1
|
Janakipriya S, Divya D, Mala R, Nandhagopal M, Thennarasu S. Wavelength specific aggregation induced emission in aqueous media permits selective detection of Ag + and Hg 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125085. [PMID: 39265469 DOI: 10.1016/j.saa.2024.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
A new 1,8-naphthalimide derivative (probe 1) adopts V-shaped structure, emits fluorescence and displays the Mie effect and aggregation-induced emission (AIE). Selective interactions of thiophilic Ag+ and Hg2+ ions (10 µM) with 1 (10 µM) resulted in AIEs at 499 and 521 nm, respectively. Both Ag+ and Hg2+ induce the formation of 1:2 complexes with 1, leading to the formation of AIE active aggregates with an average size of 423 and 198 nm, respectively. The formation of crystalline needles with Ag+ and spherical aggregates with Hg2+ results in wavelength specific AIE that permits the naked-eye and fluorometric detection of Ag+ and Hg2+ ions. Probe 1 shows excellent selectivity toward Ag+ and Hg2+ among various metal ions, therefore, 1 is suitable for the selective and quantitative detection of Ag+ and Hg2+ ions. Job plots are used for the determination of the stoichiometry of the complexes formed. It is evident from the fluorescence images of probe 1 in Rhizoctonia oryzae mycelia cells that they can be employed as potential candidates for in-vitro bioimaging.
Collapse
Affiliation(s)
- Subramaniyan Janakipriya
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Dhakshinamurthy Divya
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India.
| | - Ramanjaneyulu Mala
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Manivannan Nandhagopal
- Saveetha Medical College and Hospital, Institute of Medical and Technical Science, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.
| |
Collapse
|
2
|
Lin Z, Shi Y, Song Y, Yan J, Li H, Xie C. Sensitive Fluorescent Probe for Al 3+, Cr 3+ and Fe 3+: Application in Real Water Samples and Logic Gate. J Fluoresc 2025:10.1007/s10895-024-04130-9. [PMID: 39798023 DOI: 10.1007/s10895-024-04130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al3+, Cr3+ and Fe3+ ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/H2O (9:1, v/v) was significantly enhanced upon addition of Al3+, Cr3+ and Fe3+ ions while addition of other metal ions (Li+, Na+, K+, Ag+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Hg2+, Ca2+, Mg2+, Ce3+, Bi3+ and Au3+) did not bring about substantial change in fluorescence emission. The calculated detection limits were 0.32 µM, 0.81 µM, and 0.27 µM for Al3+, Cr3+, and Fe3+, respectively. Probe K1 displayed strong anti-interference ability, a large Stokes shift, rapid response, and applicability in a wide pH range for the simultaneous detection of Al3+, Cr3+ and Fe3+ in real water samples. Job's plot test showed that the stoichiometric ratio of the complexes formed between probe K1 and the trivalent metal ions was 1:1. The reversible application of probe K1 was realized by addition of Na2EDTA. A molecular logic gate was built based on the input-output information. This approach may provide a basis for highly selective and sensitive detection of common trivalent cations and for design of memory devices.
Collapse
Affiliation(s)
- Ziyun Lin
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiabao Yan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Chengxiao Xie
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Yan Z, Zhang R, Qiao M, Ma M, Liu T, Ding L, Fang Y. Single-Probe-Based Sensor Array for Fingerprint Recognition of Trivalent Metal Ions and Application in Water Identification. Anal Chem 2024. [PMID: 39152896 DOI: 10.1021/acs.analchem.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Abnormal concentration levels of trivalent metal ions (M3+) might hinder their natural biological activities in physiological processes and cause severe health hazards. Herein, a dual-chromophore probe (RhB-TPE) composed of rhodamine and tetraphenylethene (TPE) units was synthesized and explored for discriminating M3+ ions. It exhibited special aggregation and AIE properties in aqueous media. Its ensemble with anionic surfactant SDBS assemblies (RhB-TPE/SDBS) could be utilized as fluorescent sensors for selective and sensitive detection of M3+ ions such as Fe3+, Al3+, and Cr3+ by illustrating quenched TPE emission and switched-on rhodamine emission. Moreover, the use of SDBS assemblies at two concentrations could provide a single-probe-based sensor array and realize four-signal pattern recognition of different concentrations of the three M3+ ions and identify M3+ mixtures or unknown samples. The cross-reactive fluorescence variation was attributed to the M3+ influence on the FRET process from TPE to open-ring form rhodamine in the two ensemble sensors. With the coexistence of Al3+, the optimized RhB-TPE/SDBS ensemble sensor array was successfully applied to differentiate commercially available brand mineral water and purified water, as well as tap water. The present work provides a novel strategy to generate a single-probe-based sensor array and realizes fingerprint recognition of three trivalent metal ions and efficient discrimination of different types of water. The modulation FRET process of a dual chromophore in different surfactant ensembles inspires the future construction of novel and effective sensing platforms.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Rongrong Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Min Qiao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Miao Ma
