1
|
Jerjen CP, Kumaran SJ, Liesegang A, Hall E, Wichert B, Haase B. Melanocortin-4 receptor and proopiomelanocortin: Candidate genes for obesity in domestic shorthair cats. Anim Genet 2023; 54:637-642. [PMID: 37365843 DOI: 10.1111/age.13335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Obesity is an escalating global health problem affecting both humans and companion animals. In cats it is associated with increased mortality and multiple diseases, including diabetes mellitus. Two genes coding for proteins known to play a critical role in energy homeostasis across species are the proopiomelanocortin (POMC) gene and the melanocortin-4 receptor (MC4R) gene. A missense variant in the coding sequence of the feline MC4R (MC4R:c.92C>T) has been reported to be associated with diabetes and overweight in domestic shorthair cats, and while variants in the POMC gene are known to cause obesity in humans and dogs, variants in POMC and their association with feline obesity and diabetes mellitus have not been investigated to date. The current study aimed to assess the association between the previously described MC4R variant and body condition score (BCS), as well as body fat content (%BF) in 89 non-diabetic domestic shorthair cats. Furthermore, we investigated the feline POMC gene as a potential candidate gene for obesity. Our results indicate that the MC4R:c.92C>T polymorphism is not associated with BCS or %BF in non-diabetic domestic shorthair cats. The mutation analysis of all POMC exons identified two missense variants, with a variant in exon 1 (c.28G>C; p.G10R) predicted to be damaging. The variant was subsequently assessed in all 89 cats, and cats heterozygous for the variant had a significantly increased body condition score (p = 0.03) compared with cats homozygous for the wild-type allele. Results from our study provide additional evidence that the previously described variant in MC4R is not associated with obesity in domestic shorthair cats. More importantly, we have identified a novel variant in the POMC gene, which might play a role in increased body condition score and body fat content in domestic shorthair cats.
Collapse
Affiliation(s)
- C P Jerjen
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| | - S J Kumaran
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| | - A Liesegang
- Vetsuisse Faculty, Institute of Animal Nutrition and Dietetics, University of Zurich, Zurich, Switzerland
| | - E Hall
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| | - B Wichert
- Vetsuisse Faculty, Institute of Animal Nutrition and Dietetics, University of Zurich, Zurich, Switzerland
| | - B Haase
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Antkowiak M, Szydlowski M. Uncovering structural variants associated with body weight and obesity risk in labrador retrievers: a genome-wide study. Front Genet 2023; 14:1235821. [PMID: 37799139 PMCID: PMC10548226 DOI: 10.3389/fgene.2023.1235821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Although obesity in the domestic dog (Canis lupus familiaris) is known to decrease well-being and shorten lifespan, the genetic risk variants associated with canine obesity remain largely unknown. In our study, which focused on the obesity-prone Labrador Retriever breed, we conducted a genome-wide analysis to identify structural variants linked to body weight and obesity. Obesity status was based on a 5-point body condition score (BCS) and the obese dog group included all dogs with a BCS of 5, along with dogs with the highest body weight within the BCS 4 group. Data from whole-gene sequencing of fifty dogs, including 28 obese dogs, were bioinformatically analyzed to identify potential structural variants that varied in frequency between obese and healthy dogs. The seven most promising variants were further analyzed by droplet digital PCR in a group of 110 dogs, including 63 obese. Our statistical evidence suggests that common structural mutations in or near six genes, specifically ALPL, KCTD8, SGSM1, SLC12A6, RYR3, and VPS26C, may contribute to the variability observed in body weight and body condition scores among Labrador Retriever dogs. These findings emphasize the need for additional research to validate the associations and explore the specific functions of these genes in relation to canine obesity.
Collapse
Affiliation(s)
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
3
|
Sypniewski M, Szydlowski M. A Study of 41 Canine Orthologues of Human Genes Involved in Monogenic Obesity Reveals Marker in the ADCY3 for Body Weight in Labrador Retrievers. Vet Sci 2023; 10:390. [PMID: 37368776 DOI: 10.3390/vetsci10060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity and overweight are common conditions in dogs, but individual susceptibility varies with numerous risk factors, including diet, age, sterilization, and gender. In addition to environmental and biological factors, genetic and epigenetic risk factors can influence predisposition to canine obesity, however, they remain unknown. Labrador Retrievers are one of the breeds that are prone to obesity. The purpose of this study was to analyse 41 canine orthologues of human genes linked to monogenic obesity in humans to identify genes associated with body weight in Labrador Retriever dogs. We analysed 11,520 variants from 50 dogs using a linear mixed model with sex, age, and sterilization as covariates and population structure as a random effect. Estimates obtained from the model were subjected to a maxT permutation procedure to adjust p-values for FWER < 0.05. Only the ADCY3 gene showed statistically significant association: TA>T deletion located at 17:19,222,459 in 1/20 intron (per allele effect of 5.56 kg, SE 0.018, p-value = 5.83 × 10-5, TA/TA: 11 dogs; TA/T: 32 dogs; T/T: 7 dogs). Mutations in the ADCY3 gene have already been associated with obesity in mice and humans, making it a promising marker for canine obesity research. Our results provide further evidence that the genetic makeup of obesity in Labrador Retriever dogs contains genes with large effect sizes.
