1
|
O'Grady JF, McHugo GP, Ward JA, Hall TJ, Faherty O'Donnell SL, Correia CN, Browne JA, McDonald M, Gormley E, Riggio V, Prendergast JGD, Clark EL, Pausch H, Meade KG, Gormley IC, Gordon SV, MacHugh DE. Integrative genomics sheds light on the immunogenetics of tuberculosis in cattle. Commun Biol 2025; 8:479. [PMID: 40128580 PMCID: PMC11933339 DOI: 10.1038/s42003-025-07846-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Mycobacterium bovis causes bovine tuberculosis (bTB), an infectious disease of cattle that represents a zoonotic threat to humans. Research has shown that the peripheral blood (PB) transcriptome is perturbed during bTB disease but the genomic architecture underpinning this transcriptional response remains poorly understood. Here, we analyse PB transcriptomics data from 63 control and 60 confirmed M. bovis-infected animals and detect 2592 differently expressed genes perturbing multiple immune response pathways. Leveraging imputed genome-wide SNP data, we characterise thousands of cis-expression quantitative trait loci (eQTLs) and show that the PB transcriptome is substantially impacted by intrapopulation genomic variation during M. bovis infection. Integrating our cis-eQTL data with bTB susceptibility GWAS summary statistics, we perform a transcriptome-wide association study and identify 115 functionally relevant genes (including RGS10, GBP4, TREML2, and RELT) and provide important new omics data for understanding the host response to mycobacterial infections that cause tuberculosis in mammals.
Collapse
Affiliation(s)
- John F O'Grady
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Gillian P McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - James A Ward
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Thomas J Hall
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Sarah L Faherty O'Donnell
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
- Irish Blood Transfusion Service, National Blood Centre, James's Street, Dublin, Ireland
| | - Carolina N Correia
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
- Children's Health Ireland, 32 James's Walk, Rialto, Ireland
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Michael McDonald
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
- UCD One Health Centre, University College Dublin, Belfield, Ireland
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, Zurich, Switzerland
| | - Kieran G Meade
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland
- UCD One Health Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Isobel C Gormley
- UCD School of Mathematics and Statistics, University College Dublin, Belfield, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
- UCD One Health Centre, University College Dublin, Belfield, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Ireland.
- UCD One Health Centre, University College Dublin, Belfield, Ireland.
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland.
| |
Collapse
|
2
|
Klepp LI, Bigi MM, Villafañe L, Blanco FC, Malinge L P, Bigi F. Production of functional bovine IL-22 in a mammalian episomal expression system. Vet Immunol Immunopathol 2025; 279:110863. [PMID: 39615285 DOI: 10.1016/j.vetimm.2024.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Interleukin 22 is a member of the interleukin-10 superfamily of cytokines. This protein has a dual role as an inflammatory and anti-inflammatory molecule dependent on the context. IL-22 is produced mainly by immune cells and seems to have non-hematopoietic cells as its target. In this work, we report the production of bovine IL-22 for the first time in a semi-stable expression system in mammalian cells. We showed that this recombinant IL-22 possesses biological activity in bovine macrophages infected with Mycobacterium bovis and is easy to produce in large quantities. Given its role in the defence against infections, the IL-22 produced in this work has potential applications in scientific research as well as in immunotherapy to treat diseases in cattle.
Collapse
Affiliation(s)
- Laura I Klepp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Luciana Villafañe
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | - Federico C Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| | | | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), UEDD INTA-CONICET, Argentina; Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (Institute of Biotechnology, National Institute of Agricultural Technology, Argentina), Argentina.
| |
Collapse
|
3
|
Larenas-Muñoz F, Sánchez-Carvajal JM, Ruedas-Torres I, Álvarez-Delgado C, Fristiková K, Pallarés FJ, Carrasco L, Chicano-Gálvez E, Rodríguez-Gómez IM, Gómez-Laguna J. Proteomic analysis of granulomas from cattle and pigs naturally infected with Mycobacterium tuberculosis complex by MALDI imaging. Front Immunol 2024; 15:1369278. [PMID: 39021575 PMCID: PMC11252589 DOI: 10.3389/fimmu.2024.1369278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has recently gained prominence for its ability to provide molecular and spatial information in tissue sections. This technology has the potential to uncover novel insights into proteins and other molecules in biological and immunological pathways activated along diseases with a complex host-pathogen interaction, such as animal tuberculosis. Thus, the present study conducted a data analysis of protein signature in granulomas of cattle and pigs naturally infected with the Mycobacterium tuberculosis complex (MTC), identifying biological and immunological signaling pathways activated throughout the disease. Lymph nodes from four pigs and four cattle, positive for the MTC by bacteriological culture and/or real-time PCR, were processed for histopathological examination and MALDI-MSI. Protein identities were assigned using the MaTisse database, and protein-protein interaction networks were visualized using the STRING database. Gene Ontology (GO) analysis was carried out to determine biological and immunological signaling pathways in which these proteins could participate together with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Distinct proteomic profiles between cattle and pig granulomas were displayed. Noteworthy, the GO analysis revealed also common pathways among both species, such as "Complement activation, alternative pathway" and "Tricarboxylic acid cycle", which highlight pathways that are conserved among different species infected by the MTC. In addition, species-specific terms were identified in the current study, such as "Natural killer cell degranulation" in cattle or those related to platelet and neutrophil recruitment and activation in pigs. Overall, this study provides insights into the immunopathogenesis of tuberculosis in cattle and pigs, opening new areas of research and highlighting the importance, among others, of the complement activation pathway and the regulation of natural killer cell- and neutrophil-mediated immunity in this disease.
