1
|
El-Demerdash FM, Mohammed LT, Mohamed TM. Modulatory effect of Eruca vesicaria seeds essential oil on acetamiprid nephrotoxicity via oxidative stress inhibition and regulation of Cox-2, TNF-α, and PPAR-α pathways. Tissue Cell 2025; 95:102905. [PMID: 40198929 DOI: 10.1016/j.tice.2025.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Acetamiprid (Aceta) is a neonicotinoid insecticide utilized extensively worldwide, and its environmental and human health risks are of concern. Eruca vesicaria is an edible year-round plant that contains a lot of health-promoting phytochemicals and is an excellent source of antioxidants. So, the present investigation was planned to assess the effect of E. vesicaria seed essential oil versus acetamiprid-induced toxicity in rats. Animals were partitioned into 4 groups of seven each: control, E. vesicaria seeds essential oil (ESEO; 0.17 mL/kg), acetamiprid (Aceta; 21.7 mg/kg), and ESEO plus Aceta, respectively. Doses were given orally and daily for 14 days. Results revealed that ESEO has many phytochemical components with high antioxidant activity. Data showed that treatment with Aceta increased lipid peroxidation and decreased the activities of "enzymatic and non-enzymatic antioxidants" in kidney homogenate. Also, disturbance of kidney and liver function biomarkers, lipid profile, and protein content were observed. These are confirmed by the histological, molecular (Cox-2, TNF-α, and PPAR-α), and renal damage biomarkers (KIM-1 and Cystatin C) examination. On the other hand, rats administered ESEO and then treated with Aceta showed significant amelioration in most of the examined indices. To sum up, ESEO has a potent anti-inflammatory, anti-apoptotic, and antioxidant activity that protects against the pronounced harmful effects of Aceta in rat kidneys due to its health-promoting phytochemicals.
Collapse
Affiliation(s)
- Fatma Mohamady El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt.
| | - Laith Taha Mohammed
- Department of Biology, College of Science, Al-Qasim Green University, Babylon 51013, Iraq.
| | - Tarek Mostafa Mohamed
- Biochemistry Division, Department of Chemistry, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Comis-Neto A, Jardim N, Quines CB, Bianchini MC, Gomes J, Batista WT, de Ávila DS, Haas SE, Rosa SG, Pinton S. Repeated Oral Administration of Ivermectin Belatedly Induces Toxicity and Disrupts the Locomotion and Neuropsychiatric Behavior in Rats. ACS OMEGA 2025; 10:12993-13001. [PMID: 40224401 PMCID: PMC11983209 DOI: 10.1021/acsomega.4c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
In 2020, the World Health Organization declared that COVID-19, caused by the SARS-CoV-2 virus, is a pandemic. This led to severe respiratory syndromes and overwhelmed hospital capacities alongside the widespread, yet unproven, use of drugs like ivermectin. Amidst growing concerns over the consequences of frequent ivermectin use, this study aims to examine its toxicological effects following repeated dosage in rats. Female Wistar rats received a daily dose of 12 mg/kg of ivermectin intragastrically for 5 days. Two groups were studied: one euthanized 24 h post the final dose (early protocol) and the other 14 days later (late protocol). The rats underwent tests for locomotion and anxiety- and depression-like behaviors. Additionally, blood and cortex samples were analyzed for acetylcholinesterase and Na+/K+-ATPase activities, oxidative stress levels, and liver and kidney function markers. The early protocol results showed decreased locomotion and increased signs of anxiety and depression in the rats, along with Na+/K+-ATPase inhibition and oxidative stress. In the late protocol, signs of persistent depression-like behavior and hyperlocomotion were observed, coupled with heightened oxidative stress, as indicated by increased reactive oxygen species and disrupted catalase activity. Moreover, the dual inhibition of acetylcholinesterase and Na+/K+-ATPase activities seems to underlie the behavioral alterations seen in the late protocol. The study also noted ivermectin's potential hepatotoxic effects, corroborating previous findings of elevated liver enzyme levels and severe drug-induced liver injury cases, as well as delayed neuropsychiatric and behavioral changes.
