1
|
Zhang M, Liao J, Xie Z, Zhang Y, Luo S, Li M, Xie L, Fan Q, Zeng T, Huang J, Wang S. Development of a Double-Antibody Sandwich ELISA Based on a Monoclonal Antibody against the Viral NS1 Protein for the Detection of Chicken Parvovirus. Pathogens 2024; 13:221. [PMID: 38535564 PMCID: PMC10976255 DOI: 10.3390/pathogens13030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 02/11/2025] Open
Abstract
Chicken parvovirus (ChPV) infection can cause runting-stunting syndrome (RSS) in chickens. There is currently no commercially available vaccine for controlling ChPV, and ChPV infection in chickens is widespread globally. The rapid detection of ChPV is crucial for promptly capturing epidemiological data on ChPV. Two monoclonal antibodies (mAbs), 1B12 and 2B2, against the ChPV NS1 protein were generated. A double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for detecting ChPV based on the mAb 1B12 and an anti-chicken polyclonal antibody against the ChPV NS1 protein. The detection limit for the ChPV recombinant pET32a-NS1 protein was approximately 31.2 ng/mL. A total of 192 throat and cloaca swab samples were analyzed for ChPV by the established DAS-ELISA and nested PCR methods. The concordance rate between the DAS-ELISA and the nested PCR method was 89.1%. The DAS-ELISA can detect the ChPV antigen without any cross-reaction with FAdV-4, FAdV-1, NDV, AIV, MS, CIAV, aMPV, EDSV, IBV, or AGV2. The method also has high repeatability, with a coefficient of variation (CV) of less than 5%. These findings indicate that the DAS-ELISA exhibits high accuracy, good sensitivity, and specificity, making it suitable for viral detection, field surveillance, and epidemiological studies.
Collapse
Affiliation(s)
| | | | - Zhixun Xie
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (M.Z.); (J.L.); (Y.Z.); (S.L.); (M.L.); (L.X.); (Q.F.); (T.Z.); (J.H.); (S.W.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Zhao X, Li M, Zhang J, Yu T. Development of a sandwich enzyme-linked immunosorbent assay based on single-domain antibody for detecting goose parvovirus infection. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- X. Zhao
- Harbin Engineering University, China; Qiqihar University, China; Qiqihar University, China
| | - M. Li
- Harbin Engineering University, China; Qiqihar University, China; Qiqihar University, China
| | | | - T.F. Yu
- Qiqihar University, China; Qiqihar University, China
| |
Collapse
|