1
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Mechanochemical Approach to Obtaining a Multicomponent Fisetin Delivery System Improving Its Solubility and Biological Activity. Int J Mol Sci 2024; 25:3648. [PMID: 38612460 PMCID: PMC11011862 DOI: 10.3390/ijms25073648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, binary amorphous solid dispersions (ASDs, fisetin-Eudragit®) and ternary amorphous solid inclusions (ASIs, fisetin-Eudragit®-HP-β-cyclodextrin) of fisetin (FIS) were prepared by the mechanochemical method without solvent. The amorphous nature of FIS in ASDs and ASIs was confirmed using XRPD (X-ray powder diffraction). DSC (Differential scanning calorimetry) confirmed full miscibility of multicomponent delivery systems. FT-IR (Fourier-transform infrared analysis) confirmed interactions that stabilize FIS's amorphous state and identified the functional groups involved. The study culminated in evaluating the impact of amorphization on water solubility and conducting in vitro antioxidant assays: 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-ABTS, 2,2-diphenyl-1-picrylhydrazyl-DPPH, Cupric Reducing Antioxidant Capacity-CUPRAC, and Ferric Reducing Antioxidant Power-FRAP and in vitro neuroprotective assays: inhibition of acetylcholinesterase-AChE and butyrylcholinesterase-BChE. In addition, molecular docking allowed for the determination of possible bonds and interactions between FIS and the mentioned above enzymes. The best preparation turned out to be ASI_30_EPO (ASD fisetin-Eudragit® containing 30% FIS in combination with HP-β-cyclodextrin), which showed an improvement in apparent solubility (126.5 ± 0.1 µg∙mL-1) and antioxidant properties (ABTS: IC50 = 10.25 µg∙mL-1, DPPH: IC50 = 27.69 µg∙mL-1, CUPRAC: IC0.5 = 9.52 µg∙mL-1, FRAP: IC0.5 = 8.56 µg∙mL-1) and neuroprotective properties (inhibition AChE: 39.91%, and BChE: 42.62%).
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland;
| |
Collapse
|
2
|
Chen DD, Li Q, Wu JC. Efficient removal of purine compounds from solutions via biomass carbons derived from pomelo peel. J Biosci Bioeng 2023; 136:383-390. [PMID: 37775439 DOI: 10.1016/j.jbiosc.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
The high purine diet could result in the increase of the level of blood uric acid, causing serious health problems such as hyperuricemia, gout, nephropathy and cardiovascular diseases. To find out a safe, cheap and super adsorption material for removing purines in stomach or pretreating high-purine beverages, we used different tissues of pomelo peel to prepare biomass carbon by drying, chemical modification and carbonization and then applied it to remove purine compounds in strong acidic solution, beer and soybean milk. The characteristic analysis of pomelo-peel-derived carbons (PPCs) indicated that the preparation methods significantly affected the structures and adsorption capacities of PPCs. Compared with the biomass carbon derived from bamboo, PPCs exhibited higher adsorption capabilities for purine compounds in strong acidic solution (adsorption rates > 99% in 15 min) and soybean milk (adsorption rates > 56% in 30 min) but slightly lower adsorption capabilities in beer (adsorption rates > 52% in 30 min). In addition, the adsorption capabilities of PPCs for purine compounds in beer and soybean milk were not obviously affected by temperatures. Therefore, PPCs are promising absorbents for applications in removing purine compounds from beverages to produce low-purine, healthier products for treating hyperuricemia. The strong adsorption capabilities of PPCs on purine compounds in strong acidic environment also provides a possibility of using the PPCs as food additives for removing purines in stomach for healthcare applications such as gout prevention after confirming their biosafety.
Collapse
Affiliation(s)
- Dai Di Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Qingxin Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jin Chuan Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| |
Collapse
|
3
|
Silva DJS, Santos JAV, Pinto JCN, Llorent-Martínez EJ, Castilho PC, Batista de Carvalho LAE, Marques MPM, Barroca MJ, Moreira da Silva A, da Costa RMF. Spectrochemical analysis of seasonal and sexual variation of antioxidants in Corema album (L.) D. Don leaf extracts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122816. [PMID: 37192576 DOI: 10.1016/j.saa.2023.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Bioactive phytoconstituents have been increasingly investigated for their potential human health benefits. Corema album (L.) D. Don, an Ericaceae, reportedly has antioxidant, antimicrobial and anticancer properties. Aiming at enhancing its nutraceutical potential, we performed a spectrochemical analysis of hydroethanolic extracts from C. album leaves. We report on changes in the antioxidant activity of the extracts, as well as in the accumulation of key phytoconstituents (namely phenolic compounds), in female and male samples, throughout three harvesting seasons (February, July, and October). For each extract, the antioxidant activity was assessed by different spectrophotometric methods. Simultaneously, attenuated total reflectance Fourier transform mid-infrared spectroscopy (FTIR-ATR), and high-performance liquid chromatography - electrospray ionisation - quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS), were used to identify and monitor variations in the composition of phenolic compounds in the extracts. The main compounds identified were epicatechin, laricitrin-O-hexoside isomers, and myricetin-O-hexoside isomers. Significant differences were found in the composition and relative abundance of the compounds of interest, according to sex and season. Overall, a trend was observed whereby phenolic content and antioxidant activities were higher in males and increased between the earlier and the latest harvests. Based on these results, we may conclude that late summer or early autumn harvests are preferable when aiming at the highest yearly content of bioactive compounds. Additionally, it should be considered that extracts from male individuals typically display higher antioxidant activities. Ultimately, our understanding of C. album in the context of nutraceutical applications is benefited from the quantitative and qualitative portrait provided here, thus promoting its relevance as a source of bioactive compounds.
