1
|
Rucinque DS, Velarde A, Xercavins A, Varvaró-Porter A, Gibson TJ, Michel V, Contreras-Jodar A. Alternatives to Carbon Dioxide in Two Phases for the Improvement of Broiler Chickens' Welfare during Stunning. Animals (Basel) 2024; 14:486. [PMID: 38338133 PMCID: PMC10854911 DOI: 10.3390/ani14030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study evaluated the exposure to gas mixtures of carbon dioxide (CO2) associated with nitrogen (N2) as alternatives to CO2 in two phases to improve the welfare of broiler chickens at slaughter. Broilers were exposed to one of three treatments: 40C90C (1st phase: <40% CO2 for 2 min; 2nd phase: >90% CO2 and <2% O2 for 2 min, n = 92), 40C60N (40% CO2, 60% N2, and <2% O2 for 4 min, n = 79), or 20C80N (20% CO2, 80% N2, and <2% O2 for 4 min, n = 72). Brain activity (EEG) was assessed to determine the onset of loss of consciousness (LOC) and death. Behavioural assessment allowed for characterisation of an aversive response to the treatments and confirmed loss of posture (LOP) and motionlessness as behavioural proxies of LOC and brain death in 40C60N and 20N80C. However, the lack of quality of the EEG traces obtained in 40C90C did not allow us to determine the onset of LOC and brain death for this treatment. The onset of LOC in 40C60N was found at 19 s [14-30 s] and in 20C80N at 21 s [16-37 s], whereas a LOP was seen at 53 s [26-156 s] in 40C90C. Birds showed brain death in 40C60N at 64 s [43-108 s] and in 20C80N at 70 s [45-88 s]), while they became motionless in 40C90C at 177 s [89-212 s]. The 40C90C birds not only experienced more events of aversive behaviours related to mucosal irritation, dyspnoea, and breathlessness during induction to unconsciousness but were at risk of remaining conscious when the CO2 concentration was increased in the 2nd phase (known to cause severe pain). From an animal welfare point of view, 40C60N proved to be the least aversive of the three treatments tested, followed by 20C80N and 40C90C.
Collapse
Affiliation(s)
- Daniel Santiago Rucinque
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain; (D.S.R.); (A.V.); (A.X.); (A.V.-P.)
| | - Antonio Velarde
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain; (D.S.R.); (A.V.); (A.X.); (A.V.-P.)
| | - Aida Xercavins
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain; (D.S.R.); (A.V.); (A.X.); (A.V.-P.)
| | - Aranzazu Varvaró-Porter
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain; (D.S.R.); (A.V.); (A.X.); (A.V.-P.)
| | - Troy John Gibson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK;
| | - Virginie Michel
- Direction of Strategy and Programmes, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France;
| | - Alexandra Contreras-Jodar
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain; (D.S.R.); (A.V.); (A.X.); (A.V.-P.)
| |
Collapse
|
2
|
Comin M, Barbieri S, Minero M, Dalla Costa E. The Feasibility of Animal-Based Indicators of Consciousness and Unconsciousness for Stunning in Sheep: A Systematic Review. Animals (Basel) 2023; 13:ani13081395. [PMID: 37106956 PMCID: PMC10134993 DOI: 10.3390/ani13081395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND According to EU legislation, animal-based indicators (ABMs) are used to evaluate the efficacy of stunning methods to ensure that animals do not regain consciousness. EFSA has provided a list of ABMs for electrical and mechanical stunning in sheep; however, there is still a lack of information on their feasibility. We aimed to identify and evaluate the feasibility constraints of ABMs commonly applied in slaughterhouses to assess proper stunning in sheep. METHOD For this systematic review, we searched the Scopus and Web of Science databases from 2000 to 8 August 2022, including full peer-reviewed papers written in English on the welfare of sheep at the stunning and restraint phases. We excluded studies using a gas stunning method or without prior stunning, as well as manuscripts in which indicators were applied after sticking. RESULTS Of 1289 records identified, only 8 papers were eligible for the critical evaluation of physical aspects that affect the feasibility of ABMs. These aspects were defined as a given definition of the feasibility of ABMs, and information was summarized and critically evaluated. The results highlighted a lack of information on the feasibility of ABMs which should be considered in the various conditions of commercial slaughterhouses.