Collapse
Affiliation(s)
| | - Natália
Silva Jardim
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Caroline Brandão Quines
- Department
of Biomedicine, Regional University of the
Northwest of the State of Rio Grande do Sul (UNIJUÍ), Campus
Ijuí, Ijuí,98700-000Rio Grande do Sul ,Brazil
| | - Matheus Chimelo Bianchini
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
- Department
of Biochemistry, Federal University of South
Fronteira, Campus Chapecó, Chapecó,89815-899Santa Catarina ,Brazil
| | - Jacqueline Gomes
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | | | - Daiana Silva de Ávila
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Sandra Elisa Haas
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Suzan Gonçalves Rosa
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| | - Simone Pinton
- Federal
University of Pampa, Campus Uruguaiana, Uruguaiana, Rio Grande do Sul 97508000, Brazil
| |
Collapse
|
3
|
Chen N, Chen L, Yang B, Lv L, Li H, Du S, Tan X. Toxic effects of avermectin on liver function, gut microbiota, and colon barrier in the rat model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116964. [PMID: 39260218 DOI: 10.1016/j.ecoenv.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Avermectin (AVM), a compound derived from the fermentation of Avermectin Streptomyces, has insecticidal, acaricidal, and nematicidal properties. Widely employed in agriculture, it serves as an effective and broad-spectrum insecticide for pest control. Although the toxicity of AVM at low doses may not be readily apparent, prolonged and extensive exposure can result in poisoning. To investigate the toxic effects of AVM on the body, this study established rat models of AVM poisoning with both low and high concentrations of the compound. Fifteen male rats were randomly assigned to one of three groups (n=5 per group): a control group, a low-concentration group, and a high-concentration group. The low-concentration group was administered an oral dose of 2 mg/kg AVM once daily for a duration of seven days, while the high-concentration group received an oral dose of 10 mg/kg AVM once daily for the same period. This study examined the impact of AVM on liver function and gut microbiota in rats using weight monitoring, liver function indicator detection, liver metabolomics sequencing, colon barrier function testing, and gut microbiota sequencing. The findings of this study demonstrated that exposure to 2 or 10 mg/kg AVM for seven days can lead to a notable decrease in rat weight, as well as induce liver dysfunction and metabolic disturbances. Additionally, AVM exposure can disrupt the composition of the intestinal microbiota and impair the integrity of the colon mucosal barrier, causing downregulation of Occludin expression and upregulation of inflammation-related protein expression levels such as IL-1β, Myd88, and TLR4. Furthermore, bioinformatics analysis revealed a significant association between liver dysfunction and dysbiosis of the gut microbiota. These findings have implications for the agricultural use of AVM and its potential contribution to environmental pollution. Consequently, individuals involved in AVM usage should prioritize safety precautions and monitor liver function.
Collapse
Affiliation(s)
- Na Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lijun Lv
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Han Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Sihao Du
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Xiaohui Tan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Rahib A, Karhib MM, Nasr HM, El-Sayed RA, Abdel-Daim MM, Jebur AB, El-Demerdash FM. Citrus reticulata peel extract mitigates oxidative stress and liver injury induced by abamectin in rats. Tissue Cell 2024; 87:102321. [PMID: 38350206 DOI: 10.1016/j.tice.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
The prevalent use of abamectin (ABM) has latterly raised safety attention as it has different toxicities to non-target living organisms. Citrus fruits are widely renowned for their nutritional and health-promoting qualities, and their peels are full of phenolic constituents. The purpose of the current study was to evaluate the modulatory effectiveness of Citrus reticulata peel extract (CPE) against abamectin-induced hepatotoxicity and oxidative injury. Rats were distributed into 4 groups as follows: control, CPE (400 mg/kg bw orally for 14 days), ABM (2 mg/kg bw for 5 days), and CPE + ABM at the doses mentioned above. Results revealed that GC-MS analysis of CPE has 19 identified components with significant total phenolic and flavonoid contents. Treatment with ABM in rats displayed significant variations in enzymatic and non-enzymatic antioxidants, oxidative stress markers (MDA, H2O2, PCC), liver and kidney function biomarkers, hematological parameters, lipids, and protein profile as well as histopathological abnormalities, inflammation and apoptosis (TNF-α, Caspase-3, NF-κB, and Bcl-2 genes) in rats' liver. Supplementation of CPE solo dramatically improved the antioxidant state and reduced oxidative stress. C. reticulata peel extract pretreatment alleviated ABM toxicity by modulating most of the tested parameters compared to the ABM group. Conclusively, CPE had potent antioxidant activity and could be used in the modulation of ABM hepatotoxicity presumably due to its antioxidant, anti-inflammatory, and gene-regulating capabilities.
Collapse
Affiliation(s)
- Ahmed Rahib
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Mustafa M Karhib
- Department of Medical Laboratory Techniques, College of Health and Medical Technologies, Al-Mustaqbal University, 51001 Hillah, Babylon, Iraq.
| | - Hoda M Nasr
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Ali B Jebur
- Department of Animal Production, College of Agriculture, University of Kerbala, Kerbala 56001, Iraq.
