1
|
Zachou ME, Kouloulias V, Chalkia M, Efstathopoulos E, Platoni K. The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review. Cancers (Basel) 2024; 16:393. [PMID: 38254881 PMCID: PMC11154327 DOI: 10.3390/cancers16020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This article presents a comprehensive review of nanoparticle-assisted treatment approaches for soft tissue sarcoma (STS). STS, a heterogeneous group of mesenchymal-origin tumors with aggressive behavior and low overall survival rates, necessitates the exploration of innovative therapeutic interventions. In contrast to conventional treatments like surgery, radiotherapy (RT), hyperthermia (HT), and chemotherapy, nanomedicine offers promising advancements in STS management. This review focuses on recent research in nanoparticle applications, including their role in enhancing RT and HT efficacy through improved drug delivery systems, novel radiosensitizers, and imaging agents. Reviewing the current state of nanoparticle-assisted therapies, this paper sheds light on their potential to revolutionize soft tissue sarcoma treatment and improve patient therapy outcomes.
Collapse
Affiliation(s)
- Maria-Eleni Zachou
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.K.); (M.C.); (E.E.)
| | | | | | | | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.K.); (M.C.); (E.E.)
| |
Collapse
|
2
|
Wani AK, Singh R, Akhtar N, Prakash A, Nepovimova E, Oleksak P, Chrienova Z, Alomar S, Chopra C, Kuca K. Targeted Inhibition of the PI3K/Akt/mTOR Signaling Axis: Potential for Sarcoma Therapy. Mini Rev Med Chem 2024; 24:1496-1520. [PMID: 38265369 DOI: 10.2174/0113895575270904231129062137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Suliman Alomar
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
4
|
Almanghadim HG, Nourollahzadeh Z, Khademi NS, Tezerjani MD, Sehrig FZ, Estelami N, Shirvaliloo M, Sheervalilou R, Sargazi S. Application of nanoparticles in cancer therapy with an emphasis on cell cycle. Cell Biol Int 2021; 45:1989-1998. [PMID: 34233087 DOI: 10.1002/cbin.11658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
Owing to their unique characteristics, nanoparticles (NPs) could be incorporated into valuable therapeutic modalities for different diseases; however, there are many concerns about risk factors in human applications. NPs carry therapeutic chemicals that could improve the outcome of cancer therapies. Nowadays, NPs are being recognized as important and strategic agents in treatment of several disorders due to their unique properties in targeting malignant cells in tumor sites. Numerous investigations have shown that the majority of chemotherapeutic agents can be modified through entrapment in submicron colloidal systems. Still, there are problems and limitations in application of NPs in cancer therapy. The aim of the present study is to focus on potential NPs usage in cancer treatment with an emphasis on the cell cycle of malignant cells.
Collapse
Affiliation(s)
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Neda Estelami
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Schwartz-Duval AS, Konopka CJ, Moitra P, Daza EA, Srivastava I, Johnson EV, Kampert TL, Fayn S, Haran A, Dobrucki LW, Pan D. Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold. Nat Commun 2020; 11:4530. [PMID: 32913195 PMCID: PMC7483505 DOI: 10.1038/s41467-020-17595-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold. We have characterized this process for intracellular gold nanoparticle formation, which progressively accumulates proteins as the ionic gold clusters migrate to the nucleus. This nano-vectorized application of ionic gold emphasizes its potential biomedical opportunities while reducing the quantity of ionic gold and required incubation time. To demonstrate its biomedical potential, we further induce in-situ biosynthesis of gold nanoparticles within MCF7 tumor mouse xenografts which is followed by its photothermal remediation.
Collapse
Affiliation(s)
- Aaron S Schwartz-Duval
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Christian J Konopka
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Parikshit Moitra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, Baltimore, MD, 21250, USA
| | - Enrique A Daza
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Indrajit Srivastava
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | | | - Taylor L Kampert
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Stanley Fayn
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anand Haran
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Research Facility III, 670 W Baltimore St., Baltimore, MD, 21201, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, Baltimore, MD, 21250, USA.
| |
Collapse
|
6
|
Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. NANOSCALE HORIZONS 2019; 4:117-137. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes. They inhibit bacterial growth and destroy cells through complex mechanisms, making it difficult for bacteria to develop drug resistance, though some health concerns related to biocompatibility remain for practical applications. Among various antibacterial nanomaterials, carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates due to the ease of production and functionalization, high dispersibility in aqueous media, and promising biocompatibility. The antibacterial properties of these nanomaterials can be easily adjusted by surface modification. They are promising materials for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes. Though many studies have reported excellent antibacterial activity of carbon nanomaterials, their impact on the environment and living organisms is of concern due to the accumulatory and cytotoxic effects. In this review, we discuss antimicrobial applications of the functional carbon nanomaterials (GO and C-Dots), their antibacterial mechanisms, factors affecting antibacterial activity, and concerns regarding cytotoxicity.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | |
Collapse
|