Collapse
Affiliation(s)
- Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- Pathology Group, United Kingdom Health Security Agency (UKHSA), Salisbury, United Kingdom
| | - Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Karola Fristiková
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC) Mass Spectrometry and Molecular Imaging Unit (IMSMI), Maimónides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Jiang D, Song X, Yang L, Zheng L, Niu K, Niu H. Screening of mRNA markers in early bovine tuberculosis blood samples. Front Vet Sci 2024; 11:1330693. [PMID: 38645645 PMCID: PMC11026862 DOI: 10.3389/fvets.2024.1330693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Bovine tuberculosis (bTB) is a chronic zoonotic disease caused by Mycobacterium bovis. A large number of cattle are infected with bTB every year, resulting in huge economic losses. How to control bTB is an important issue in the current global livestock economy. In this study, the original transcriptome sequences related to this study were obtained from the dataset GSE192537 by searching the Gene Expression Omnibus (GEO) database. Our differential gene analysis showed that there were obvious biological activities related to immune activation and immune regulation in the early stage of bTB. Immune-related biological processes were more active in the early stage of bTB than in the late. There were obvious immune activation and immune cell recruitment in the early stage of bTB. Regulations in immune receptors are associated with pathophysiological processes of the early stage of bTB. A gene module consisting of 236 genes significantly related to the early stage of bTB was obtained by weighted gene co-expression network analysis, and 18 hub genes were further identified as potential biomarkers or therapeutic targets. Finally, by random forest algorithm and logistic regression modeling, FCRL1 was identified as a representative mRNA marker in early bTB blood. FCRL1 has the potential to be a diagnostic biomarker in early bTB.
Collapse
Affiliation(s)
- Dongfeng Jiang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Xiaoyi Song
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Li Zheng
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Kaifeng Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
| | - Hui Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou, China
- Henan Province Animal Reproductive Control Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
5
|
Amato B, Ippolito D, Vitale M, Alduina R, Galluzzo P, Gerace E, Pruiti Ciarello F, Fiasconaro M, Cannella V, Di Marco Lo Presti V. Comparative Study of Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis In Vitro Infection in Bovine Bone Marrow Derived Macrophages: Preliminary Results. Microorganisms 2024; 12:407. [PMID: 38399810 PMCID: PMC10893549 DOI: 10.3390/microorganisms12020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bovine tuberculosis and paratuberculosis are endemic in many areas worldwide. This work aims to study cytokines production and gene expression profiles of bovine macrophages infected with Mycobacterium bovis and Mycobacterium paratuberculosis subsp. avium (MAP) strains to identify potential diagnostic biomarkers. Bovine bone marrow stem cells were differentiated into macrophages and subsequently infected in vitro with different spoligotypes of M. bovis and MAP field strains (as single infections and coinfections), using different multiplicity of infection. Supernatant and cell pellets were collected 24 h, 48 h, and one week post-infection. Preliminarily, gene expression on cell pellets of IL-1β, IL-2, INFγ, IL-6, IL-10, IL-12, and TNFα was assessed by qRT-PCR one week p.i. Subsequently, IL-1β and IL-6 were measured by ELISA and qRT-PCR to investigated their production retrospectively 24 h and 48 h p.i. A variability in macrophages response related to the concentration of mycobacteria, the coinfection with MAP, and M. bovis spoligotypes was identified. An early and constant IL-6 increase was observed in the M. bovis infection. A lower increase in IL-1β was also detected at the highest concentration of the two M. bovis spoligotypes one week post-infection. IL-6 and IL-1 β production was reduced and differently expressed in the MAP infection. IL-6 appeared to be the earliest cytokines produced by bovine macrophages infected with M. bovis.
Collapse
Affiliation(s)
- Benedetta Amato
- Bristol Veterinary School Langford Campus, University of Bristol, Bristol BS40 5DU, UK;
| | - Dorotea Ippolito
- Unit of Emerging Zoonoses, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Paola Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Elisabetta Gerace
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Flavia Pruiti Ciarello
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Michele Fiasconaro
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| | - Vincenzo Di Marco Lo Presti
- Istituto Zooprofilattico Sperimentale della Sicilia, via S. Andrea 96, 98051 Barcellona Pozzo di Gotto, Italy; (M.V.); (P.G.); (E.G.); (F.P.C.); (M.F.); (V.C.); (V.D.M.L.P.)