Collapse
Affiliation(s)
- Daniela J S Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Joana C N Pinto
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain
| | - Paula C Castilho
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Maria João Barroca
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
| | - Aida Moreira da Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
| | - Ricardo M F da Costa
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Luo Y, Yang L, Jiang L, Huang C, Shen X. Preparation of wax-based molecularly imprinted monolith for pipette-tip solid-phase extraction: a hybrid method. Mikrochim Acta 2023; 190:151. [PMID: 36952093 DOI: 10.1007/s00604-023-05726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
The development of molecularly imprinted monolith (MIM) for pipette-tip solid-phase extraction (PT-SPE) for sample pretreatment is challenging . In this work, a wax-based molecularly imprinted monolith (WMIM) was successfully prepared with a hybrid method by integration of the traditional packing SPE column and MIM, including preparation of the salt column inside the pipette, polymerization of wax-based imprinted column (WIC) outside the pipette, and immobilization of WIC inside the pipette tip. To ensure the penetration of samples and solvents during the PT-SPE, micrometer-range interconnected macropores were tailor-made via the salt-template sacrifice method. For the production of high affinity imprinted sites within the WIC, octadecanoic acid was used as functional monomer in the paraffin matrix. In terms of the adsorption property, the synthesized WIC exhibited a specific affinity to cardiovascular drugs, with an imprinting factor (IF) of 4.8 for the target analyte. Moreover, the WMIM-based PT-SPE was coupled with fluorescence spectrophotometry for the target propranolol determination (the excitation and emission wavelengths were 294 nm and 343 nm, respectively). This analytical method showed high recovery of target detection in different real samples (R > 90%), good sensitivity, and accuracy (R2 = 0.99, LOD = 0.03 ng mL-1). We believe this work could provide a significant contribution for the fabrication of MIM and promote an emerging trend of developing elution-free materials for sample pretreatment.
Collapse
Affiliation(s)
- Yaoyu Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liuqian Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Spectral analysis and DFT investigation of some benzopyran analogues and their self-assemblies with graphene. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113924] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Screening and preparation of quercetin doped nanoemulsion: characterizations, antioxidant and anti-bacterial activities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109141] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Abdelhamid A, Lajili S, Elkaibi MA, Ben Salem Y, Abdelhamid A, Muller CD, Majdoub H, Kraiem J, Bouraoui A. Optimized Extraction, Preliminary Characterization and Evaluation of the in Vitro Anticancer Activity of Phlorotannin-Rich Fraction from the Brown Seaweed, Cystoseira sedoides. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1662865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Amal Abdelhamid
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Sirine Lajili
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Mohamed Amine Elkaibi
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Yosra Ben Salem
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Boulevard de l’environnement, Monastir, Tunisie
| | - Ameni Abdelhamid
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Christian D. Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Boulevard de l’environnement, Monastir, Tunisie
| | - Jamil Kraiem
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Boulevard de l’environnement, Monastir, Tunisie
| | - Abderrahman Bouraoui
- Laboratoire de Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisie
| |
Collapse
|
8
|
Baranović G, Šegota S. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:473-486. [PMID: 29220817 DOI: 10.1016/j.saa.2017.11.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/18/2017] [Accepted: 11/25/2017] [Indexed: 05/27/2023]
Abstract
Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31+G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600cm-1 need not be attributable to the CO stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.
Collapse
Affiliation(s)
- Goran Baranović
- Division of Organic Chemistry and Biochemistry, R. Bošković Institute, Zagreb, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, R. Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
9
|
Pais JM, Barroca MJ, Marques MPM, Almeida Paz FA, Braga SS. Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound. Beilstein J Org Chem 2017; 13:2138-2145. [PMID: 29062435 PMCID: PMC5647734 DOI: 10.3762/bjoc.13.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD), a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD), Raman, infrared and 13C{1H} CP-MAS NMR spectroscopies, and thermal analysis (TGA) to verify fisetin inclusion and to present a hypothetical structural arrangement for the host-guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.