Collapse
Affiliation(s)
- Marta Comin
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Sara Barbieri
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Michela Minero
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Emanuela Dalla Costa
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
3
|
Kumar P, Abubakar AA, Sazili AQ, Kaka U, Goh YM. Application of Electroencephalography in Preslaughter Management: A Review. Animals (Basel) 2022; 12:2857. [PMID: 36290243 PMCID: PMC9597730 DOI: 10.3390/ani12202857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Electroencephalography (EEG) can be reliable for assessing the brain's electrical activity of preslaughter stress and pain. The duration between the ventral neck cut and induction of a state of unconsciousness/insensibility is crucial in the slaughtering of animals, reducing pain, fear, and distress. Various EEG variables, such as median frequency (F50), the total power of EEG spectrum (Ptot), waves patterns (amplitude and frequencies), epileptiform EEG, index of consciousness, and isoelectric EEG, are used to identify a valid indicator of the state of unconsciousness. Association among various behavioral, physiological, and hematological parameters with EEG variables could provide an overall assessment and deep insights into the animal stress levels or welfare status during various managemental and preslaughter operations, such as transport, stunning, and slaughtering operations. The application of EEG could help in further refining the stunning technologies and slaughter protocols in livestock, poultry, and fish. The present review analyzed the application of EEG as a neurophysiological tool for assessing animal welfare during the critical state of preslaughter handling and slaughter, thus ensuring proper compliance with animal welfare principles.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Ahmed A. Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ubedullah Kaka
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yong-Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
4
|
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Candiani D, Rapagnà C, Van der Stede Y, Michel V. Welfare of sheep and goats at slaughter. EFSA J 2021; 19:e06882. [PMID: 34765030 PMCID: PMC8573542 DOI: 10.2903/j.efsa.2021.6882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The killing of sheep and goats for human consumption (slaughtering) can take place in a slaughterhouse or on-farm. The processes of slaughtering that were assessed for welfare, from the arrival of sheep and goats until their death (including slaughtering without stunning), were grouped into three main phases: pre-stunning (including arrival, unloading from the truck, lairage, handling and moving of sheep and goats); stunning (including restraint); and bleeding. Stunning methods were grouped into two categories: mechanical and electrical. Twelve welfare consequences that sheep and goats may experience during slaughter were identified: heat stress, cold stress, fatigue, prolonged thirst, prolonged hunger, impeded movement, restriction of movements, resting problems, social stress, pain, fear and distress. These welfare consequences and their relevant animal-based measures are described in detail in this Scientific Opinion. In total, 40 welfare hazards that could occur during slaughter were identified and characterised, most of them related to stunning and bleeding. Staff were identified as the origin of 39 hazards, which were attributed to the lack of appropriate skill sets needed to perform tasks or to fatigue. Measures to prevent and correct hazards were identified, and structural and managerial measures were identified as those with a crucial role in prevention. Outcome tables linking hazards, welfare consequences, animal-based measures, origin of hazards and preventive and corrective measures were developed for each process. Mitigation measures to minimise welfare consequences are proposed.
Collapse
|
5
|
Deathly Silent: Exploring the Global Lack of Data Relating to Stranded Cetacean Euthanasia. Animals (Basel) 2021; 11:ani11051460. [PMID: 34069749 PMCID: PMC8161157 DOI: 10.3390/ani11051460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Cetacean strandings are frequent in occurrence and are likely to become even more common globally because of the effects of escalating anthropogenic activities. Due to the compromised state of stranded animals, euthanasia is often recommended or required. However, current knowledge and implementation of euthanasia methods remain highly variable, with limited data on the practicalities and welfare impacts of procedures. This study sought to evaluate the available published data on cetacean euthanasia in order to highlight significant knowledge gaps and provide direction to improve the welfare of stranded cetaceans. Data from the peer-reviewed literature and published reports were analysed, and significant knowledge gaps highlighted. Two main euthanasia methods, chemical and ballistics, were reported, with few details provided on the specific application of these. Few data were available about time to death/insensibility, parameters commonly required to assess the welfare impacts of killing methods. Overall, the findings highlight the lack of available information on cetacean euthanasia and suggest avenues for future work to improve welfare through the use of appropriate methods and increased data collection. Abstract The compromised state of stranded cetaceans means that euthanasia is often required. However, current knowledge and implementation of euthanasia methods remain highly variable, with limited data on the practicalities and welfare impacts of procedures. This study evaluated the available published data on cetacean euthanasia, highlighting knowledge gaps and providing direction to improve stranded cetacean welfare. A total of 2147 peer-reviewed articles describing marine mammal euthanasia were examined. Of these 3.1% provided details on the method used, with 91% employing chemical methods. Two countries, the United Kingdom (UK) and New Zealand (NZ), provided euthanasia reports to the International Whaling Commission (IWC) between 2007 and 2020. Methods employed were reported for 78.3% and 100% of individual cetaceans euthanised in the UK and NZ, respectively. In the UK, chemical euthanasia was most common (52%), whilst in NZ only ballistics methods were used. Few data were available about time to death/insensibility (TTD); 0.5% of peer-reviewed articles provided TTD, whilst TTD was reported for 35% of individuals in the UK and for 98% in NZ. However, IWC reports lacked detail on how death/insensibility were assessed, with multiple individuals “presumed instantly” killed. Overall, the findings highlight the lack of available information on cetacean euthanasia, and suggest increased data collection and the application of appropriate methods to improve welfare.