| |
Collapse
|
6
|
Bisschop PIH, Frankena K, Milne GM, Ford T, McCallan L, Young FJ, Byrne AW. Relationship between ambient temperature at sampling and the interferon gamma test result for bovine tuberculosis in cattle. Vet Microbiol 2023; 283:109778. [PMID: 37216720 DOI: 10.1016/j.vetmic.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Bovine tuberculosis (bTB) is a disease of significant economic and zoonotic importance, therefore, optimising tests for the identification of Mycobacterium bovis infected cattle is essential. The Interferon Gamma (IFN-γ) Release Assay (IGRA) can diagnose M. bovis infected cattle at an early stage, is easy to perform and can be used alongside skin tests for confirmatory purposes or to increase diagnostic sensitivity. It is known that IGRA performance is sensitive to environmental conditions under which samples are taken and transported. In this study, the association between the ambient temperature on the day of bleeding and the subsequent IGRA result for bTB was quantified using field samples from Northern Ireland (NI). Results of 106,434 IGRA results (2013-2018) were associated with temperature data extracted from weather stations near tested cattle herds. Model dependent variables were the levels of IFN-γ triggered by avian purified protein derivative (PPDa), M. bovis PPD (PPDb), their difference (PPD(b-a)) as well as the final binary outcome (positive or negative for M. bovis infection). IFN-γ levels after both PPDa and PPDb stimulation were lowest at the extremes of the temperature distribution for NI. The highest IGRA positive probability (above 6%) was found on days with moderate maximum temperatures (6-16 °C) or moderate minimum temperatures (4-7 °C). Adjustment for covariates did not lead to major changes in the model estimates. These data suggest that IGRA performance can be affected when samples are taken at high or low temperatures. Whilst it is difficult to exclude physiological factors, the data nonetheless supports the temperature control of samples from bleeding through to laboratory to help mitigate post-collection confounders.
Collapse
Affiliation(s)
- P I H Bisschop
- Department of Animal Science, Adaptation Physiology group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - K Frankena
- Department of Animal Science, Adaptation Physiology group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
| | - G M Milne
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - T Ford
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - L McCallan
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - F J Young
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK
| | - A W Byrne
- Veterinary Sciences Division, Agri-food and Biosciences Institute (AFBI), 12 Stoney Road, Stormont, Belfast BT4 3SD, UK; School of Biological Sciences, Queen's University, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
7
|
Assessment of tuberculosis biomarkers in paratuberculosis-infected cattle. J Vet Res 2023; 67:55-60. [PMID: 37008763 PMCID: PMC10062049 DOI: 10.2478/jvetres-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Abstract
Introduction
Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis, respectively the causative agents of bovine tuberculosis (bTB) and bovine paratuberculosis (PTB), share a high number of antigenic proteins. This characteristics makes the differential diagnosis of the diseases difficult. The interferon gamma (IFN-γ), C-X-C motif chemokine ligand 10 (CXCL10), matrix metallopeptidase 9 (MMP9), interleukin 22 (IL-22) and thrombospondin 1 (THBS1) bovine genes have already been shown to be accurate transcriptional biomarkers of bTB. In order to improve the diagnosis of bTB and PTB, in the present study we evaluated the risk of false positivity of these bTB biomarkers in cattle with PTB.
Material and Methods
The transcription of these genes was studied in 13 PTB-infected cattle, using Mycobacterium avium subsp. paratuberculosis (MAP)-stimulated peripheral blood mononuclear cells (PBMC).
Results
Overall, the levels of IFN-γ, CXCL10, MMP9 and IL-22 transcripts in MAP-stimulated PBMC failed to differentiate animals with PTB from healthy animals. However, as bTB-afflicted cattle do, the MAP-infected group also displayed a lower level of THBS1 transcription than the non-infected animals.
Conclusion
The results of this study add new specificity attributes to the levels of transcription of IFN-γ, CXCL10, MMP9 and IL-22 as biomarkers for bTB.
Collapse
|
8
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
9
|
Correia CN, McHugo GP, Browne JA, McLoughlin KE, Nalpas NC, Magee DA, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, MacHugh DE. High-resolution transcriptomics of bovine purified protein derivative-stimulated peripheral blood from cattle infected with Mycobacterium bovis across an experimental time course. Tuberculosis (Edinb) 2022; 136:102235. [DOI: 10.1016/j.tube.2022.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
|
10
|
Khalid H, van Hooij A, Connelley TK, Geluk A, Hope JC. Protein Levels of Pro-Inflammatory Cytokines and Chemokines as Biomarkers of Mycobacterium bovis Infection and BCG Vaccination in Cattle. Pathogens 2022; 11:pathogens11070738. [PMID: 35889984 PMCID: PMC9320177 DOI: 10.3390/pathogens11070738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally prevalent infectious disease with significant animal welfare and economic impact. Difficulties in implementing test-and-slaughter measures in low- and middle-income countries (LMICs) and the underperformance of the current diagnostics establish a clear need to develop improved diagnostics. Adaptive immunity biomarkers other than IFNγ could be useful as suggested by various gene expression studies; however, a comprehensive assessment at the protein level is lacking. Here, we screened a range of chemokines and cytokines for their potential as biomarkers in samples from M. bovis experimentally challenged or naive animals. Although serum concentrations for most proteins were low, the pro-inflammatory markers, IL-2, CXCL-9, IP-10 and CCL4, in addition to IFNγ, were found to be significantly elevated in bovine tuberculin (PPDb)-stimulated whole blood supernatants. Further assessment of these molecules in BCG-vaccinated with or without subsequent M. bovis challenge or naive animals revealed that PPDb-specific IL-2 and IP-10, in addition to IFNγ, could discriminate naive and BCG-vaccinated from M. bovis challenged animals. Moreover, these proteins, along with CCL4, showed DIVA potential, i.e., enabling differentiation of M. bovis-infected animals from BCG-vaccinated animals. Combined analysis of cytokines and chemokines could also accurately identify M. bovis infection with strong correlations observed between PPDb-specific IFNγ, IL-2 and IP-10 levels. This provides proof of concept for utilizing multiple biomarker signatures for discrimination of animals with respect to M. bovis infection or BCG vaccination status.
