1
|
Mohammadnavaz A, Beitollahi H, Modiri S. Construction and Application of an Electrochemical Sensor for Determination of D-Penicillamine Based on Modified Carbon Paste Electrode. MICROMACHINES 2024; 15:220. [PMID: 38398949 PMCID: PMC10891922 DOI: 10.3390/mi15020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 02/25/2024]
Abstract
D-penicillamine (D-PA) is a sulfur-containing drug that has been used for various health conditions. However, like any medication, overdosing on D-PA can have adverse effects and may require additional treatment. Therefore, developing simple and sensitive methods for sensing D-PA can play a crucial role in improving its efficacy and reducing its side effects. Sensing technologies, such as electrochemical sensors, can enable accurate and real-time measurement of D-PA concentrations. In this work, we developed a novel electrochemical sensor for detecting D-PA by modifying a carbon paste electrode (CPE) with a multi-walled carbon nanotube-Co3O4 nanocomposite, benzoyl-ferrocene (BF), and ionic liquid (IL) (MWCNT-Co3O4/BF/ILCPE). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CHA) were employed to explore the electrochemical response of D-PA on the developed sensor, the results of which verified a commendable electrochemical performance towards D-PA. Under optimized conditions, the developed sensor demonstrated a rapid response to D-PA with a linear dynamic range of 0.05 μM-100.0 μM, a low detection limit of 0.015 μM, and a considerable sensitivity of 0.179 μA μM-1. Also, the repeatability, stability, and reproducibility of the MWCNT-Co3O4/BF/ILCPE sensor were studied and showed good characteristics. In addition, the detection of D-PA in pharmaceutical and biological matrices yielded satisfactory recoveries and relative standard deviation (RSD) values.
Collapse
Affiliation(s)
- Arefeh Mohammadnavaz
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76311-33131, Iran
| | - Sina Modiri
- Polymer Department, Graduate University of Advanced Technology, Kerman 76311-33131, Iran;
| |
Collapse
|
2
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
3
|
Ratiometric fluorescence and colorimetric dual-mode sensing platform based on carbon dots for detecting copper(II) ions and D-penicillamine. Anal Bioanal Chem 2022; 414:1651-1662. [DOI: 10.1007/s00216-021-03789-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
|
4
|
Sonia, Komal, Kukreti S, Kaushik M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021; 234:122623. [PMID: 34364432 DOI: 10.1016/j.talanta.2021.122623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Gold nanoclusters (Au NCs) with a core size below 2 nm form an exciting class of functional nano-materials with characteristic physical and chemical properties. The properties of Au NCs are more prominent and extremely different from their bulk counterparts. The synthesis of Au NCs is generally assisted by template or ligand, which impart excellent cluster stability and high quantum yield. The tunable and sensitive physicochemical properties of Au NCs open horizons for their advanced applications in various interdisciplinary fields. In this review, we briefly summarize the solution phase synthesis and origin of the characteristic properties of Au NCs. A vast review of recent research work introducing biosensors based on Au NCs has been presented along with their specifications and detection limits. This review also highlights recent progress in the use of Au NCs as bio-imaging probe, enzyme mimic, temperature sensing probe and catalysts. A speculation on present challenges and certain future prospects have also been provided to enlighten the path for advancement of multifaceted applications of Au NCs.
Collapse
Affiliation(s)
- Sonia
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Komal
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
5
|
Liu L, Zhang Q, Li F, Wang M, Sun J, Zhu S. Fluorescent DNA-templated silver nanoclusters for highly sensitive detection of D-penicillamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119584. [PMID: 33636492 DOI: 10.1016/j.saa.2021.119584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Herein, fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) with red emission were synthesized and utilized as novel probe to detect D-penicillamine (D-Pen) for the first time. D-Pen molecules contain a thiol which can combine with Ag to form a non-fluorescent ground state complex, inducing the aggregation of DNA-AgNCs followed by the fluorescence quenching. The quenching mechanism is well-studied and found to be a static quenching process. This method can detect D-Pen in the range of 0.025-0.7 μM with the detection limit as low as 8 nM, which is 1-3 orders of magnitude more sensitive than those based on other fluorescent nanoprobes. More importantly, the preparation procedure for DNA-AgNCs is fast and without the requirement of heavy metal ions. Thus, this detection strategy is time-saving and eco-friendly. Satisfactory recoveries have been acquired for monitoring D-Pen in human serum samples and pharmaceutical samples owing to the high sensitivity.
Collapse
Affiliation(s)
- Lingyuan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qianyi Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Feng Li
- Qingdao Special Service Men Recuperation Center of PLA Navy, Qingdao 266071, China
| | - Mei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
6
|
He Y, Du E, Zhou X, Zhou J, He Y, Ye Y, Wang J, Tang B, Wang X. Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118031. [PMID: 31931357 DOI: 10.1016/j.saa.2020.118031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/08/2023]
Abstract
Fluorescent and robust fibers based on gold nanoclusters-loaded alginate were successfully prepared by wet spinning of gold nanoclusters and alginate. The relationship between process conditions, mechanical properties, and fluorescent properties of fibers was investigated. The as-prepared fibers exhibited high mechanical strength (up to 7.09 cN/dtex) and remarkable red emission under ultraviolet excitation. The fibers could be used as a simple, low-cost, and high-selectivity fluorescent sensor for detecting Cu2+ and Hg2+ among various metal ions in aqueous solution, with a detection limit as low as 187.99 nM for Cu2+ and 82.14 nM for Hg2+, respectively. Furthermore, the novel fluorescent fibers were used as an anti-counterfeiting label through knitting into textile materials. The wet-spun functional fibers may be applied to the design of smart wearable sensors and flexible optical sensors.