Collapse
|
6
|
Wireless 'under the skull' epidural EEG and behavior in piglets during nitrous oxide or carbon dioxide gas euthanasia. Physiol Behav 2020; 227:113142. [PMID: 32822708 DOI: 10.1016/j.physbeh.2020.113142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
Consciousness is central to animal welfare concerns. Its assessment is most often conducted based on behavior, with a poor understanding of the correspondence between behavior and the neurobiological processes that underlie the subjective experience of consciousness. Recording of brain electrical activity using electrodes placed under the skull improves EEG recording by minimizing artifacts from muscular or cardiac activities, and it can now be combined with wireless recording in free-moving animals. This experiment investigated the correspondence between wireless 'under the skull' epidural EEG and the behavior of 18 five-week-old female piglets undergoing nitrous oxide (N2O) or carbon dioxide (CO2) gradual fill gas euthanasia at 25% replacement rate per minute of the chamber volume. Piglets exposed to CO2 had a peak in EEG total power ('Ptot') during the flailing stage, whereas piglets exposed to N2O had a higher EEG 95% spectral edge frequency ('F95') during their initial explorative behavior phase and a drop in EEG median frequency ('F50') after loss of posture. Loss of posture without righting attempt, as the last behavioral state observed during euthanasia, preceded the onset of transitional EEG on average by 0.9 and 3.1 min (for CO2 and N2O treatments, respectively), and the onset of isoelectric EEG by 4.5 and 6.2 min (for CO2 and N2O treatments, respectively). Paddling movements occurred shortly before and during transitional EEG but never during isoelectric EEG, whereas gasps persisted after the EEG had become isoelectric. The dynamics of EEG spectral changes were complex to interpret in relation to the degree of consciousness, but isoelectric EEG as an unequivocal indicator of unconsciousness appeared several minutes after loss of posture with no righting attempt. This leaves a window of uncertainty in regards to the potential for consciousness after loss of posture during gradual fill gas euthanasia in piglets.
Collapse
|
7
|
Ruíz-López P, Domínguez JM, Granados MDM. Intraoperative nociception-antinociception monitors: A review from the veterinary perspective. Vet Anaesth Analg 2019; 47:152-159. [PMID: 32007442 DOI: 10.1016/j.vaa.2019.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To review monitors currently available for the assessment of nociception-antinociception in veterinary medicine. DATABASES USED PubMed, Web of Science and Google Scholar. The results were initially filtered manually based on the title and the abstract. CONCLUSIONS The provision of adequate antinociception is difficult to achieve in veterinary anaesthesia. Currently, heart rate and arterial blood pressure are used to monitor the response to a noxious stimulus during anaesthesia, with minimum alveolar concentration-sparing effect and stress-related hormones used for this purpose in research studies. However, since none of these variables truly assess intraoperative nociception, several alternative monitoring devices have been developed for use in humans. These nociceptive-antinociceptive monitoring systems derive information from variables, such as electroencephalography, parasympathetic nervous system (PNS) response, sympathetic nervous system response and electromyography. Several of these monitoring systems have been investigated in veterinary medicine, although few have been used to assess intraoperative nociception in animals. There is controversy regarding their effectiveness and clinical use in animals. A nociceptive-antinociceptive monitoring system based on the PNS response has been developed for use in cats, dogs and horses. It uses the parasympathetic tone activity index, which is believed to detect inadequate intraoperative nociception-antinociception balance in veterinary anaesthesia. Nonetheless, there are limited published studies to date, and cardiovascular variables remain the gold standard. Consequently, further studies in this area are warranted.