Collapse
Affiliation(s)
- Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Center for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Correspondence: (H.K.); (J.C.H.)
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Timothy K. Connelley
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Jayne C. Hope
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Correspondence: (H.K.); (J.C.H.)
| |
Collapse
|
11
|
Borham M, Oreiby A, El-Gedawy A, Hegazy Y, Khalifa HO, Al-Gaabary M, Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022; 11:pathogens11070715. [PMID: 35889961 PMCID: PMC9320398 DOI: 10.3390/pathogens11070715] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis is a serious infectious disease affecting a wide range of domesticated and wild animals, representing a worldwide economic and public health burden. The disease is caused by Mycobacteriumbovis and infrequently by other pathogenic mycobacteria. The problem of bovine tuberculosis is complicated when the infection is associated with multidrug and extensively drug resistant M. bovis. Many techniques are used for early diagnosis of bovine tuberculosis, either being antemortem or postmortem, each with its diagnostic merits as well as limitations. Antemortem techniques depend either on cellular or on humoral immune responses, while postmortem diagnosis depends on adequate visual inspection, palpation, and subsequent diagnostic procedures such as bacterial isolation, characteristic histopathology, and PCR to reach the final diagnosis. Recently, sequencing and bioinformatics tools have gained increasing importance for the diagnosis of bovine tuberculosis, including, but not limited to typing, detection of mutations, phylogenetic analysis, molecular epidemiology, and interactions occurring within the causative mycobacteria. Consequently, the current review includes consideration of bovine tuberculosis as a disease, conventional and recent diagnostic methods, and the emergence of MDR-Mycobacterium species.
Collapse
Affiliation(s)
- Mohamed Borham
- Bacteriology Department, Animal Health Research Institute Matrouh Lab, Matrouh 51511, Egypt;
| | - Atef Oreiby
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Attia El-Gedawy
- Bacteriology Department, Animal Health Research Institute, Giza 12618, Egypt;
| | - Yamen Hegazy
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Hazim O. Khalifa
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan
- Correspondence: (H.O.K.); (T.M.)
| | - Magdy Al-Gaabary
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Correspondence: (H.O.K.); (T.M.)
| |
Collapse
|
12
|
Li X, Xia A, Xu Z, Liu J, Fu S, Cao Z, Shen Y, Xie Y, Meng C, Chen X, Jiao X. Development and evaluation of a Mycobacterium bovis interferon-γ enzyme-linked immunospot (ELISpot) assay for detection of bovine tuberculosis. J Dairy Sci 2022; 105:6021-6029. [PMID: 35570041 DOI: 10.3168/jds.2021-21301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/13/2022] [Indexed: 11/19/2022]
Abstract
Bovine tuberculosis (bTB) caused by Mycobacterium bovis is an important zoonotic disease. This infection is difficult to control because of the limited ability of the tuberculin skin test (TST) and ancillary IFN-γ release assay to detect all infected animals. In this study, we aimed to develop an efficient assay based on the enzyme-linked immunospot (ELISpot) technique for the diagnosis of bTB, with IFN-γ monoclonal antibodies 3E9 and Bio-labeled 6F8 used as capture and detection antibodies, respectively. As expected, there were significantly more M. bovis-specific spot-forming units (SFU) in bTB-infected cattle than in healthy cattle when an M. bovis-specific antigen, CFP-10-ESAT-6 fusion protein (CE protein), was used. The M. bovis IFN-γ ELISpot assay demonstrated a high level of agreement (90.83%) with the BOVIGAM ELISA test (Thermo Fisher Scientific) for detecting bTB. Furthermore, 3 of 109 cattle tested negative by both the TST and the BOVIGAM ELISA tests, but positive by the ELISpot assay (TST- ELISA- ELISpot+). During subsequent long-term monitoring, these 3 cattle became TST+ ELISA+ ELISpot+. These results suggest that the M. bovis IFN-γ ELISpot assay we established could detect infected cattle earlier than the BOVIGAM ELISA test.
