1
|
Li Y, Ma Y, Mu C, Gu J, Li Z. Simultaneous binding characterization of different chromium speciation to serum albumin. Biometals 2024; 37:101-113. [PMID: 37610601 DOI: 10.1007/s10534-023-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
The binding process between three species of chromium and serum albumin (SA) was investigated, as well as the interaction between K2Cr2O7 and bovine serum albumin (BSA) under coexistence of different chromium forms. CrCl3, K2Cr2O7 and Crpic bound to SA spontaneously through Van der Waals force, and their binding constants were 103-104 M-1 at 298 K, respectively. K2Cr2O7 and Crpic both had strong binding affinity for BSA, and significantly affected the secondary structure of BSA and the microenvironment surrounding amino acid residues. Chromium exhibited a greater fluorescence quenching constant towards HSA than toward BSA, and K2Cr2O7 induced greater conformational changes in human serum albumin (HSA) than in BSA. A weak binding of CrCl3 to BSA had no significant effect on the binding affinity of K2Cr2O7 to BSA. K2Cr2O7 and BSA have a greater binding affinity when coexisting with Crpic, and K2Cr2O7 induces a greater conformational change in BSA.
Collapse
Affiliation(s)
- Ye Li
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| | - Yanxuan Ma
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| | - Chunyu Mu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China.
| | - Zimu Li
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, 121013, Liaoning, People's Republic of China
| |
Collapse
|
2
|
Pound BG. The effect of serum proteins on the electrochemical behavior of CoNiCrMo. J Biomed Mater Res B Appl Biomater 2023; 111:775-781. [PMID: 36333977 DOI: 10.1002/jbm.b.35188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Numerous studies have examined the effect of serum and blood proteins on the general corrosion of metallic biomedical materials. However, it is unclear whether proteins have any effect in the case of CoCr alloys, particularly at physiological concentrations. In this work, potentiodynamic polarization and electrochemical impedance spectroscopy were used to investigate the electrochemical behavior of Co-35Ni-20Cr-10Mo in PBS, PBS with albumin at a concentration (36 g/L) representative of serum, and bovine serum. The corrosion current density (icorr ) for the CoNiCrMo was changed little by the addition of serum-level albumin to PBS but it was more than halved in serum. Albumin and serum had little effect on the oxide thickness obtained using impedance spectroscopy, but they increased the effective resistance of the oxide consistent with the changes in icorr . The potentiodynamic and impedance results indicate that the general corrosion behavior of the CoNiCrMo in serum is affected more by other proteins such as globulin rather than by albumin alone. Furthermore, the proteins in serum are beneficial with regard to the general corrosion behavior of the alloy, suggesting that the proteins act predominantly as inhibitors rather than as corrosion promoters that limit phosphate adsorption and associated inhibition.
Collapse
Affiliation(s)
- Bruce G Pound
- Materials and Corrosion Engineering, Exponent, Menlo Park, California, USA
| |
Collapse
|
3
|
Guo Y, Liu C, Ma Y, Shen L, Gong Q, Hu Z, Wang Z, Liu X, Guo Z, Zhou L. Study on the Structure, Function, and Interface Characteristics of Soybean Protein Isolate by Industrial Phosphorylation. Foods 2023; 12:foods12051108. [PMID: 36900624 PMCID: PMC10000779 DOI: 10.3390/foods12051108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The impacts of industrial phosphorylation on the structural changes, microstructure, functional, and rheological features of soybean protein isolate (SPI) were spotlighted. The findings implied that the spatial structure and functional features of the SPI changed significantly after treatment with the two phosphates. Sodium hexametaphosphate (SHMP) promoted aggregation of SPI with a larger particle size; sodium tripolyphosphate (STP) modified SPI with smaller particle size. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) results showed insignificant alterations in the structure of SPI subunits. Fourier transform infrared (FTIR) and endogenous fluorescence noted a decline in α-helix quantity, an amplification in β-fold quantity, and an increase in protein stretching and disorder, indicating that phosphorylation treatment fluctuated the spatial structure of the SPI. Functional characterization studies showed that the solubility and emulsion properties of the SPI increased to varying degrees after phosphorylation, with a maximum solubility of 94.64% for SHMP-SPI and 97.09% for STP-SPI. Emulsifying activity index (EAI) and emulsifying steadiness index (ESI) results for STP-SPI were better than those for SHMP-SPI. Rheological results showed that the modulus of G' and G″ increased and the emulsion exhibited significant elastic behavior. This affords a theoretical core for expanding the industrial production applications of soybean isolates in the food and various industries.