Collapse
Affiliation(s)
- Mateusz Sypniewski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| |
Collapse
|
4
|
Gaillard V, Chastant S, England G, Forman O, German AJ, Suchodolski JS, Villaverde C, Chavatte-Palmer P, Péron F. Environmental risk factors in puppies and kittens for developing chronic disorders in adulthood: A call for research on developmental programming. Front Vet Sci 2022; 9:944821. [PMID: 36619947 PMCID: PMC9816871 DOI: 10.3389/fvets.2022.944821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Many dogs and cats are affected by chronic diseases that significantly impact their health and welfare and relationships with humans. Some of these diseases can be challenging to treat, and a better understanding of early-life risk factors for diseases occurring in adulthood is key to improving preventive veterinary care and husbandry practices. This article reviews early-life risk factors for obesity and chronic enteropathy, and for chronic behavioral problems, which can also be intractable with life-changing consequences. Aspects of early life in puppies and kittens that can impact the risk of adult disorders include maternal nutrition, establishment of the gut microbiome, maternal behavior, weaning, nutrition during growth, growth rate, socialization with conspecifics and humans, rehoming and neutering. Despite evidence in some species that the disorders reviewed here reflect the developmental origins of health and disease (DOHaD), developmental programming has rarely been studied in dogs and cats. Priorities and strategies to increase knowledge of early-life risk factors and DOHaD in dogs and cats are discussed. Critical windows of development are proposed: preconception, gestation, the suckling period, early growth pre-neutering or pre-puberty, and growth post-neutering or post-puberty to adult size, the durations of which depend upon species and breed. Challenges to DOHaD research in these species include a large number of breeds with wide genetic and phenotypic variability, and the existence of many mixed-breed individuals. Moreover, difficulties in conducting prospective lifelong cohort studies are exacerbated by discontinuity in pet husbandry between breeders and subsequent owners, and by the dispersed nature of pet ownership.
Collapse
Affiliation(s)
- Virginie Gaillard
- Research and Development Center, Royal Canin, Aimargues, France,*Correspondence: Virginie Gaillard ✉
| | - Sylvie Chastant
- NeoCare, Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Gary England
- School of Veterinary Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Forman
- Wisdom Panel, Kinship, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Alexander J. German
- Institute of Life Course and Medical Sciences of Small Animal Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Pascale Chavatte-Palmer
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Franck Péron
- Research and Development Center, Royal Canin, Aimargues, France
| |
Collapse
|
5
|
No evidence that long runs of homozygosity tend to harbor risk variants for polygenic obesity in Labrador retriever dogs. J Appl Genet 2022; 63:557-561. [PMID: 35471496 DOI: 10.1007/s13353-022-00693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Canine polygenic obesity can be influenced by relatively recent mutations with large effects. We determined whether, as with monogenic diseases, long autozygous tracts may be disproportionately likely to harbor detrimental variants for additive polygenic obesity in Labrador retriever dogs. Both our detection of runs of homozygosity (ROH) and our preliminary association study were based on whole-genome sequencing of 28 obese and 22 healthy dogs. We detected and analyzed the distribution of 19,655 ROH. We observed 237 and 98 ROH-harboring genotypes associated with obesity and increased body mass, respectively. We found no evidence that long ROH tend to harbor genotypes linked to obesity or increased body weight, and we concluded that data on ROH overlapping GWAS signals for canine obesity are unlikely to help prioritize candidate genes for validation studies.