Collapse
Affiliation(s)
- Ying He
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Enhui Du
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Xu Zhou
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Ji Zhou
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China.
| | - Yu He
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Yong Ye
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China.
| | - Jinfeng Wang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia; Wuhan Textile University, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan 430073, China
| | - Bin Tang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia; Wuhan Textile University, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan 430073, China.
| | - Xungai Wang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia; Wuhan Textile University, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan 430073, China
| |
Collapse
|
7
|
Shojaeifard Z, Heidari N, Hemmateenejad B. Bimetallic AuCu nanoclusters-based florescent chemosensor for sensitive detection of Fe 3+ in environmental and biological systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:202-208. [PMID: 30390506 DOI: 10.1016/j.saa.2018.10.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/25/2018] [Accepted: 10/21/2018] [Indexed: 05/24/2023]
Abstract
Assays of ferric ion (Fe3+) with high sensitivity and selectivity have been required to evaluate its amount in environmental and biological systems. Herein, a novel fluorometric penicillamine-capped bimetallic gold-copper nanoclusters (PA-AuCu bi-MNCs) sensor was constructed for facile, environmentally friendly and quantitative detection of Fe3+ through inner filter effect (IFE) mechanism. One-step green synthetic approach was applied for the synthesis of AuCu bi-MNCs by using d-penicillamine (D-PA) as template and stabilizer. In the presence of Fe3+, the emission of the PA-AuCu bi-MNCs was hindered that caused selective quenching of the fluorescence intensity. The response to Fe3+ allows for two linear dynamic ranges of 5.0 × 10-7 M-7.0 × 10-6 M and 7.0 × 10-6 M-1.0 × 10-4 M with a detection limit of 0.1 μM, which is approximately 53 times lower than the maximum level (5.37 μM) of Fe3+ in drinking water that had been reported by the World Health Organization. The independency of the system from most of the interferences is the important feature of this work. Beside the appropriate selectivity of the proposed method, it shows a considerable operation in various environmental samples including rain water, three types of river water and also in human blood serum as a biological matrix.
Collapse
Affiliation(s)
- Zahra Shojaeifard
- Chemistry Department, Shiraz University, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Heidari
- Chemistry Department, Shiraz University, Shiraz, Iran
| | - Bahram Hemmateenejad
- Chemistry Department, Shiraz University, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
An optical sensor based on inner filter effect using green synthesized carbon dots and Cu(II) for selective and sensitive penicillamine determination. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1518-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Chen Y, Qiao J, Liu Q, Zhang M, Qi L. Fluorescence turn-on assay for detection of serum D-penicillamine based on papain@AuNCs-Cu2+ complex. Anal Chim Acta 2018; 1026:133-139. [DOI: 10.1016/j.aca.2018.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/01/2023]
|
10
|
Carbon quantum dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Durán GM, Benavidez TE, Contento AM, Ríos A, García CD. Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. J Pharm Anal 2017; 7:324-331. [PMID: 29404056 PMCID: PMC5790703 DOI: 10.1016/j.jpha.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/14/2023] Open
Abstract
A simple methodology was developed to quantify penicillamine (PA) in pharmaceutical samples, using the selective interaction of the drug with Cu-modified graphene quantum dots (Cu-GQDs). The proposed strategy combines the advantages of carbon dots (over other nanoparticles) with the high affinity of PA for the proposed Cu-GQDs, resulting in a significant and selective quenching effect. Under the optimum conditions for the interaction, a linear response (in the 0.10–7.50 µmol/L PA concentration range) was observed. The highly fluorescent GQDs used were synthesized using uric acid as single precursor and then characterized by high resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence, and absorption spectroscopy. The proposed methodology could also be extended to other compounds, further expanding the applicability of GQDs.
Collapse
Affiliation(s)
- Gema M Durán
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain.,IRICA (Regional Institute of Applied Scientific Research), Camilo José Cela Av., E 13004 Ciudad Real, Spain
| | - Tomás E Benavidez
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA
| | - Ana M Contento
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain
| | - Angel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain
| | - Carlos D García
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA
| |
Collapse
|
12
|
Mahajan PG, Kolekar GB, Patil SR. Recognition of D-Penicillamine Using Schiff Base Centered Fluorescent Organic Nanoparticles and Application to Medicine Analysis. J Fluoresc 2017; 27:829-839. [DOI: 10.1007/s10895-016-2019-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
13
|
Durán GM, Abellán C, Contento AM, Ríos Á. Discrimination of penicillamine enantiomers using β-cyclodextrin modified CdSe/ZnS quantum dots. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2074-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
HAN BY, HOU XF, XIANG RC, YU MB, LI Y, PENG TT, HE GH. Detection of Lead Ion Based on Aggregation-induced Emission of Copper Nanoclusters. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(16)60985-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|