Collapse
Affiliation(s)
- Xin Li
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Aihong Xia
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Jiaying Liu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Shasha Fu
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhaoli Cao
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yechi Shen
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Xie
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Chuang Meng
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Oryan A, Yazdi HS, Alidadi S, Doostmohammadi S. Use of a gyrB PCR-RFLP method to diagnose tuberculosis and identify the causative Mycobacterium sp. in cattle and humans. Comp Immunol Microbiol Infect Dis 2022; 82:101767. [PMID: 35180476 DOI: 10.1016/j.cimid.2022.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
GyrB PCR-restriction fragment length polymorphism (RFLP) could be applied to diagnose bovine and human tuberculosis and detect the causative agent. The lymph nodes and lungs from 50 cattle positive in tuberculin skin test were examined by histopathology and PCR-RFLP of a 1020-bp fragment of the gyrB gene. Swab smear samples from the nasal cavity, pleural, and abdominal cavities were also evaluated by cytological methods. Furthermore, the cultures of 50 sputum samples from the patients were assessed by PCR-RFLP using RsaI, TaqI, SacII enzymes. In histopathology, 39 cattle were positive and the acid-fast bacilli were seen in the Ziehl-Neelsen stained sections. Using gyrB PCR-RFLP, M. bovis was found as the etiological agent in 41 cattle. In terms of the human samples, the causative agent in 41 samples was M. tuberculosis, and M. bovis was isolated from two samples. It seems that gyrB PCR-RFLP could be applied as an accurate and reliable method for identifying the M. tuberculosis complex (MBTC) MBTC species. The isolation of M. bovis from the human specimens should be considered in the control strategies for tuberculosis.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Hassan Sharifi Yazdi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Soodeh Alidadi
- Department of Pathology, School of Veterinary Medicine, Ferdowsi University, Mashhad, Iran
| | | |
Collapse
|
14
|
Romero MP, Chang YM, Brunton LA, Parry J, Prosser A, Upton P, Drewe JA. Machine learning classification methods informing the management of inconclusive reactors at bovine tuberculosis surveillance tests in England. Prev Vet Med 2021; 199:105565. [PMID: 34954421 DOI: 10.1016/j.prevetmed.2021.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Bovine tuberculosis (bTB) remains one of the most complex, challenging, and costly animal health problems in England. Identifying and promptly removing all infected cattle from affected herds is key to its eradication strategy; the imperfect sensitivity of the diagnostic testing regime remaining a serious obstacle. The main diagnostic test for bTB in cattle in England, the Single Intradermal Comparative Cervical Tuberculin Test (SICCT: also known as the skin test), can produce inconclusive results below the reactor threshold. The immediate isolation of inconclusive reactor (IR) animals followed by a 60-day retest may not prevent lateral spread within the herd (if it is substandard, allowing transmission) or transmission to wildlife. Over half of IR-only herds that went on to have a positive skin test result (a bTB herd 'incident') in 2020, had it triggered by at least one IR not clearing their 60-day retest, instead of by another test within the previous 15 months. Machine learning classification algorithms (classification tree analysis and random forest), applied to England's 2012-2020 IR-only surveillance herd tests, identified at-risk tests for an incident at the IRs' 60-day retest. In this period, 4 739 out of 22 946 (21 %) IR-only surveillance tests disclosing 6 296 out of 42 685 total IRs, had an incident at retest (2 716 IRs became reactors and 3 580 IRs became two-time IRs). Both models showed an AUC above 80 % in the 2012-2019 dataset. Classification tree analysis was preferred due to its easy-to-interpret outputs, 70 % sensitivity, and 93 % specificity in the 20 % of 2019-2020 testing dataset. The paper aimed to identify IR-only surveillance tests at-risk of an incident at the 60-day retest to target them with appropriate measures to mitigate the IRs' risk. Sixteen percent (341 out of 2 177) of IR-only herd tests were identified as high-risk in the 2020 dataset, with 265 (78 %) of these having at least one reactor or IR at retest. Severe-level reinterpretation of the high-risk IR-only disclosing tests identified in this dataset would turn 68 out of the 590 (12 %) IRs into reactors, generating 23 incidents, the majority (19 or 83 %) part of the 265 incidents that would have been declared at the retest. Classification tree analysis used to identify IR-only high-risk tests in herds eligible for severe interpretation would enhance the sensitivity of the test-and-slaughter regime, cornerstone of the bTB eradication programme in England, further mitigating the risk of disease spread posed by IRs.
