1
|
Brostoff T, Savage HP, Jackson KA, Dutra JC, Fontaine JH, Hartigan-O’Connor DJ, Carney RP, Pesavento PA. Feline Infectious Peritonitis mRNA Vaccine Elicits Both Humoral and Cellular Immune Responses in Mice. Vaccines (Basel) 2024; 12:705. [PMID: 39066343 PMCID: PMC11281389 DOI: 10.3390/vaccines12070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a devastating and often fatal disease caused by feline coronavirus (FCoV). Currently, there is no widely used vaccine for FIP, and many attempts using a variety of platforms have been largely unsuccessful due to the disease's highly complicated pathogenesis. One such complication is antibody-dependent enhancement (ADE) seen in FIP, which occurs when sub-neutralizing antibody responses to viral surface proteins paradoxically enhance disease. A novel vaccine strategy is presented here that can overcome the risk of ADE by instead using a lipid nanoparticle-encapsulated mRNA encoding the transcript for the internal structural nucleocapsid (N) FCoV protein. Both wild type and, by introduction of silent mutations, GC content-optimized mRNA vaccines targeting N were developed. mRNA durability in vitro was characterized by quantitative reverse-transcriptase PCR and protein expression by immunofluorescence assay for one week after transfection of cultured feline cells. Both mRNA durability and protein production in vitro were improved with the GC-optimized construct as compared to wild type. Immune responses were assayed by looking at N-specific humoral (by ELISA) and stimulated cytotoxic T cell (by flow cytometry) responses in a proof-of-concept mouse vaccination study. These data together demonstrate that an LNP-mRNA FIP vaccine targeting FCoV N is stable in vitro, capable of eliciting an immune response in mice, and provides justification for beginning safety and efficacy trials in cats.
Collapse
Affiliation(s)
- Terza Brostoff
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Hannah P. Savage
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| | - Joseph C. Dutra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Justin H. Fontaine
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Dennis J. Hartigan-O’Connor
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (J.C.D.); (J.H.F.); (D.J.H.-O.)
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA;
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (H.P.S.); (K.A.J.); (P.A.P.)
| |
Collapse
|
2
|
Wang Y, Liu Y, Wang J, Zhang M, Deng X, Song J, Zhu J, Yu L, Li G, Liu G. An adenovirus-vectored vaccine based on the N protein of feline coronavirus elicit robust protective immune responses. Antiviral Res 2024; 223:105825. [PMID: 38311297 DOI: 10.1016/j.antiviral.2024.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Feline coronavirus (FCoV) is an unsegmented, single-stranded RNA virus belonging to the Alphacoronavirus genus. It can cause fatal feline infectious peritonitis (FIP) in cats of any ages. Currently, there are no effective prevention and control measures to against FCoV. In this study, we developed a recombinant adenovirus vaccine, AD5-N, based on the nucleocapsid(N) protein of FCoV. The immunogenicity of AD5-N was evaluated through intramuscular immunization in 6-week-old Balb/c mice and 9-12 months old cats. Compared to the control group, AD5-N specifically induced a significant increase in IgG and SIgA levels in the vaccinated mice. Furthermore, AD5-N not only effectively promoted strong cellular immune responses in cats but also induced high levels of specific SIgA, effectively helping cats resist FCoV infection. Our findings suggest that adenovirus vector vaccines based on the N gene have the potential to become candidate vaccines for the prevention and control of FCoV infection.
Collapse
Affiliation(s)
- Yuanhong Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Yun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Junna Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiaoying Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Junhan Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
3
|
De Sabato L, Ianiro G, Manzia F, Monini M, Chiappini B, Di Bartolo I, Vaccari G. Erinaceus coronavirus persistence in hedgehogs ( Erinaceus europaeus) in a non-invasive, in vivo, experimental setting. Front Vet Sci 2023; 10:1213990. [PMID: 37795019 PMCID: PMC10545950 DOI: 10.3389/fvets.2023.1213990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/09/2023] [Indexed: 10/06/2023] Open
Abstract
In the last 20 years, new zoonotic CoV strains have emerged (SARS-CoV, MERS-CoV, and SARS-CoV-2), and new species have also been reported in animals. In Europe, the Erinaceus coronavirus (EriCoV) was recently described in Erinaceus europaeus. However, information on the prevalence and duration of viral shedding is unknown. In this study, feces samples were collected from 102 European hedgehogs hosted in the Center for the Recovery of Wild Fauna in Rome and analyzed for the presence of EriCoV RNA by Reverse Transcription-PCR. In total, 45 animals (44.1%) resulted positive for EriCoV at the first sampling and 63 (61.7%) animals were positive at the follow-up, which was performed from the 3rd to the 86th day. The duration of fecal virus shedding showed a mean duration of 22.8 days and lasted up to 62 days. Eighteen hedgehogs showed intermittent viral shedding. Phylogenetic analysis showed a correlation with EriCoV strains reported in Germany, the United Kingdom, and northern Italy. None of the EriCoV sequences showed the CD200 ortholog insertion, previously observed in strains isolated in animals from northern Italy. Interestingly, all but one animal revealed the presence in their feces of the same EriCoV sequences, analyzing the short genomic region at 3' spike gene and 5' ORF3a 500bp fragment (100% nt.id.) in both first and follow-up samples. This result suggests that animals were infected with the same strain during their stay at the center. Our results confirm that EriCoV can persist in hedgehogs for a long period, underlining that hedgehogs are an important commensal reservoir for Merbecovirus. A long duration of viral shedding increases the likelihood that the virus will spread in the environment.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Manzia
- Centre for the Recovery of Wild Fauna in Rome, LIPU, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Chiappini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriele Vaccari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|