Collapse
|
6
|
Martins AL, Canadas-Sousa A, Mesquita JR, Dias-Pereira P, Amorim I, Gärtner F. Retrospective study of canine cutaneous tumors submitted to a diagnostic pathology laboratory in Northern Portugal (2014-2020). Canine Med Genet 2022; 9:2. [PMID: 35216632 PMCID: PMC8875941 DOI: 10.1186/s40575-022-00113-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Cutaneous neoplastic diseases are the most and second-most frequently reported tumors in male and female dogs, respectively. The aims of this study were to report the occurrence of canine cutaneous tumors in a pathology laboratory located in Northern Portugal between 2014 and 2020, and to characterize and categorize the anatomical locations, breed, age, and sex of the animals affected with different types of neoplasms. Results Throughout the 7-year study, 1,185 cases were diagnosed as cutaneous tumors, with 62.9% being classified as benign, and 37.1% as malignant. Mast cell tumors (22.7%) were the most frequently diagnosed tumor type, followed by benign soft tissue tumors (9.7%), sebaceous gland tumors (8.1%), vascular tumors (7.9%) and soft tissue sarcomas (7.6%). Cutaneous tumors commonly exhibited multicentric occurrence (14.6%) followed by single occurrence in hindlimb (12.1%), forelimb (8.6%), buttock (7.1%), abdominal (6.5%) and costal (5.2%) areas. The odds of developing cutaneous neoplasia were higher with increasing age (p < 0.001). Females had an increased odds of developing skin tumors compared to males (crude OR = 2.99, 95% (2.51, 3.55); adj OR = 2.93, 95% (2.46, 3.49). Purebred dogs, as a group, showed a reduced odds of developing cutaneous tumors when compared to mixed-breed dogs (crude OR = 0.63, 95% (0.53, 0.74); adj OR = 0.75, 95% (0.62, 0.89). Conclusions Mast cell tumors, benign soft tissue tumors and sebaceous tumors were the most common histotypes encountered. The epidemiological survey achieved with this study demonstrates the relative frequency of different types of tumors in this particular population. Furthermore, the results herein achieved can act as a basis or a beneficial reference for local veterinarians helping in the establishment of a preliminary and presumptive diagnosis of canine cutaneous tumors histotypes. Plain English summary Skin tumors are the most and second-most frequently reported tumors in male and female dogs, respectively. The aim of this study was to report the occurrence of canine skin tumors in a diagnostic pathology laboratory located in Northern Portugal, between 2014–2020 and to characterize the anatomical distributions, breed, age, and sex of the animals affected by different skin tumors. During this period, 1,185 cases were diagnosed as skin tumors; 62.9% were diagnosed as benign, while 37.1% were malignant. Mast cell tumors (22.7%) were the most frequently diagnosed neoplasia, followed by benign soft tissue tumors (9.7%), sebaceous gland tumors (8.1%), vascular tumors (7.9%) and soft tissue sarcomas (7.6%). Skin tumors commonly developed in more than one location (14.6%) followed by solitary development in hindlimb (12.1%), forelimb (8.6%), buttock (7.1%), abdominal (6.5%) and costal (5.2%) areas. An increased odds of developing skin neoplasms as the patient’s age increase was detected. Females showed an increased odds in comparison to male dogs. Purebred dogs presented decreased odds for developing skin tumors in comparison to mixed-breed dogs. The information relevance achieved with this study demonstrates the relative frequency of different types of tumors in this particular population, acting as a basis or a beneficial reference for regional veterinarians when providing an initial diagnosis of canine skin tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-022-00113-w.
Collapse
Affiliation(s)
- Ana Luísa Martins
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto (ICBAS), 4050-313, Porto, Portugal. .,Faculdade de Ciências, Universidade Do Porto (FCUP), 4169-007, Porto, Portugal.
| | - Ana Canadas-Sousa
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto (ICBAS), 4050-313, Porto, Portugal
| | - João R Mesquita
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto (ICBAS), 4050-313, Porto, Portugal.,Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade Do Porto, Porto, Portugal
| | - Patrícia Dias-Pereira
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto (ICBAS), 4050-313, Porto, Portugal
| | - Irina Amorim
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto (ICBAS), 4050-313, Porto, Portugal.,Instituto de Investigação E Inovação Em Saúde da Universidade Do Porto (i3S), 4200-135, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto (ICBAS), 4050-313, Porto, Portugal.,Instituto de Investigação E Inovação Em Saúde da Universidade Do Porto (i3S), 4200-135, Porto, Portugal.,Instituto de Patologia E Imunologia Molecular da Universidade Do Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
7
|
Hsieh YW, Tsai YW, Lai HH, Lai CY, Lin CY, Her GM. Depletion of Alpha-Melanocyte-Stimulating Hormone Induces Insatiable Appetite and Gains in Energy Reserves and Body Weight in Zebrafish. Biomedicines 2021; 9:941. [PMID: 34440144 PMCID: PMC8392443 DOI: 10.3390/biomedicines9080941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
The functions of anorexigenic neurons secreting proopiomelanocortin (POMC)/alpha-melanocyte-stimulating hormone (α-MSH) of the melanocortin system in the hypothalamus in vertebrates are energy homeostasis, food intake, and body weight regulation. However, the mechanisms remain elusive. This article reports on zebrafish that have been genetically engineered to produce α-MSH mutants, α-MSH-7aa and α-MSH-8aa, selectively lacking 7 and 8 amino acids within the α-MSH region, but retaining most of the other normal melanocortin-signaling (Pomc-derived) peptides. The α-MSH mutants exhibited hyperphagic phenotypes leading to body weight gain, as observed in human patients and mammalian models. The actions of several genes regulating appetite in zebrafish are similar to those in mammals when analyzed using gene expression analysis. These include four selected orexigenic genes: Promelanin-concentrating hormone (pmch), agouti-related protein 2 (agrp2), neuropeptide Y (npy), and hypothalamic hypocretin/orexin (hcrt). We also study five selected anorexigenic genes: Brain-derived neurotrophic factor (bdnf), single-minded homolog 1-a (sim1a), corticotropin-releasing hormone b (crhb), thyrotropin-releasing hormone (trh), and prohormone convertase 2 (pcsk2). The orexigenic actions of α-MSH mutants are rescued completely after hindbrain ventricle injection with a synthetic analog of α-MSH and a melanocortin receptor agonist, Melanotan II. We evaluate the adverse effects of MSH depletion on energy balance using the Alamar Blue metabolic rate assay. Our results show that α-MSH is a key regulator of POMC signaling in appetite regulation and energy expenditure, suggesting that it might be a potential therapeutic target for treating human obesity.