Collapse
Affiliation(s)
- M Pilar Romero
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom; Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, United Kingdom.
| | - Yu-Mei Chang
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - Lucy A Brunton
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - Jessica Parry
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Alison Prosser
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Paul Upton
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Julian A Drewe
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| |
Collapse
|
15
|
Semi-stable Production of Bovine IL-4 and GM-CSF in The Mammalian Episomal Expression System. J Vet Res 2021; 65:315-321. [PMID: 34917844 PMCID: PMC8643090 DOI: 10.2478/jvetres-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) are cytokines widely used in ex vivo monocyte differentiation experiments, vaccine formulations and disease treatment. The aim of this study was to produce recombinant bovine GM-CSF and IL-4 in an episomal expression system that conserves the postransductional modification of the native proteins and to use the products to differentiate bovine monocytes into dendritic cells. Material and Methods The recombinant proteins rGM-CSF and rIL-4 were expressed in PEAKrapid CRL-2828 human kidney cells, ATCC CRL-2828. The functional activity of the recombinant cytokines was monitored by registering morphological changes in bovine monocytes and assessing the expression of CD14 upon incubation with them. Results Both recombinant proteins were detected in the cell culture supernatant of transfected cells. Culture supernatants of transfected cells induced in bovine monocytes morphological changes that resemble macrophages or dendritic cells. In addition, bovine cells treated with rGM-CSF and rIL-4 showed reduced expression of the macrophage surface marker CD14 compared with untreated cells. This effect indicates the expected differentiation. The expression of the cytokines was stable after many successive cell passages and a freeze/thaw cycle. Conclusions The semi-stable mammalian episomal expression system used in this study allowed us to easily produce functional bovine rGM-CSF and rIL-4 without the need for protein purification steps.
Collapse
|
16
|
Abstract
Bovine tuberculosis, caused by Mycobacterium tuberculosis var. bovis (M. bovis), is an important enzootic disease affecting mainly cattle, worldwide. Despite the implementation of national campaigns to eliminate the disease, bovine tuberculosis remains recalcitrant to eradication in several countries. Characterizing the host response to M. bovis infection is crucial for understanding the immunopathogenesis of the disease and for developing better control strategies. To profile the host responses to M. bovis infection, we analyzed the transcriptome of whole blood cells collected from experimentally infected calves with a virulent strain of M. bovis using RNA transcriptome sequencing (RNAseq). Comparative analysis of calf transcriptomes at early (8 weeks) vs. late (20 weeks) aerosol infection with M. bovis revealed divergent and unique profile for each stage of infection. Notably, at the early time point, transcriptional upregulation was observed among several of the top-ranking canonical pathways involved in T-cell chemotaxis. At the late time point, enrichment in the cell mediated cytotoxicity (e.g. Granzyme B) was the predominant host response. These results showed significant change in bovine transcriptional profiles and identified networks of chemokine receptors and monocyte chemoattractant protein (CCL) co-regulated genes that underline the host-mycobacterial interactions during progression of bovine tuberculosis in cattle. Further analysis of the transcriptomic profiles identified potential biomarker targets for early and late phases of tuberculosis in cattle. Overall, the identified profiles better characterized identified novel immunomodulatory mechanisms and provided a list of targets for further development of potential diagnostics for tuberculosis in cattle.
Collapse
|
17
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
18
|
McLoughlin KE, Correia CN, Browne JA, Magee DA, Nalpas NC, Rue-Albrecht K, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, MacHugh DE. RNA-Seq Transcriptome Analysis of Peripheral Blood From Cattle Infected With Mycobacterium bovis Across an Experimental Time Course. Front Vet Sci 2021; 8:662002. [PMID: 34124223 PMCID: PMC8193354 DOI: 10.3389/fvets.2021.662002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at −1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the −1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection.
Collapse
Affiliation(s)
- Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Kevin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Adam O Whelan
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Bernardo Villarreal-Ramos
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - H Martin Vordermeier
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Smith K, Kleynhans L, Warren RM, Goosen WJ, Miller MA. Cell-Mediated Immunological Biomarkers and Their Diagnostic Application in Livestock and Wildlife Infected With Mycobacterium bovis. Front Immunol 2021; 12:639605. [PMID: 33746980 PMCID: PMC7969648 DOI: 10.3389/fimmu.2021.639605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis has the largest host range of the Mycobacterium tuberculosis complex and infects domestic animal species, wildlife, and humans. The presence of global wildlife maintenance hosts complicates bovine tuberculosis (bTB) control efforts and further threatens livestock and wildlife-related industries. Thus, it is imperative that early and accurate detection of M. bovis in all affected animal species is achieved. Further, an improved understanding of the complex species-specific host immune responses to M. bovis could enable the development of diagnostic tests that not only identify infected animals but distinguish between infection and active disease. The primary bTB screening standard worldwide remains the tuberculin skin test (TST) that presents several test performance and logistical limitations. Hence additional tests are used, most commonly an interferon-gamma (IFN-γ) release assay (IGRA) that, similar to the TST, measures a cell-mediated immune (CMI) response to M. bovis. There are various cytokines and chemokines, in addition to IFN-γ, involved in the CMI component of host adaptive immunity. Due to the dominance of CMI-based responses to mycobacterial infection, cytokine and chemokine biomarkers have become a focus for diagnostic tests in livestock and wildlife. Therefore, this review describes the current understanding of host immune responses to M. bovis as it pertains to the development of diagnostic tools using CMI-based biomarkers in both gene expression and protein release assays, and their limitations. Although the study of CMI biomarkers has advanced fundamental understanding of the complex host-M. bovis interplay and bTB progression, resulting in development of several promising diagnostic assays, most of this research remains limited to cattle. Considering differences in host susceptibility, transmission and immune responses, and the wide variety of M. bovis-affected animal species, knowledge gaps continue to pose some of the biggest challenges to the improvement of M. bovis and bTB diagnosis.