Collapse
Affiliation(s)
- Patricia Ruíz-López
- Anaesthesiology Unit, Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.
| | - Juan Manuel Domínguez
- Anaesthesiology Unit, Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - María Del Mar Granados
- Anaesthesiology Unit, Animal Medicine and Surgery Department, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
8
|
Hernandez E, James F, Torrey S, Widowski T, Schwean-Lardner K, Monteith G, Turner PV. Evaluation of Brain Death in Laying Hens During On-Farm Killing by Cervical Dislocation Methods or Pentobarbital Sodium Injection. Front Vet Sci 2019; 6:297. [PMID: 31552284 PMCID: PMC6733910 DOI: 10.3389/fvets.2019.00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
This study investigated changes in the electroencephalograph (EEG) power spectrum as well as physiological and behavioral responses to on-farm killing via mechanical cervical dislocation (MCD), manual cervical dislocation (CD) or intravenous pentobarbital sodium administration in lightly anesthetized laying hens, to evaluate the welfare impact of each method. A mixed group of 44 white Leghorn and Smoky Joe laying hens (60 weeks-old) were anesthetized with isoflurane in oxygen and maintained at 1.5–2% isoflurane/O2 until the killing method was applied. Birds were randomly assigned to one of three experimental groups on each trial day. The EEG was recorded bilaterally in a four-electrode montage. After recording a 5-min baseline, the killing method was applied and EEGs and other behavioral and physiological responses, including convulsions, gasping, cessation of body movements and feather erection were recorded for 5 min. Changes in EEG frequency bands (alpha, beta, delta, theta), median frequency (F50), 95% spectral edge frequency (F95), and total power (Ptot) were used to assess the quality of the on-farm killing event. Within 15 s after administration of pentobarbital sodium, there were significant decreases in mean frequency bands, increases in mean F50 and F95, and decreases in Ptot, suggesting brain death. In addition, birds presented a shorter latency to cessation of movement after pentobarbital sodium injection compared to MCD and CD (22 vs. 115 s and 136 s, respectively). There were significant increases in F95 and decreases in Ptot at 120 s after application of CD; and a concomitant decrease in the frequency bands at 135 s and isoelectric EEG at 171 ± 15 s. Changes consistent with brain death after MCD included isoelectric EEG at 207 ± 23 s and a significant decreases in some frequency bands at 300 s post-application. No other significant spectrum frequency changes were observed in the MCD group, suggesting brain death likely occurred near the 5-min endpoint. There was no clear association between behavioral, physiological, and EEG responses within CD and MCD treatments. The data demonstrate that pentobarbital sodium induced a rapid death with minimal behavioral and physiological responses regardless of strain of hens. In comparison, use of CD and MCD resulted in a slow onset of brain death in hens.
Collapse
Affiliation(s)
- Elein Hernandez
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Fiona James
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Stephanie Torrey
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Tina Widowski
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Karen Schwean-Lardner
- College of Agricultural and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gabrielle Monteith
- Department of Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Hernandez E, James F, Torrey S, Widowski T, Schwean-Lardner K, Monteith G, Turner PV. Electroencephalographic, physiologic and behavioural responses during cervical dislocation euthanasia in turkeys. BMC Vet Res 2019; 15:132. [PMID: 31064372 PMCID: PMC6505191 DOI: 10.1186/s12917-019-1885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023] Open
Abstract
Background There is a critical need to develop appropriate on-farm euthanasia methods for poultry species. Euthanasia methods should affect the brain first causing insensibility, followed by cardiorespiratory arrest. Neck or cervical dislocation methods, either manual (CD) or mechanical (MCD), are reported to cause a prolonged time to loss of sensibility and death with inconsistent results upon application, especially MCD methods. However, there is limited information on cervical dislocation in turkeys. The overall objective of this study was to assess the welfare implications of CD and a newly developed MCD device for euthanasia of cull turkeys in comparison with intravenous (IV) pentobarbital sodium (1 mL/4.5 kg), the gold standard euthanasia method. Time to death using electroencephalographic (EEG) and behavioural responses were monitored in eight and eighteen week-old turkeys for five minutes after each euthanasia method application. Spectral analyses of EEG responses