Collapse
Affiliation(s)
- Yang-Wen Hsieh
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsin-Hung Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chi-Yu Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; (Y.-W.H.); (C.-Y.L.); (C.-Y.L.)
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| |
Collapse
|
8
|
Yamazaki J, Meagawa S, Jelinek J, Yokoyama S, Nagata N, Yuki M, Takiguchi M. Obese status is associated with accelerated DNA methylation change in peripheral blood of senior dogs. Res Vet Sci 2021; 139:193-199. [PMID: 34358922 DOI: 10.1016/j.rvsc.2021.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Obesity and its associated comorbidities constitute a major and growing health problem worldwide not only involved with people but also dogs and cats. Although few genetic mutations have been associated with obesity in dogs, molecular mechanism remains to be clearly understood. Given the fact that DNA methylation leads to gene expression variability and has plasticity affected by metabolic phenotypes such as obesity in human, the objective of this study is to identify obesity-associated differentially methylated cytosine-phosphate-guanine (CpG) dinucleotide sites in dogs. With genome-wide DNA methylation analysis using next-generation sequencing for blood samples from fourteen Miniature dachshunds with body condition score (BCS) 4-5 and BCS ≥6, over 100,000 sites could be analysed to identify genomic locations of differentially methylated CpG sites. As a result, 191 differentially methylated CpG sites (89 CpG sites were hypermethylated in BCS ≥6 and 102 were hypermethylated in BCS 4-5) were identified. These sites included promoter regions of Kisspeptin receptor (KISS1R) and Calcyphosine 2 (CAPS2) genes which were subsequently validated by bisulfite-pyrosequencing for another set of 157 dog blood samples. KISS1R methylation levels were found to be higher in BCS ≥6 group than BCS 4-5 in senior (>84 months) dogs. Especially male dogs but not female dogs as well as uncastrated male dogs but not castrated male dogs showed this trend. DNA methylation of KISS1R gene will be useful for understanding of comprehensive epigenetic change in obese dogs.
Collapse
Affiliation(s)
- Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan.
| | - Shinji Meagawa
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Tx, USA
| | | | - Shoko Yokoyama
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Noriyuki Nagata
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Masashi Yuki
- Yuki Animal Hospital, 2-99 Kiba-cho, Minato-ku, Aichi, Japan
| | - Mitsuyoshi Takiguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
9
|
Pegram C, Woolley C, Brodbelt DC, Church DB, O'Neill DG. Disorder predispositions and protections of Labrador Retrievers in the UK. Sci Rep 2021; 11:13988. [PMID: 34262062 PMCID: PMC8280121 DOI: 10.1038/s41598-021-93379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The Labrador Retriever is one of the most popular dog breeds worldwide, therefore it is important to have reliable evidence on the general health issues of the breed. Using anonymised veterinary clinical data from the VetCompass Programme, this study aimed to explore the relative risk to common disorders in the Labrador Retriever. The clinical records of a random sample of dogs were reviewed to extract the most definitive diagnoses for all disorders recorded during 2016. A list of disorders was generated, including the 30 most common disorders in Labrador Retrievers and the 30 most common disorders in non-Labrador Retrievers. Multivariable logistic regression was used to report the odds of each of these disorders in 1462 (6.6%) Labrador Retrievers compared with 20,786 (93.4%) non-Labrador Retrievers. At a specific-level of diagnostic precision, after accounting for confounding, Labrador Retrievers had significantly increased odds of 12/35 (34.3%) disorders compared to non-Labrador Retrievers; osteoarthritis (OR 2.83) had the highest odds. Conversely, Labrador Retrievers had reduced odds of 7/35 (20.0%) disorders; patellar luxation (OR 0.18) had the lowest odds. This study provides useful information about breed-specific disorder predispositions and protections, which future research could evaluate further to produce definitive guidance for Labrador Retriever breeders and owners.