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
5
|
Galvão NA, Cordeiro F, Bernardi MM, Kirsten TB. Ivermectin prevents stress-induced testicular damage in juvenile rats. Tissue Cell 2024; 86:102292. [PMID: 38159533 DOI: 10.1016/j.tice.2023.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Ivermectin is a popular antiparasitic drug used in veterinary and human medicine. Studies by our group have shown that therapeutic doses of ivermectin induce some brain and behavioral impairments, especially in the reproductive sphere. So far, the studies were focused in adulthood. Considering that juveniles are more susceptible to drugs during developmental stages and both farm/domestic animals and humans have been medicated with ivermectin in youth, it is necessary to evaluate the possible harm effects in youth. The stress variable is also important, as it potentially influences the effects produced by ivermectin. Therefore, the objective of this study was to evaluate morphofunctional and hormonal reproductive aspects of juvenile rats exposed to ivermectin and/or stressed. Prepubertal male rats were treated with 0.2 or 1.0 mg/kg of ivermectin (a therapeutic dose and a higher dose, respectively). Rats were also submitted to a restraint stress session. The testis morphology and histology were analyzed and plasma testosterone levels were measured. The two doses of ivermectin did not induce a biologically relevant effect on testis and testosterone levels of rats. However, restraint stress impaired macroscopic and microscopic morphometric and stereological parameters, as well as the histology of the testis: it increased the relative testis weight, the tubular diameter, the tubular luminal diameter, and the tubular cellular index, and injured the interstitial area. Previous treatment of juvenile rats with ivermectin prevented most of the stress-induced testes injuries. In conclusion, in addition to be a remarkable antiparasitic agent, ivermectin prevented stress-induced testes injuries in juvenile rats.
Collapse
Affiliation(s)
- Nathalia A Galvão
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Flora Cordeiro
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil.
| |
Collapse
|
6
|
Powie Y, Strydom M, Aucamp M, Schellack N, Steenkamp V, Smith C. Zebrafish behavioral response to ivermectin: insights into potential neurological risk. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
7
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
8
|
Salman M, Abbas RZ, Mehmood K, Hussain R, Shah S, Faheem M, Zaheer T, Abbas A, Morales B, Aneva I, Martínez JL. Assessment of Avermectins-Induced Toxicity in Animals. Pharmaceuticals (Basel) 2022; 15:332. [PMID: 35337129 PMCID: PMC8950826 DOI: 10.3390/ph15030332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/02/2023] Open
Abstract
Macrocyclic lactones, particularly the avermectins, have completely revolutionized the approaches aimed at control of parasites. These avermectins are the most widely used anti-parasitic drugs in veterinary field with sales exceeding one billion US dollars annually. However, before clinical usage, their safety evaluation in the animals is a major critical factor that must be considered. Many studies have reported the negative effects of avermectins like ivermectin, abamectin, doramectin, and eprinomectin on the host animals. These harmful effects arise from avermectins targeting GABA and glutamate-gated chloride channels present both in the parasites and the host animals. In this review, various modes of avermectins action along with the negative effects on the host like nephrotoxicity, hepatotoxicity, neurotoxicity, reproductive toxicity, and endocrine disruption were discussed in detail. Furthermore, other important issues like ecotoxicity, drug resistance, and drug residues in milk associated with avermectins usage were also discussed, which need special attention.
Collapse
Affiliation(s)
- Muhammad Salman
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Riaz Hussain
- Department of Pathology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Sehar Shah
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Mehwish Faheem
- Department of Zoology, Government College University Lahore, Lahore 54000, Pakistan;
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.S.); (S.S.); (T.Z.)
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 59300, Pakistan;
| | - Bernardo Morales
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Estación Central, Santiago 9160000, Chile
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - José L. Martínez
- Vicerrectoria de Investigación, Desarrollo e Innovación, Universidad de Santiago de Chile, Estación Central, Santiago 9160000, Chile
| |
Collapse
|
9
|
Nunes B, Pinheiro D, Gomes A. Effect of sublethal concentrations of the antiparasitic ivermectin on the polychaeta species Hediste diversicolor: biochemical and behavioral responses. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1841-1853. [PMID: 34224071 DOI: 10.1007/s10646-021-02444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs have emerged as major micropollutants in aquatic ecosystems. Their presence has been systematically reported in monitoring surveys, and their wide distribution and constant presence in the wild is a direct consequence of their massive use, in both human and veterinary therapeutics. Drugs used to treat parasitic infections in livestock are major contaminants, given the amounts in which they are administered, and reach the aquatic compartment in high amounts, where they may affect non target species. Some of these drugs are prone to find their final deposit in sediments of estuarine areas, exerting their toxic effects preferentially at these locations. Sediment dwelling organisms of coastal areas, such as polychaetas, are especially prone to have their major physiological functions compromised after being exposed to pharmaceutical drugs. Ivermectin is one of the most used antiparasitic drugs, and its effects are not limited to biochemical traits, but also behavioral features may be compromised considering their neurotoxic actions. Despite these putative effects, little is known about their toxicity on polychaetas. The present study aimed to characterize the toxicity of realistic levels of ivermectin on the polychaeta Hediste diversicolor, in biochemical and behavioral terms. The obtained results showed that low levels of ivermectin are capable of causing significant disturbances in mobility and burrowing activity of exposed worms, as well as alterations of metabolic and anti-oxidant defense efficacy of exposed animals, suggesting that its environmental presence may mean a major environmental concern.