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
4
|
Saha S, Alam R. Recent developments in the creation of a single molecular sensing tool for ternary iron (III), chromium (III), aluminium (III) ionic species: A review. LUMINESCENCE 2023; 38:1026-1046. [PMID: 36251318 DOI: 10.1002/bio.4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Rational design of a molecular sensing tool is an important topic in molecular recognition, signalling, and optoelectronics that has piqued the interest of chemists, biologists, and environmental scientists. Approximately 150 years have passed since the beginning of the fluorescent chemosensor sector. Due to the paramagnetic properties of Cr3+ and Al3+ , it is tough to prepare a photoluminescence plug-in detector. Most dye-based Al3+ sensors must be utilized in organic or mixed solvents for robust hydration of Al3+ in water. The sophisticated molecular design of sensors, conversely, allows for the detection of these metal ions in aqueous medium. The design of chemosensors using various fluorophores and their mechanisms of action have been thoroughly discussed. A literature survey covering the design of chemosensors and their mechanisms of action have been thoroughly discussed covering the period 2010-2022 and that was carried out including innovative and exemplary activities from numerous groups throughout the world that have significantly contributed to this sector. The most important advantages of these probes are their aqueous solubility and quick response with outstanding selectivity and sensitivity for temporal distribution with high fidelity of metals in living cells.
Collapse
Affiliation(s)
- Sudipta Saha
- Department of Chemistry (UG+PG), Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, India
| | - Rabiul Alam
- Department of Chemistry, Rabindra Mahavidyalaya, Champadanga, Hooghly, India
| |
Collapse
|
5
|
Khatun M, Ghorai P, Mandal J, Ghosh Chowdhury S, Karmakar P, Blasco S, García-España E, Saha A. Aza-phenol Based Macrocyclic Probes Design for "CHEF-on" Multi Analytes Sensor: Crystal Structure Elucidation and Application in Biological Cell Imaging. ACS OMEGA 2023; 8:7479-7491. [PMID: 36873024 PMCID: PMC9979245 DOI: 10.1021/acsomega.2c06549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Metal bound macrocyclic compounds found in biological systems inspired us to design and synthesize two Robson-type macrocyclic Schiff-base chemosensors, H 2 L1 (H 2 L1=1,11-dimethyl-6,16-dithia-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol) and H 2 L2 (H 2 L2=1,11-dimethyl-6,16-dioxa-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol). Both the chemosensors have been characterized with different spectroscopic techniques. They act as multianalyte sensor and exhibit "turn-on" fluorescence toward different metal ions in 1X PBS (Phosphate Buffered Saline) solution. In presence of Zn2+, Al3+, Cr3+ and Fe3+ ions, H 2 L1 exhibits ∼6-fold enhancement of emission intensity, while H 2 L2 shows ∼6-fold enhancement of emission intensity in the presence of Zn2+, Al3+ and Cr3+ ions. The interaction between the different metal ion and chemosensor have been examined by absorption, emission, and 1H NMR spectroscopy as well as by ESI-MS+ analysis. We have successfully isolated and solved the crystal structure of the complex [Zn(H 2 L1)(NO3)]NO3 (1) by X-ray crystallography. The crystal structure of 1 shows 1:1 metal:ligand stoichiometry and helps to understand the observed PET-Off-CHEF-On sensing mechanism. LOD values of H 2 L1 and H 2 L2 toward metal ions are found to be ∼10-8 and ∼10-7 M, respectively. Large Stokes shifts of the probes against analytes (∼100 nm) make them a suitable candidate for biological cell imaging studies. Robson type phenol based macrocyclic fluorescence sensors are very scarce in the literature. Therefore, the tuning of structural parameters as the number and nature of donor atoms, their relative locations and presence of rigid aromatic groups can lead to the design of new chemosensors, which can accommodate different charged/neutral guest(s) inside its cavity. The study of the spectroscopic properties of this type of macrocyclic ligands and their complexes might open a new avenue of chemosensors.