Collapse
Affiliation(s)
- Camilla Pegram
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Charlotte Woolley
- The Roslin Institute and the Royal (Dick), School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
10
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
11
|
Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis. Animals (Basel) 2020; 10:ani10112071. [PMID: 33182249 PMCID: PMC7695335 DOI: 10.3390/ani10112071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to identify causative loci and genes enriched in pathways associated with canine obesity using a genome-wide association study (GWAS). The GWAS was first performed to identify candidate single-nucleotide polymorphisms (SNPs) associated with obesity and obesity-related traits including body weight and blood sugar in 18 different breeds of 153 dogs. A total of 10 and 2 SNPs were found to be significantly (p < 3.74 × 10-7) associated with body weight and blood sugar, respectively. None of the SNPs were identified to be significantly associated with obesity trait. We subsequently followed up the GWAS analysis with gene-set enrichment and pathway analyses. A gene-set with 1057, 1409, and 1243 SNPs annotated to 449, 933 and 820 genes for obesity, body weight, and blood sugar, respectively was created by sub-setting the GWAS result at a threshold of p < 0.01 for the gene-set enrichment analysis. In total, 84 GO and 21 KEGG pathways for obesity, 114 GO and 44 KEGG pathways for blood sugar, 120 GO and 24 KEGG pathways for body weight were found to be enriched. Among the pathways and GO terms, we highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) that were found to be shared among all the traits. Our data provide insights into the genes and pathways associated with obesity and obesity-related traits.
Collapse
|
12
|
Vedrine B, Fernandes D, Gérard F, Fribourg-Blanc LA. Use of an intragastric balloon for management of obesity in a dog. J Small Anim Pract 2020; 62:816-821. [PMID: 33058157 DOI: 10.1111/jsap.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
Abstract
While various bariatric surgeries are commonplace in obesity medicine for humans, these techniques have not been commonly used in veterinary medicine. A technique used in humans consists in endoscopically placing an intragastric balloon. The intragastric balloon takes volume in the stomach causing a feeling of satiety and reducing food intake. A 57.6 kg, 9-year-old neutered female Labrador dog with chronic hypothyroidism was presented for overweight management. Combined levothyroxine treatment and dietary management with specific alimentation for obesity had failed to control overweight. An intragastric balloon was placed endoscopically in the stomach to allow the reduction of the gastric capacity and resulted in effective weight loss. The dog weight decreased to 40.9 kg at the time of intragastric balloon removal 198 days after placement. Further research including a larger sample size and long term follow-up is required to establish safety and effectiveness of this procedure.
Collapse
Affiliation(s)
- B Vedrine
- Clinique Vétérinaire SeineVet, 26 rue de la République 76520, Boos, France
| | - D Fernandes
- Clinique Vétérinaire SeineVet, 26 rue de la République 76520, Boos, France
| | - F Gérard
- Clinique Vétérinaire SeineVet, 26 rue de la République 76520, Boos, France
| | - L-A Fribourg-Blanc
- Clinique Vétérinaire SeineVet, 26 rue de la République 76520, Boos, France
| |
Collapse
|
13
|
Piantedosi D, Palatucci AT, Giovazzino A, Ruggiero G, Rubino V, Musco N, Carriero F, Farina F, Attia YAEW, Terrazzano G, Lombardi P, Cortese L. Effect of a Weight Loss Program on Biochemical and Immunological Profile, Serum Leptin Levels, and Cardiovascular Parameters in Obese Dogs. Front Vet Sci 2020; 7:398. [PMID: 32851001 PMCID: PMC7424025 DOI: 10.3389/fvets.2020.00398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the effects of a weight loss program (WLP) on biochemical and immunological profile, and cardiovascular parameters in a cohort of dogs with naturally occurring obesity. Eleven obese dogs [body condition scoring (BCS), ≥7/9] were enrolled into the study and underwent clinical and cardiovascular examination, and blood testing before (T0) and after 6 months (T1) of WLP. Eleven normal weight (BCS, 4/5) healthy dogs were used as a control (CTR) group. Compared to the CTR group, at T0 obese dogs expressed higher serum leptin concentrations (p < 0.0005) that significantly decreased after weight loss (p < 0.005) but remained higher than the CTR group. Furthermore, obese dogs showed considerably lower levels (p < 0.0005) of regulatory T cell (Treg) compared to the CTR group, but they did not change after weight loss at T1. In obese dogs, tumor necrosis factor (TNF)-α and interleukin (IL)-6 concentrations were substantially reduced at T1 (p < 0.0001 and p < 0.005). Regarding the cardiovascular parameters, only one obese dog was hypertensive at T0, and systolic blood pressure values showed no significant differences at the end of the WLP. The ratio of interventricular septal thickness in diastole to left ventricle internal diameter in diastole (IVSd/LVIDd) was significantly greater in obese dogs at T0 than in the CTR group (p < 0.005). It decreased after weight loss (p < 0.05). In obese dogs, troponin I level significantly reduced with weight loss (p < 0.05), while endothelin-1 level did not differ statistically. The results suggest that the immune dysregulation in the presence of high leptin levels and reduced number of Treg could affect obese dogs as well as humans. Based on our findings, we may speculate that a more complete immune-regulation restore could be obtained by a greater reduction in fat mass and a longer-term WLP. Finally, left ventricular remodeling may occur in some obese dogs. However, in canine species, further studies are needed to investigate the impact of obesity and related WLP on cardiovascular system.