and onset of isoelectric EEGs were compared to baseline EEG recordings of birds under anesthesia and behavioural responses were studied among euthanasia treatments. A significant decrease in brain activity frequencies analysis and isoelectric EEG were recorded as time of brain death. Results All turkeys euthanized with IV pentobarbital sodium presented a rapid and irreversible decrease in the EEG activity at approximately 30s post-injection with minimal behavioural responses. CD and MCD methods caused EEG responses consistent with brain death at approximately 120 s and 300 s, respectively. Additionally, isoelectric EEGs resulted in all pentobarbital sodium and CD groups, but only in 54 and 88% of the eight and eighteen week-old turkeys in the MCD groups, respectively. There were few clear patterns of behavioural responses after CD and MCD application. However, cessation of body movement and time to isoelectric EEG after CD application were positively correlated. Conclusions Use of CD and MCD resulted in a prolonged time to death in both age groups of turkeys. MCD application presents a number of welfare risks based on electroencephalographic and behavioural findings. Intravenous pentobarbital sodium induced rapid brain death, but possesses several on-farm limitations. To develop improvements in cervical dislocation methods, further investigations into combined or alternative methods are required to reduce the prolonged time to insensibility and death. Electronic supplementary material The online version of this article (10.1186/s12917-019-1885-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elein Hernandez
- Depts of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Fiona James
- Clinical Studies, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Stephanie Torrey
- Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tina Widowski
- Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Karen Schwean-Lardner
- College of Agricultural and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | | | - Patricia V Turner
- Depts of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
10
|
Small A, Lea J, Niemeyer D, Hughes J, McLean D, McLean J, Ralph J. Development of a microwave stunning system for cattle 2: Preliminary observations on behavioural responses and EEG. Res Vet Sci 2019; 122:72-80. [DOI: 10.1016/j.rvsc.2018.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 11/28/2022]
|
11
|
|
12
|
Verhoeven M, Gerritzen M, Velarde A, Hellebrekers L, Kemp B. Time to Loss of Consciousness and Its Relation to Behavior in Slaughter Pigs during Stunning with 80 or 95% Carbon Dioxide. Front Vet Sci 2016; 3:38. [PMID: 27243026 PMCID: PMC4871862 DOI: 10.3389/fvets.2016.00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Exposure to CO2 at high concentration is a much debated stunning method in pigs. Pigs respond aversively to high concentrations of CO2, and there is uncertainty about what behaviors occur before and after loss of consciousness. The aim was to assess timing of unconsciousness in pigs during exposure to high concentrations of CO2 based on changes in electroencephalogram (EEG) activity and the relation with the behaviors sniffing, retreat and escape attempts, lateral head movements, jumping, muscular contractions, loss of posture, and gasping. Pigs (108 ± 9 kg) were randomly assigned to 80% CO2 (80C, n = 24) or 95% CO2 (95C, n = 24). The time at which the gondola started descending into the well pre-filled with 80C or 95C was marked as T = 0. The CO2 exposure lasted 346 s after which the corneal reflex and breathing were assessed for 1 min. Visual assessment of changes in the amplitude and frequency of EEG traces after T = 0 was used to determine loss of consciousness. Time to loss of consciousness was longer in 80C pigs (47 ± 6 s) than in 95C pigs (33 ± 7 s). Time to an iso-electric EEG was similar in 80C pigs (75 ± 23 s) and 95C pigs (64 ± 32 s). When pigs descended into the well, the earlier entry of 95C pigs into high CO2 atmosphere rather than the concentration of CO2 by itself affected the latency of behavioral responses and decreasing brain activity. During exposure to the gas, 80C and 95C pigs exhibited sniffing, retreat attempts, lateral head movements, jumping, and gasping before loss of consciousness. 95C pigs exhibited all these behaviors on average earlier than 80C pigs after T = 0. But the interval between onset of these behaviors and loss of consciousness and the duration of these behaviors, except gasping, was similar for both treatments. Loss of posture was on average observed in both groups 10 s before EEG-based loss of consciousness. Furthermore, 88% of 80C pigs and 94% of 95C pigs demonstrated muscular contractions before loss of consciousness. The findings provide little reason to conclude on a behavioral basis that these atmospheres are greatly different in their impact on pig welfare.