Collapse
Affiliation(s)
- Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yitong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lulu Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Song S, Li Y, Liu QS, Wang H, Li P, Shi J, Hu L, Zhang H, Liu Y, Li K, Zhao X, Cai Z. Interaction of mercury ion (Hg 2+) with blood and cytotoxicity attenuation by serum albumin binding. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125158. [PMID: 33540265 DOI: 10.1016/j.jhazmat.2021.125158] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Blood mercury reflects the amount available from tissues, which is an indication of the exposure level. Here we confirm that Hg2+ caused hemolytic effects at high concentrations; while at light concentrations, most of the ions were bound to human serum albumin (HSA). The binding mechanism of Hg2+ to HSA has been investigated, which indicated that the presence of Hg2+ significantly perturbed the structure of HSA and quenched the fluorescence of protein in a hybrid dynamic and static mode. Hg2+ was preferably bound to cysteine and cystine, where the R‒S‒S‒R structure is responsible for maintaining the protein's structure by stabilizing the α-helical bundles. The metal-protein interaction mitigated the cellular toxicity as concealed by A498 cell lines. The fundamental and comprehensive data in this work is beneficial to elucidating and understanding the identification and binding mechanisms of heavy metals with proteins, as well as possible risks on human beings and the environment.
Collapse
Affiliation(s)
- Shanjun Song
- National Institute of Metrology, Beijing 100013, China
| | - Yiling Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Wang
- National Institute of Metrology, Beijing 100013, China
| | - Penghui Li
- Tianjin University of Technology, Tianjin 300384, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haiyan Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuanchen Liu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Saeidifar M, Mansouri-Torshizi H. Investigation of the interaction between human serum albumin and antitumor palladium(II) complex containing 1,10-phenanthroline and dithiocarbamate ligands. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:16-32. [PMID: 25513861 DOI: 10.1080/15257770.2014.955192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interaction between [Pd(But-dtc)(phen)]NO3 (where But-dtc = butyldithiocarbamate and phen = 1,10-phenanthroline) with HSA (Human Serum Albumin) was investigated by applying fluorescence, UV-Vis and circular dichroism techniques under physiological conditions. The results of fluorescence spectra indicated that the Pd(II) complex could effectively quench the fluorescence intensity of HSA molecules via static mechanism. The number of binding sites and binding constant of HSA-Pd(II) complex were calculated. Analysis of absorption titration data on the interaction between Pd(II) complex and HSA revealed the formation of HSA-Pd(II) complex with high-binding affinity. Thermodynamic parameters indicated that hydrophobic forces play a major role in this interaction. Furthermore, CD measurements were taken to explore changes in HSA secondary structure induced by the Pd(II) complex.