Collapse
Affiliation(s)
- Diego Piantedosi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Flavia Carriero
- Department of Science, University of Basilicata, Potenza, Italy
| | | | - Youssef Abd El Wahab Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, Potenza, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
15
|
Abstract
Many animal models that are currently used in appetite and obesity research share at least some main features of human obesity and its comorbidities. Hence, even though no animal model replicates all aspects of "common" human obesity, animal models are imperative in studying the control of energy balance and reasons for its imbalance that may eventually lead to overt obesity. The most frequently used animal models are small rodents that may be based on mutations or manipulations of individual or several genes and on the exposure to obesogenic diets or other manipulations that predispose the animals to gaining or maintaining excessive weight. Characteristics include hyperphagia or changes in energy metabolism and at least in some models the frequent comorbidities of obesity, like hyperglycemia, insulin resistance, or diabetes-like syndromes. Some of the most frequently used animal models of obesity research involve animals with monogenic mutations of the leptin pathway which in fact are useful to study specific mechanistic aspects of eating controls, but typically do not recapitulate "common" obesity in the human population. Hence, this review will mention advantages and disadvantages of respective animal models in order to build a basis for the most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Body weight at 10 years of age and change in body composition between 8 and 10 years of age were related to survival in a longitudinal study of 39 Labrador retriever dogs. Acta Vet Scand 2019; 61:42. [PMID: 31500653 PMCID: PMC6734441 DOI: 10.1186/s13028-019-0477-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Overweight and obesity have been adversely associated with longevity in dogs but there is scarce knowledge on the relation between body composition and lifespan. We aimed to investigate the effects of body composition, and within-dog changes over time, on survival in adult Labradors using a prospective cohort study design. The dogs had a median age of 6.5 years at study start and were kept in similar housing and management conditions throughout. The effects of the various predictors, including the effect of individual monthly-recorded change in body weight as a time varying covariate, were evaluated using survival analysis. RESULTS All dogs were followed to end-of-life; median age at end-of-life was 14.0 years. Body composition was measured annually with dual-energy x-ray absorptiometer (DEXA) scans between 6.2 and 17.0 years. All 39 dogs had DEXA recorded at 8, 9 and 10 years of age. During the study the mean (± SD) percent of fat (PF) and lean mass (PL) was 32.8 (± 5.6) and 64.2 (± 5.5) %, respectively, with a mean lean:fat ratio (LFR) of 2.1 (± 0.6); body weight (BW) varied from 17.5 to 44.0 kg with a mean BW change of 9.9 kg (± 3.0). There was increased hazard of dying for every kg increase in BW at 10 years of age; for each additional kg of BW at 10 years, dogs had a 19% higher hazard (HR = 1.19, P = 0.004). For the change in both lean mass (LM) and LFR variables, it was protective to have a higher lean and/or lower fat mass (FM) at 10 years of age compared to 8 years of age, although the HR for change in LM was very close to 1.0. For age at study start, older dogs had an increased hazard. There was no observed effect for the potential confounders sex, coat colour and height at shoulders, or of the time-varying covariate. CONCLUSIONS These results suggest that even rather late-life control efforts on body weight and the relationship between lean and fat mass may influence survival in dogs. Such "windows of opportunity" can be used to develop healthcare strategies that would help promote an increased healthspan in dogs.