Collapse
Affiliation(s)
- Katrin Smith
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
20
|
Abstract
Mycobacterial infections are widely distributed in animals and cause considerable economic losses, especially in livestock animals. Bovine paratuberculosis and bovine tuberculosis, which are representative mycobacterial infections in cattle, are difficult to diagnose using current-generation diagnostics due to their relatively long incubation periods. Thus, alternative diagnostic tools are needed for the detection of mycobacterial infections in cattle. A biomarker is an indicator present in biological fluids that reflects the biological state of an individual during the progression of a specific disease. Therefore, biomarkers are considered a potential diagnostic tool for various diseases. Recently, the number of studies investigating biomarkers as tools for diagnosing mycobacterial infections has increased. In human medicine, many diagnostic biomarkers have been developed and applied in clinical practice. In veterinary medicine, however, many such developments are still in the early stages. In this review, we summarize the current progress in biomarker research related to the development of diagnostic biomarkers for mycobacterial infections in cattle.
Collapse
|
21
|
Alonso N, Griffa N, Moyano RD, Mon ML, Colombatti Olivieri MA, Barandiaran S, Vivot MM, Fiorini G, Canal AM, Santangelo MP, Singh M, Romano MI. Development of a lateral flow immunochromatography test for the rapid detection of bovine tuberculosis. J Immunol Methods 2020; 491:112941. [PMID: 33321133 DOI: 10.1016/j.jim.2020.112941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Detection of specific antibodies would be a useful test strategy for bovine tuberculosis (bTB) as a complement to the single skin test. We developed a lateral flow immunochromatography (LFIC) test for rapid bTB detection based on the use of a conjugate of gold nanoparticles with a recombinant G protein. After evaluating 3 Mycobacterium bovis (MB) antigens: ESAT-6, CFP-10 and MPB83 for the control line, we selected MPB83 given it was the most specific. The performance of the test was analyzed with 820 bovine sera, 40 sera corresponding to healthy animals, 5 sera from animals infected with Mycobacterium avium subsp. paratuberculosis (MAP) and 775 sera of animals from herds with bTB. All these sera were also submitted to a validated bTB-ELISA using whole-cell antigen from MB. From the 775 sera of animals from herds with bTB, 87 sera were positive by the bTB-ELISA, 45 were positive by LFIC and only 5 animals were positives by skin test (TST). To confirm bTB infection in the group of TST (-), bTB-ELISA (+) and LFIC (+) animals, we performed postmortem examination in 15 randomly selected animals. Macroscopically, these 15 animals had numerous small and large yellow-white granulomas, characteristic of bTB, and the infection was subsequently confirmed by PCR in these tissues with lesions (gold standard). No false positive test result was detected with the developed LFIC either with the sera from healthy animals or from animals infected with MAP demonstrating that it can be a useful technique for the rapid identification of animals infected with bTB.
Collapse
Affiliation(s)
- Natalia Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CONICET-INTA, Buenos Aires, Argentina
| | - Natanael Griffa
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CONICET-INTA, Buenos Aires, Argentina
| | - Roberto D Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CONICET-INTA, Buenos Aires, Argentina.
| | - Maria L Mon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CONICET-INTA, Buenos Aires, Argentina
| | | | - Soledad Barandiaran
- Facultad de Veterinaria, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Ana M Canal
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - María P Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CONICET-INTA, Buenos Aires, Argentina
| | - Mahavir Singh
- LIONEX Diagnostics & Therapeutics GmbH, Braunschweig 38126, Germany
| | - María I Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CONICET-INTA, Buenos Aires, Argentina
| |
Collapse
|
22
|
Assessment of candidate biomarkers to detect resistance to Mycobacterium bovis in Holstein-Friesian cattle. Res Vet Sci 2020; 132:416-425. [PMID: 32768870 DOI: 10.1016/j.rvsc.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/30/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
Bovine tuberculosis (bTB) caused by Mycobacterium bovis has a significant economic impact worldwide each year. Control of bTB is based on skin testing and removal of reactors. However, additional strategies are required to control this disorder. Natural disease resistance has been defined as the inherent capacity of an individual to resist disease when exposed to pathogens without previous exposure or immunization. However, little is known about natural disease resistance against Mycobacterium bovis in cattle. In this study, we aimed to identify candidate biomarkers to detect host resistance to M. bovis. We used a microbicidal assay to identify the resistance phenotype. A genomic microarray analysis was carried out on RNA from 2 resistant (R) and 2 susceptible (S) cows. Our results evidenced 69 differentially expressed genes. A subset of six genes that showed differential up (IL1RN), and down-regulation (VNN, GATM, ARHGEF11, NAAA and HSPA2) were selected for further analysis. To further validate the candidate biomarkers, we identified the R phenotype in 31 cattle (9 R and 22 S). Macrophage mRNA was isolated from this group of cattle. Expression of candidate biomarkers was evaluated by qPCR 2-ΔCt and ROC curves to determine their diagnostic potential. Candidates IL1RN and ARHGEF11 discriminates between R and S cattle. Furthermore, combination of candidates ARHGEF11: VNN: HSPA2 discriminate between R from S with AUC 0.7993 and agreement index of 0.853 (p ≤ 0.01). Our data suggest that candidate biomarkers may support the preliminary screening to identify natural resistance in herds against Mycobacterium bovis in Holstein-Friesian cattle.