Collapse
Affiliation(s)
- Joana M Pais
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria João Barroca
- R&D Group ''Molecular Physical-Chemistry - QFM-UC", University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Paula M Marques
- R&D Group ''Molecular Physical-Chemistry - QFM-UC", University of Coimbra, 3004-535 Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S Braga
- QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Sechi M, Syed DN, Pala N, Mariani A, Marceddu S, Brunetti A, Mukhtar H, Sanna V. Nanoencapsulation of dietary flavonoid fisetin: Formulation and in vitro antioxidant and α-glucosidase inhibition activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:594-602. [PMID: 27524059 DOI: 10.1016/j.msec.2016.06.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/31/2016] [Accepted: 06/12/2016] [Indexed: 01/13/2023]
Abstract
The bioactive flavonoid fisetin (FS) is a diet-derived antioxidant that is being increasingly investigated for its health-promoting effects. Unfortunately, the poor physicochemical and pharmacokinetic properties affect and limit the clinical application. In this study, novel polymeric nanoparticles (NPs), based on Poly-(ε-caprolactone) (PCL) and PLGA-PEG-COOH, encapsulating FS were formulated as suitable oral controlled release systems. Results showed NPs having a mean diameter of 140-200nm, and a percent loading of FS ranging from 70 to 82%. In vitro release studies revealed that NPs are able to protect and preserve the release of FS in gastric simulated conditions, also controlling the release in the intestinal medium. Moreover, the DPPH and ABTS scavenging capacity of FS, as well as α-glucosidase inhibition activity, that resulted about 20-fold higher than commercial Acarbose, were retained during nanoencapsulation process. In summary, our developed NPs can be proposed as an attractive delivery system to control the release of antioxidant and anti-hyperglycemic FS for nutraceutical and/or therapeutic application.
Collapse
Affiliation(s)
- Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; Laboratory of Nanomedicine, Department of Chemistry and Pharmacy, University of Sassari, c/o Porto Conte Ricerche, Tramariglio, 07041 Alghero, Italy
| | - Deeba N Syed
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, USA
| | - Nicolino Pala
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Alberto Mariani
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Marceddu
- CNR - Istituto Scienze delle Produzioni Alimentari, Traversa La Crucca, 3 - Località Baldinca, 07040 Li Punti, Sassari, Italy
| | - Antonio Brunetti
- POLCOMING Department, Section of Information Engineering, University of Sassari, via Piandanna 4, 07100 Sassari, Italy
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, USA
| | - Vanna Sanna
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; Laboratory of Nanomedicine, Department of Chemistry and Pharmacy, University of Sassari, c/o Porto Conte Ricerche, Tramariglio, 07041 Alghero, Italy.
| |
Collapse
|
11
|
Liu X, Wu X. Fluorescence enhancement of fisetin by silver nanoparticles with cetyltrimethyl ammonium bromide micelles. RSC Adv 2015. [DOI: 10.1039/c4ra12726a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synergistic action of solubilization and sensitization of CTAB micelles and metal-enhanced fluorescence of AgNPs enhance fluorescence intensity of fisetin.
Collapse
Affiliation(s)
- Xiaodan Liu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Xia Wu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| |
Collapse
|
12
|
Sengupta B, Pahari B, Blackmon L, Sengupta PK. Prospect of bioflavonoid fisetin as a quadruplex DNA ligand: a biophysical approach. PLoS One 2013; 8:e65383. [PMID: 23785423 PMCID: PMC3681855 DOI: 10.1371/journal.pone.0065383] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/24/2013] [Indexed: 01/30/2023] Open
Abstract
Quadruplex (G4) forming sequences in telomeric DNA and c-myc promoter regions of human DNA are associated with tumorogenesis. Ligands that can facilitate or stabilize the formation and increase the stabilization of G4 can prevent tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, steady state and time-resolved fluorescence measurements provide important structural and dynamical insights into the free and bound states of the therapeutically potent plant flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) in a G4 DNA matrix. The excited state intra-molecular proton transfer (ESPT) of fisetin plays an important role in observing and understanding the binding of fisetin with the G4 DNA. Differential absorption spectra, thermal melting, and circular dichroism spectroscopic studies provide evidences for the formation of G4 DNA and size exclusion chromatography (SEC) proves the binding and 1∶1 stoichiometry of fisetin in the DNA matrix. Comparative analysis of binding in the presence of EtBr proves that fisetin favors binding at the face of the G-quartet, mostly along the diagonal loop. Time resolved fluorescence anisotropy decay analysis indicates the increase in the restrictions in motion from the free to bound fisetin. We have also investigated the fingerprints of the binding of fisetin in the antiparallel quadruplex using Raman spectroscopy. Preliminary results indicate fisetin to be a prospective candidate as a G4 ligand.
Collapse
Affiliation(s)
- Bidisha Sengupta
- Department of Chemistry, Tougaloo College, Tougaloo, Mississippi, United States of America
| | - Biswapathik Pahari
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| | - Laura Blackmon
- Department of Chemistry, Tougaloo College, Tougaloo, Mississippi, United States of America
| | - Pradeep K. Sengupta
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Sowa M, Ślepokura K, Matczak-Jon E. Cocrystals of fisetin, luteolin and genistein with pyridinecarboxamide coformers: crystal structures, analysis of intermolecular interactions, spectral and thermal characterization. CrystEngComm 2013. [DOI: 10.1039/c3ce41285g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|