP vaccine through oral (VOR) and intradermal (VID) routes. The VID group presented the highest proportion of animals with no visible lesions and the lowest proportion of animals with MAP positive tissues. Immunohistochemistry analysis revealed that the VID group presented a dominantly M1 polarized response indicating an ability to control MAP infection. In general, all vaccinated groups showed lower calprotectin levels compared to the non-vaccinated challenged group suggesting less active granulomatous lesions. The VID group showed some degree of skin test reactivity, whereas the same vaccine through oral administration was completely negative. These data show that PTB vaccination has an effect on macrophage polarization and that the route influences infection outcome and can also have an impact on bTB diagnosis. Future evaluation of new immunological products against mycobacterial diseases should consider assaying different vaccination routes.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Iraia Ladero
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Elena Molina
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Miguel Fuertes
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Ramón Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Miguel Fernández
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, E-24071 Leon, Spain; (M.F.); (V.P.)
| | - Valentín Pérez
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, E-24071 Leon, Spain; (M.F.); (V.P.)
| | - Joseba Garrido
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
| | - Natalia Elguezabal
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario. Derio, E-48160 Bizkaia, Spain; (R.A.); (I.L.); (E.M.); (M.F.); (R.J.); (J.G.)
- Correspondence: ; Tel.: +34-94-403-4300
| |
Collapse
|
4
|
Arrazuria R, Pérez V, Molina E, Juste RA, Khafipour E, Elguezabal N. Diet induced changes in the microbiota and cell composition of rabbit gut associated lymphoid tissue (GALT). Sci Rep 2018; 8:14103. [PMID: 30237566 PMCID: PMC6148544 DOI: 10.1038/s41598-018-32484-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
The gut associated lymphoid tissue (GALT) is the largest immune organ of the body. Although the gut transient and mucosa-associated microbiota have been largely studied, the microbiota that colonizes the GALT has received less attention. The gut microbiome plays an important role in competitive exclusion of pathogens and in development and maturation of immunity. Diet is a key factor affecting the microbiota composition in the digestive tract. To investigate the relation between diet, microbiota and GALT, microbial and cell composition of vermiform appendix (VA) and sacculus rotundus (SR) were studied in two groups of New Zealand white rabbits on different diets. Diet shifted the lymphoid tissue microbiota affecting the presence and/or absence of certain taxa and their abundances. Immunohistochemistry revealed that a higher fibre content diet resulted in M cell hyperplasia and an increase of recently recruited macrophages, whereas T-cell levels remained unaltered in animals on both high fibre and standard diets. These findings indicate that diet has an impact on the microbiota and cell composition of the GALT, which could act as an important microbial recognition site where interactions with beneficial bacteria can take place favouring microbiota replacement after digestive dysregulations.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Valentín Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, University of Leon, Leon, Spain
| | - Elena Molina
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ramón A Juste
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.,SERIDA, Agri-food Research and Development Regional Service, Villaviciosa, Asturias, Spain
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Natalia Elguezabal
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain.
| |
Collapse
|
5
|
Arrazuria R, Molina E, Garrido JM, Pérez V, Juste RA, Elguezabal N. Vaccination sequence effects on immunological response and tissue bacterial burden in paratuberculosis infection in a rabbit model. Vet Res 2016; 47:77. [PMID: 27496043 PMCID: PMC4975891 DOI: 10.1186/s13567-016-0360-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023] Open
Abstract
Paratuberculosis (PTB), a chronic granulomatous enteritis produced by Mycobacterium avium subspecies paratuberculosis (MAP), is considered as one of the diseases with the highest economic impact in the ruminant industry. Vaccination against MAP is recommended during the first months after birth on the basis that protection would be conferred before the first contact with mycobacteria. However, little is known about the therapeutic effect of MAP vaccination in controlled experimental conditions. The current study was designed to evaluate the efficacy of vaccination before and after challenge with MAP in a rabbit infection model. The rabbits were divided into four groups: non-infected control (NIC, n = 4), infected control challenged with MAP (IC, n = 5), vaccinated and challenged 1 month after with MAP (VSI, n = 5) and challenged with MAP and vaccinated 2 months later (IVS, n = 5). The results from this study show a quick increase in IFN-γ release upon stimulation with bovine, avian and johnin PPD in animals vaccinated before MAP challenge. All vaccinated animals show an increased humoral response as seen by western blot and ELISA. The final bacteriology index (considering tissue culture and qPCR) shows that the IC group was the most affected. Vaccination after infection (IVS) produced the lowest bacteriology index showing significant differences with the IC group (p = 0.034). In conclusion, vaccination against MAP shows positive effects in a rabbit model. However, vaccination after infection shows a slightly stronger protective effect compared to vaccination before infection, suggesting a therapeutic effect. This feature could be applied to previously infected adult animals under field conditions.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain
| | - Elena Molina
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain
| | - Joseba M Garrido
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain
| | - Valentín Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, University of León, León, Spain
| | - Ramón A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain.,Department of Agriculture of the Regional Government of the Principality of Asturias, SERIDA, Deva, Asturias, Spain
| | - Natalia Elguezabal
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga, 1, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
6
|
Arrazuria R, Elguezabal N, Juste RA, Derakhshani H, Khafipour E. Mycobacterium avium Subspecies paratuberculosis Infection Modifies Gut Microbiota under Different Dietary Conditions in a Rabbit Model. Front Microbiol 2016; 7:446. [PMID: 27065994 PMCID: PMC4815054 DOI: 10.3389/fmicb.2016.00446] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/18/2016] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) the causative agent of paratuberculosis, produces a chronic granulomatous inflammation of the gastrointestinal tract of ruminants. It has been recently suggested that MAP infection may be associated with dysbiosis of intestinal microbiota in ruminants. Since diet is one of the key factors affecting the balance of microbial populations in the digestive tract, we intended to evaluate the effect of MAP infection in a rabbit model fed a regular or high fiber diet during challenge. The composition of microbiota of the cecal content and the sacculus rotundus was studied in 20 New Zealand white female rabbits. The extracted DNA was subjected to paired-end Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene for microbiota analysis. Microbial richness (Chao1) in the cecal content was significantly increased by MAP infection in regular diet rabbits (p = 0.0043) and marginally increased (p = 0.0503) in the high fiber group. Analysis of beta-diversity showed that MAP infection produces deeper changes in the microbiota of sacculus rotundus than in the cecal content. A lower abundance of Proteobacteria in the cecal content of infected animals fed the high fiber diet and also lower abundance of Bacteroidetes in the sacculus rotundus of infected animals fed the regular diet were observed. Based on OPLS-DA analysis, we observed that some bacteria repeatedly appear to be positively associated with infection in different samples under different diets (families Dehalobacteriaceae, Coriobacteriaceae, and Mogibacteriaceae; genus Anaerofustis). The same phenomenon was observed with some of the bacteria negatively associated with MAP infection (genera Anaerostipes and Coprobacillus). However, other groups of bacteria (Enterobacteriaceae family and ML615J-28 order) were positively associated with infection in some circumstances and negatively associated with infection in others. Data demonstrate that MAP infection and diet changes do interact and result in shifts in the microbiota of the cecal content and sacculus rotundus of rabbits.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario Derio, Spain
| | - Natalia Elguezabal
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario Derio, Spain
| | - Ramon A Juste
- Department of Animal Health, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario Derio, Spain
| | - Hooman Derakhshani
- Department of Animal Science, University of Manitoba, Winnipeg MB, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, WinnipegMB, Canada; Department of Medical Microbiology, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
7
|
Arrazuria R, Juste RA, Elguezabal N. Mycobacterial Infections in Rabbits: From the Wild to the Laboratory. Transbound Emerg Dis 2016; 64:1045-1058. [PMID: 26799551 DOI: 10.1111/tbed.12474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 12/12/2022]
Abstract
Tuberculous mycobacterial diseases such as leprosy and tuberculosis are ancient diseases that currently continue threatening human health in some countries. Non-tuberculous mycobacterial (NTM) infections cause a series of well-defined pathological entities, as well as some opportunistic diseases that have also increased worldwide, being more common among immunocompromised patients but rising also in immunocompetent individuals. Reports on natural infections by mycobacteria in rabbits are scarce and mainly involve NTM such as Mycobacterium avium subsp. avium in pigmy rabbits in the United States and Mycobacterium avium subsp. paratuberculosis in wild rabbits in Europe. Rabbits have been used as laboratory animals through the years, both to generate immunological reagents and as infection models. Mycobacterial infection models have been developed in this animal species showing different susceptibility patterns to mycobacteria in laboratory conditions. The latent tuberculosis model and the cavitary tuberculosis model have been widely used to elucidate pathogenic mechanisms and to evaluate chemotherapy and vaccination strategies. Rabbits have also been used as bovine paratuberculosis infection models. This review aimed to gather both wildlife and experimental infection data on mycobacteriosis in rabbits to assess their role in the spread of these infections as well as their potential use in the experimental study of mycobacterial pathogenesis and treatment.
Collapse
Affiliation(s)
- R Arrazuria
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - R A Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - N Elguezabal
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| |
Collapse
|