Collapse
|
23
|
Griffa N, Moyano RD, Canal AM, Travería GE, Santangelo MP, Alonso N, Romano MI. Development and diagnostic validation of an ELISA based on an antigenic mixture for the detection of bovine tuberculosis. Vet J 2020; 256:105426. [PMID: 32113584 DOI: 10.1016/j.tvjl.2020.105426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/16/2022]
Abstract
Programs for the eradication of bovine tuberculosis (bTB) focus on the tuberculin skin test (TST) and slaughter of reactor cattle. However, the disease remains an animal health concern in several countries and improving the efficiency of the TST has become a critical issue. The detection of Mycobacterium bovis antibodies in serum, within weeks after the TST, may be a rapid and inexpensive way to improve bTB control. This study reports the validation of an enzyme-linked immunosorbent assay (ELISA) to detect bovine tuberculosis as an ancillary test to TST in dairy farms in Argentina. The estimated validation parameters were within the established requirements of the World Organization for Animal Health (OIE). The test demonstrated high repeatability, with coefficients of variation <25%. High test reproducibility through interlaboratory testing was also found, with an estimated Pearson coefficient of 0.9648 (95% confidence intervals 0.9315-0.9820). The ELISA detected tuberculous cattle unidentified by the TST. Of 43 animals sent to slaughterhouses that were ELISA positive 15-17 days after a negative TST, 36 were confirmed as infected with M. bovis by histopathology and IS6110 PCR. According to ROC curve analysis of results of 145 cattle from M. bovis-free herds and the 36 M. bovis-infected cattle, at a corrected optical density cut-off point of 0.3853, specificity was 95.95% and the positive predictive value at this cut-off was 83.72%. The ELISA detection test validated in this study could be readily applied in dairy farms, to complement a prior TST and improve livestock health.
Collapse
Affiliation(s)
- N Griffa
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
| | - R D Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
| | - A M Canal
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - G E Travería
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE) de la Facultad de Ciencias Veterinarias - Universidad de la Plata, Argentina
| | - M P Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
| | - N Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina.
| | - M I Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
| |
Collapse
|
24
|
Zhang Y, Zhang X, Zhao Z, Zheng Y, Xiao Z, Li F. Integrated bioinformatics analysis and validation revealed potential immune-regulatory miR-892b, miR-199b-5p and miR-582-5p as diagnostic biomarkers in active tuberculosis. Microb Pathog 2019; 134:103563. [PMID: 31175974 DOI: 10.1016/j.micpath.2019.103563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Tuberculosis (TB) is one of the most prevalent pulmonary diseases caused by Mycobacterium tuberculosis (Mtb). MiRNAs (miRNAs) participate in TB progression by modulating the host-pathogen interaction. Bioinformatics advancements provide basis for exploring novel immunoregulatory miRNAs and their performance as diagnostic biomarkers. Gene and miRNA expression datasets, GSE29190 and GSE54992, were downloaded from Gene Expression Omnibus (GEO) database. Based on fold changes and statistical significance, a total of 7463 differentially expressed mRNAs (DE-mRNAs) and 38 differentially expressed miRNAs (DE-miRNAs) were screened. Function annotation and protein-protein interaction (PPI) network were constructed to reveal underlying mechanisms of TB pathogenesis. Functional annotation identified the MAPK signalling pathway and leukocyte migration as the top enriched processes. The PPI and MGIP networks indicated that chemokine ligands like CXCL1/CXCL2 and receptors, like CCR7 were important down-regulated genes, implying that a protective mechanism against overdue inflammation induced cell death. MiRNA-gene-immune processes (MGIP) network enriched 7 deregulated miRNAs, and their expression was further examined with quantitative real-time PCR (qRT-PCR), in PBMC samples of 20 active TB patients and 20 healthy donors. The diagnostic performance was evaluated with ROC curves. MiR-892b; miR-199b-5p and miR-582-5p were significantly deregulated in TB patients, compared with healthy participants. The best overall performance was from miR-892b, with an area under curve (AUC) of 0.77, 55% sensitivity and 90% specificity. AUC of miR-199b-5p and miR-582-5p were 0.71 and 0.70, respectively. MiR-892b, miR-199b-5p and miR-582-5p could be considered promising novel diagnostic biomarkers for active tuberculosis.
Collapse
Affiliation(s)
- Yunbin Zhang
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaolin Zhang
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhangyan Zhao
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yuling Zheng
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhen Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Feng Li
- Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|