Collapse
Affiliation(s)
- Merel Verhoeven
- Animal Welfare Department, Animal Sciences Group, Wageningen University and Research Centre, Wageningen, Netherlands; Adaptation Physiology Group, Animal Sciences Group, Wageningen University, Wageningen, Netherlands
| | - Marien Gerritzen
- Animal Welfare Department, Animal Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | | | - Ludo Hellebrekers
- Central Veterinary Institute, Animal Sciences Group, Wageningen University and Research Centre , Wageningen , Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Animal Sciences Group, Wageningen University , Wageningen , Netherlands
| |
Collapse
|
13
|
Abstract
European legislation states that after stunning regular checks should be performed to guarantee animals are unconscious between the end of the stunning process and death. When animals are killed without prior stunning these checks should be performed before the animal is released from restraint. The validity of certain indicators used to assess unconsciousness under different stunning and slaughter conditions is under debate. The aim of this study was to validate the absence of threat-, withdrawal-, corneal- and eyelid reflex as indicators to assess unconsciousness in calves subjected to different stunning and slaughter methods. Calves (201±22 kg) were randomly assigned to one of the following four treatments: (1) Captive bolt stunning followed by neck cut in an inverted position (n=25); (2) Non-stunned slaughter in an upright position (n=7); (3) Non-stunned slaughter in an inverted position (180° rotation) (n=25); (4) Non-stunned slaughter in an upright position followed by captive bolt stunning 40 s after the neck cut (n=25). Each calf was equipped with non-invasive electroencephalogram (EEG) electrodes before the slaughter procedure. All reflexes were verified once before the slaughter procedure. At the beginning of the procedure (T=0 s) calves were stunned (treatment 1) or neck cut in an upright position (treatment 2, 4) or inverted position (treatment 3). Calves of treatment 4 were captive bolt stunned 34±8 s after the neck cut. Reflexes were assessed every 20 s from T=15 s for all treatments until all reflex tests resulted in a negative response three times in a row and a flat line EEG was observed. In addition, reflexes were assessed 5 s after captive bolt stunning in calves of treatments 1 and 4. Visual assessment of changes in the amplitude and frequency of EEG traces was used to determine loss of consciousness. Timing of loss of consciousness was related to timing of loss of reflexes. After captive bolt stunning, absence of threat-, withdrawal-, corneal- and eyelid reflex indicated unconsciousness as determined by EEG recordings. After non-stunned slaughter, both threat- and withdrawal reflex were on average lost before calves were unconscious based on EEG recordings. The eyelid- and corneal reflex were on average lost after calves had lost consciousness based on EEG recordings and appeared to be distinctly conservative indicators of unconsciousness in non-stunned slaughtered calves since they were observed until 76±50 and 85±45 s (mean±SD), respectively, after EEG-based loss of consciousness.
Collapse
|
14
|
Terlouw C, Bourguet C, Deiss V. Consciousness, unconsciousness and death in the context of slaughter. Part II. Evaluation methods. Meat Sci 2016; 118:147-56. [PMID: 27086068 DOI: 10.1016/j.meatsci.2016.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 01/23/2023]
Abstract
This second review describes indicators of consciousness and unconsciousness that can be used in the abattoir. These indicators evaluate different aspects of cerebral functioning, but only indirectly. It is therefore necessary to monitor several indicators. Animals are considered unconscious if signs of consciousness are absent, and signs of unconsciousness are present. Given that the unconscious state may be reversible it is further necessary to monitor these indicators until the end of bleeding. The techniques used to diagnose brain death in humans cannot be used in the slaughterhouse. Under field conditions, at the end of bleeding, the absence of breathing and of brainstem reflexes and the adequacy of the exsanguination are verified. If these three aspects are confirmed, in the context of the slaughterhouse and at this stage of the slaughter process the loss of vital functions is irreversible and the animal can be considered dead.
Collapse
Affiliation(s)
- Claudia Terlouw
- INRA, UMR1213 Herbivores, 63122 Saint-Genès-Champanelle, France; Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, 63000 Clermont-Ferrand, France.
| | | | - Véronique Deiss
- INRA, UMR1213 Herbivores, 63122 Saint-Genès-Champanelle, France; Clermont University, VetAgro Sup, UMR1213 Herbivores, BP 10448, 63000 Clermont-Ferrand, France
| |
Collapse
|