Collapse
Affiliation(s)
- Maryam Saeidifar
- a Department of Nanotechnology and Advanced Materials , Materials and Energy Research Center , Karaj , Iran
| | | |
Collapse
|
6
|
How does fatty acid influence anti-thyroid drugs binding and specificity toward protein human serum albumin? A blind docking simulation study. J CHEM SCI 2015. [DOI: 10.1007/s12039-014-0718-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Vignesh G, Sugumar K, Arunachalam S, Vignesh S, Arthur James R. A comparative study on the binding of single and double chain surfactant-cobalt(III) complexes with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 113:415-422. [PMID: 23747382 DOI: 10.1016/j.saa.2013.04.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
The comparative binding effect of single and double aliphatic chain containing surfactant-cobalt(III) complexes cis-[Co(bpy)2(DA)2](ClO4)3·2H2O (1), cis-[Co(bpy)2(DA)Cl](ClO4)2·2H2O (2), cis-[Co(phen)2(CA)2](ClO4)3·2H2O (3), and cis-[Co(phen)2(CA)Cl](ClO4)2·2H2O (4) with bovine serum albumin (BSA) under physiological condition was analyzed by steady state, time resolved fluorescence, synchronous, three-dimensional fluorescence, UV-Visible absorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of BSA through a static mechanism. The binding constants (Kb) and the number of binding sites were calculated and binding constant values are found in the range of 10(4)-10(5) M(-1). The results indicate that compared to single chain complex, double chain surfactant-cobalt(III) complex interacts strongly with BSA. Also the sign of thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicate that all the complexes interact with BSA through hydrophobic force. The binding distance (r) between complexes and BSA was calculated using Förster non-radiation energy transfer theory and found to be less than 7 nm. The results of synchronous, three dimensional fluorescence and circular dichroism spectroscopic methods indicate that the double chain surfactant-cobalt(III) complexes changed the conformation of the protein considerably than the respective single chain surfactant-cobalt(III) complexes. Antimicrobial studies of the complexes showed good activities against pathogenic microorganisms.
Collapse
Affiliation(s)
- G Vignesh
- School of Chemistry, Bharathidasan University, Tiruchirapalli 620 024, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
8
|
Cao J, Zhang H, Wang Y, Yang J, Jiang F. Investigation on the interaction behavior between curcumin and PAMAM dendrimer by spectral and docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 108:251-255. [PMID: 23501936 DOI: 10.1016/j.saa.2013.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/03/2012] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
The interactions between PAMAM-C12 25% and curcumin were studied by UV/vis, fluorescence spectroscopy, and molecular modeling methods. The experimental results showed that the formation of PAMAM-C12 25%@curcumin non-covalent adduct induced the fluorescence quenching of PAMAM-C12 25%; Curcumin entered the interface of PAMAM-C12 25% with mainly five classes of binding sites by hydrophobic, hydrogen bonds, and van der Waals forces interactions. The bigger values of binding constants indicated that PAMAM-C12 25% hold the curcumin tightly.
Collapse
Affiliation(s)
- Jian Cao
- Institute of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | | | | | | | | |
Collapse
|
9
|
Zhu J, Wu L, Zhang Q, Chen X, Liu X. Investigation the interaction of Daphnin with human serum albumin using optical spectroscopy and molecular modeling methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 95:252-257. [PMID: 22634418 DOI: 10.1016/j.saa.2012.04.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 04/09/2012] [Accepted: 04/28/2012] [Indexed: 06/01/2023]
Abstract
The interaction between Daphnin with human serum albumin has been studied for the first time by spectroscopic methods including fluorescence quenching technology, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy under simulative physiological conditions. The results of fluorescence titration revealed that Daphnin can quench the intrinsic fluorescence of HSA by static quenching and there is a single class of binding site on HSA. In addition, the studies of CD spectroscopy and FT-IR spectroscopy showed that the protein secondary structure changed with increases of α-helices at the drug to protein molar ratio of 2. Furthermore, the thermodynamic functions ΔH(0) and ΔS(0) for the reaction were calculated to be 11.626 kJ mol(-1) and 118.843 J mol(-1)K(-1) according to Van't Hoff equation. The thermodynamic parameters (ΔH(0) and ΔS(0)) and the molecular modeling study indicated that hydrophobic force played an important role to stabilize the Daphnin-HSA complex, and Daphnin could bind within the subdomain IIA of the HSA.
Collapse
Affiliation(s)
- Jinhua Zhu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | | | | | | | | |
Collapse
|