Collapse
|
17
|
Ostrander EA, Wang GD, Larson G, vonHoldt BM, Davis BW, Jagannathan V, Hitte C, Wayne RK, Zhang YP. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci Rev 2019; 6:810-824. [PMID: 31598383 PMCID: PMC6776107 DOI: 10.1093/nsr/nwz049] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Brian W Davis
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | | | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
18
|
FTO and IRX3 Genes are Not Promising Markers for Obesity in Labrador Retriever Dogs. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Obesity is a serious problem in numerous dog breeds, but knowledge of its hereditary background is scarce. On the contrary, numerous DNA polymorphisms associated with human obesity have been identified, with the strongest effect being demonstrated for FTO gene. We used targeted next-generation sequencing (tNGS) to search for polymorphisms in the region harboring FTO and IRX3 in 32 Labrador dogs. Moreover, we investigated the selected regions of FTO and IRX3, orthologous to the human regions associated with obesity, in 165 Labradors. For all dogs, the following information was available: age, sex, gonadal status, body weight, and body conformation score (BCS). The use of tNGS revealed 12,217 polymorphisms, but none of these obtained significance when lean and obese dogs were compared. Study of two SNPs in the 5’-flanking region of FTO in 165 dogs – creating two upstream reading frames (uORFs) – also showed no association with body weight and BCS but suggested the need for improvement in FTO annotation. No polymorphism was found in the 5’UTR of IRX3. Additionally, no differences of CpG islands methylation status between lean and obese dogs were found. Our study suggests that FTO and IRX3 are not useful markers of obesity in Labrador dogs.
Collapse
|
19
|
O'Neill DG, Corah CH, Church DB, Brodbelt DC, Rutherford L. Lipoma in dogs under primary veterinary care in the UK: prevalence and breed associations. Canine Genet Epidemiol 2018; 5:9. [PMID: 30279993 PMCID: PMC6161450 DOI: 10.1186/s40575-018-0065-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022] Open
Abstract
Background Lipomas are masses of mesenchymal origin, comprising of adipocytes, and are often clinically unremarkable but can be alarming to owners. Although lipomas are reportedly common in dogs, no studies have specifically investigated risk factors associated with their occurrence. This study was a large-scale retrospective analysis of electronic patient records of dogs attending practices participating in VetCompass™. Univariable and multivariable logistic regression methods were used to evaluate associations between risk factors and primary-care veterinary diagnosis of lipoma. Results From 384,284 dogs under veterinary care during 2013 at 215 primary practice clinics in the UK, there were 2765 lipoma cases identified giving a one-year prevalence of 1.94% (95% CI: 1.87–2.01). Breeds with the highest lipoma prevalence included Weimaraner (7.84%, 95% CI 6.46–9.40), Dobermann Pinscher (6.96%, 95% CI 5.67–8.44), German Pointer (5.23%, 95% CI 3.93–6.80), Springer Spaniel (5.19%, 95% CI 4.76–5.66), and Labrador Retriever (5.15%, 95% CI 4.90–5.41). Dogs with an adult bodyweight equal or higher than their breed/sex mean had 1.96 (95% CI 1.81–2.14, P < 0.001) times the odds of lipoma compared with dogs that weighed below their breed/sex mean. The odds of lipoma increased as adult bodyweight increased. Increased age was strongly associated with increasing odds of lipoma. Compared with dogs aged 3.0 to < 6.0 years, dogs aged 9.0 - < 12.0 years had 17.52 times the odds (95% CI 14.71–20.85, P < 0.001) of lipoma. Neutered males (OR: 1.99, 95% CI 1.69–2.36, P < 0.001) and neutered females (OR: 1.62, 95% CI 1.37–1.91, P < 0.001) had higher odds than entire females. Insured dogs had 1.78 (95% CI 1.53–2.07, P < 0.001) times the odds of lipoma compared with uninsured dogs. Conclusions Lipomas appear to be a relatively common diagnosis in primary-care practice. Certain breeds were identified with remarkably high lipoma prevalence, highlighting the risk that owners should be prepared for. Lipoma predisposition of larger bodyweight individuals within breed/sex suggests that being overweight or obese may be a predisposing factor but would need further work to confirm.