Collapse
Affiliation(s)
- B Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - D Pinheiro
- Departamento de Física da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A Gomes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Madkour DA, Ahmed MM, Orabi SH, Sayed SM, Korany RMS, Khalifa HK. Nigella sativa oil protects against emamectin benzoate-Induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:1521-1535. [PMID: 33885218 DOI: 10.1002/tox.23149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the ameliorative impact of Nigella sativa oil (NSO) on emamectin benzoate (EMB) neurotoxicity. Thirty-five male rats were randomly allocated into 5 groups (n = 7). G1 (control): received distilled water; G2: received NSO (3 ml. Kg-1 B.W.) for 6 weeks; G3: received EMB (9 mg kg-1 B.W.) for 6 weeks; G4: was co-treated with NSO and EMB for 6 weeks; G5: was treated with EMB for 4 weeks then, received NSO for 2 weeks. All treatments were given orally every other day. EMB increased serum urea, creatinine levels; brain dopamine, serotonin, malondialdehyde levels; brain expression levels of caspase 3 and TNF-α. While, it decreased serum total protein, albumin, brain GABA, AChE, GSH-Px, CAT, and SOD levels. Histopathological findings revealed hemorrhage, congestion, severe degeneration, and edema of the brain tissues. NSO reversed the EMB-induced biochemical and histopathological alterations. This NSO effect is mostly due to its antioxidant, antiinflammatory, and antiapoptotic activities. These findings suggest NSO as a potential protective and therapeutic agent for EMB-induced neurotoxicity.
Collapse
Affiliation(s)
- Doaa A Madkour
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed M Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Samy M Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Ranyah, Saudi Arabia
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hanem K Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
11
|
Zinc, but not paracetamol, prevents depressive-like behavior and sickness behavior, and inhibits interferon-gamma and astrogliosis in rats. Brain Behav Immun 2020; 87:489-497. [PMID: 32006614 DOI: 10.1016/j.bbi.2020.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Considering all mental and addictive disorders, depression is the most responsible for years of life lost due to premature mortality and disability. Antidepressant drugs have limited effectiveness. Depression can be triggered by immune/inflammatory factors. Zinc and paracetamol interfere with immune system and have demonstrated beneficial effects on depression treatment when administered concomitant with antidepressant drugs. The objective of this study was to test zinc and/or paracetamol as treatments of depressive-like behavior, sickness behavior, and anxiety in rats, as well as to understand the central and peripheral mechanisms involved. Sickness behavior and depressive-like behavior were induced in rats with repetitive lipopolysaccharide (LPS, 1 mg/kg for two consecutive days) administrations. Rats received zinc and/or paracetamol for three consecutive days. Sickness behavior (daily body weight and open field general activity); anxiety (light-dark test); depressive-like/antidepressant behavior (forced swim test); plasma corticosterone and interferon (IFN)-gamma levels; and glial fibrillary acidic protein (GFAP) and tyrosine hydroxylase (TH) brain expression were evaluated. LPS induced sickness behavior and depressive-like behavior, as well as elevated IFN-gamma levels and increased GFAP expression. Zinc prevented both behavioral and biochemical impairments. Paracetamol and zinc + paracetamol association induced only slight beneficial effects. Anxiety, corticosterone, and TH do not seem be related with depression and the other behavioral and neuroimmune changes. In conclusion, zinc treatment was beneficial for sickness behavior and depressive-like behavior without concomitant administration of antidepressants. IFN-gamma and GFAP were linked with the expression of sickness behavior and depressive-like behavior and were also involved with the antidepressant effects. Therefore, zinc, IFN-gamma, and GFAP pathways should be considered for depression treatment.
Collapse
|