Collapse
Affiliation(s)
- Dan G O'Neill
- 1Production and Population Health, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Caroline H Corah
- 1Production and Population Health, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - David B Church
- 2Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Dave C Brodbelt
- 1Production and Population Health, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Lynda Rutherford
- 2Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| |
Collapse
|
20
|
Circulating regulatory T cells (Treg), leptin and induction of proinflammatory activity in obese Labrador Retriever dogs. Vet Immunol Immunopathol 2018; 202:122-129. [DOI: 10.1016/j.vetimm.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022]
|
21
|
Polymorphism and methylation of the MC4R gene in obese and non-obese dogs. Mol Biol Rep 2017; 44:333-339. [PMID: 28755272 PMCID: PMC5579139 DOI: 10.1007/s11033-017-4114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/19/2017] [Indexed: 11/26/2022]
Abstract
The dog is considered to be a useful biomedical model for human diseases and disorders, including obesity. One of the numerous genes associated with human polygenic obesity is MC4R, encoding the melanocortin 4 receptor. The aim of our study was to analyze polymorphisms and methylation of the canine MC4R in relation to adiposity. Altogether 270 dogs representing four breeds predisposed to obesity: Labrador Retriever (n = 187), Golden Retriever (n = 38), Beagle (n = 28) and Cocker Spaniel (n = 17), were studied. The dogs were classified into three groups: lean, overweight and obese, according to the 5-point Body Condition Score (BCS) scale. In the cohort of Labradors a complete phenotypic data (age, sex, neutering status, body weight and BCS) were collected for 127 dogs. The entire coding sequence as well as 5′ and 3′-flanking regions of the studied gene were sequenced and six polymorphic sites were reported. Genotype frequencies differed considerably between breeds and Labrador Retrievers appeared to be the less polymorphic. Moreover, distribution of some polymorphic variants differed significantly (P < 0.05) between small cohorts with diverse BCS in Golden Retrievers (c.777T>C, c.868C>T and c.*33C>G) and Beagles (c.-435T>C and c.637G>T). On the contrary, in Labradors no association between the studied polymorphisms and BCS or body weight was observed. Methylation analysis, using bisulfite DNA conversion followed by Sanger sequencing, was carried out for 12 dogs with BCS = 3 and 12 dogs with BCS = 5. Two intragenic CpG islands, containing 19 cytosines, were analyzed and the methylation profile did not differ significantly between lean and obese animals. We conclude that an association of the MC4R gene polymorphism with dog obesity or body weight is unlikely, in spite of the fact that some associations were found in small cohorts of Beagles and Golden Retrievers. Also methylation level of this gene is not related with dog adiposity.
Collapse
|
22
|
Söder J, Hagman R, Dicksved J, Lindåse S, Malmlöf K, Agback P, Moazzami A, Höglund K, Wernersson S. The urine metabolome differs between lean and overweight Labrador Retriever dogs during a feed-challenge. PLoS One 2017; 12:e0180086. [PMID: 28662207 PMCID: PMC5491113 DOI: 10.1371/journal.pone.0180086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/11/2017] [Indexed: 01/02/2023] Open
Abstract
Obesity in dogs is an increasing problem and better knowledge of the metabolism of overweight dogs is needed. Identification of molecular changes related to overweight may lead to new methods to improve obesity prevention and treatment. The aim of the study was firstly to investigate whether Nuclear Magnetic Resonance (NMR) based metabolomics could be used to differentiate postprandial from fasting urine in dogs, and secondly to investigate whether metabolite profiles differ between lean and overweight dogs in fasting and postprandial urine, respectively. Twenty-eight healthy intact male Labrador Retrievers were included, 12 of which were classified as lean (body condition score (BCS) 4-5 on a 9-point scale) and 16 as overweight (BCS 6-8). After overnight fasting, a voided morning urine sample was collected. Dogs were then fed a high-fat mixed meal and postprandial urine was collected after 3 hours. Metabolic profiles were generated using NMR and 45 metabolites identified from the spectral data were evaluated using multivariate data analysis. The results revealed that fasting and postprandial urine differed in relative metabolite concentration (partial least-squares discriminant analysis (PLS-DA) 1 comp: R2Y = 0.4, Q2Y = 0.32; cross-validated ANOVA: P = 0.00006). Univariate analyses of discriminant metabolites showed that taurine and citrate concentrations were elevated in postprandial urine, while allantoin concentration had decreased. Interestingly, lean and overweight dogs differed in terms of relative metabolite concentrations in postprandial urine (PLS-DA 1 comp: R2Y = 0.5, Q2Y = 0.36, cross-validated ANOVA: P = 0.005) but not in fasting urine. Overweight dogs had lower postprandial taurine and a trend of higher allantoin concentrations compared with lean dogs. These findings demonstrate that metabolomics can differentiate 3-hour postprandial urine from fasting urine in dogs, and that postprandial urine metabolites may be more useful than fasting metabolites for identification of metabolic alterations linked to overweight. The lowered urinary taurine concentration in overweight dogs could indicate alterations in lipid metabolism and merits further investigation.
Collapse
Affiliation(s)
- Josefin Söder
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sanna Lindåse
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kjell Malmlöf
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ali Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katja Höglund
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|