Collapse
Affiliation(s)
- Mohafuza Khatun
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Pravat Ghorai
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Jayanta Mandal
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Parimal Karmakar
- Department
of Life Science and Biotechnology, Jadavpur
University, Kolkata 700032, India
| | - Salvador Blasco
- Institute
of Molecular Sciences, Universitat de València, C/Catedrático José
Beltrán Martínez, 2, Paterna, Valencia 46980, Spain
| | - Enrique García-España
- Institute
of Molecular Sciences, Universitat de València, C/Catedrático José
Beltrán Martínez, 2, Paterna, Valencia 46980, Spain
| | - Amrita Saha
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
6
|
Sehrawat S, Mahajan A, Sandhu N, Anand V, Rana VS, Singh AP, Yadav RK, Singh AP. Novel schiff base as Fe3+ sensor as well as an antioxidant and its theoretical studies. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A novel Schiff base derivative L (N1-(thiophene-2-ylmethylene)benzene-1,2-diamine) was synthesized via condensation reaction of 3-thiophene carboxaldehyde and 1,2-diamino benzene. The synthesized compound was authenticated using 1 H NMR, 13 C NMR, HRMS, and IR spectroscopy. The compound L was found to be a Fe3+ sensor with the complexation ratio of 1 : 3 as revealed by Job’s plot with maximum absorption at 318 nm. The photophysical properties were studied using absorption and emission spectra. DFT and TD-DFT studies were carried out in order to support the photophysical outcomes of compound L. An antioxidant behaviour of compound L was studied using TAC, FRAP, and DPPH assays and it was found to be showing better TAC activity than the used standard i.e. gallic acid.
Collapse
Affiliation(s)
- Suvidha Sehrawat
- Department of Chemistry, UIS, Chandigarh University, Mohali, Punjab
| | - Alisha Mahajan
- Department of Chemistry, UIS, Chandigarh University, Mohali, Punjab
| | - Navjot Sandhu
- Department of Chemistry, UIS, Chandigarh University, Mohali, Punjab
| | - Vivek Anand
- Department of Chemistry, UIS, Chandigarh University, Mohali, Punjab
| | - Vivek Singh Rana
- Department of Chemistry, UIS, Chandigarh University, Mohali, Punjab
| | | | - Rajesh Kumar Yadav
- Department of Applied Science (Chemistry), Madan Mohan Malaviya University of Technology, Gorakhpur, U.P., India
| | - Atul P. Singh
- Department of Chemistry, UIS, Chandigarh University, Mohali, Punjab
| |
Collapse
|
7
|
Cai DG, Qiu CQ, Zhu ZH, Zheng TF, Wei WJ, Chen JL, Liu SJ, Wen HR. Fabrication and DFT Calculation of Amine-Functionalized Metal-Organic Framework as a Turn-On Fluorescence Sensor for Fe 3+ and Al 3+ Ions. Inorg Chem 2022; 61:14770-14777. [PMID: 36070603 DOI: 10.1021/acs.inorgchem.2c02195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to their important role in biological systems, it is urgent to develop a material that can rapidly and sensitively detect the concentration of Fe3+ and Al3+ ions. In this work, a brand-new CdII-based metal-organic framework [Cd(BTBD)2(AIC)]n (JXUST-18, BTBD = 4,7-bis(1H-1,2,4-triazol-1-yl)-2,1,3-benzothiadiazole and H2AIC = 5-aminoisophthalic acid) with a 4-connected sql topology was designed and synthesized. The symmetrical CdII centers are linked by AIC2- ligands with μ3-η1:η1:η1:η1 coordination mode to form a [Cd2(COO)2] secondary building unit (SBU). The contiguous SBUs are further connected by BTBD ligands to form a two-dimensional (2D) layer structure. JXUST-18 can remain stable in aqueous solutions with pH values of 3-12 or in boiling water. Luminescent experiments suggest that JXUST-18 displays more than eightfold fluorescence enhancement in the presence of Fe3+ and Al3+ ions, and the detection limits for Fe3+ and Al3+ ions are 0.196 and 0.184 μM, respectively. Furthermore, the change in luminescence color is uncomplicatedly distinguishable with the naked eye under ultraviolet light at 365 nm. In addition, a series of devices based on JXUST-18 including fluorescence test strips, lamp beads, and composite films were developed to detect metal ions via visual changes in luminescence color. Significantly, JXUST-18 is a rare MOF-based turn-on fluorescence sensor for the detection of Fe3+ ions. The theoretical calculation suggests that the complexation of Fe3+/Al3+ ions and the -NH2 group contributes to fluorescence enhancement.
Collapse
Affiliation(s)
- Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Cheng-Qiang Qiu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Wen-Juan Wei
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
8
|
Mala R, Divya D, Vijayan P, Narayanasamy M, Thennarasu S. Two Imidazo[1,2‐a]pyridine Congeners Show Aggregation‐Induced Emission (AIE): Exploring AIE Potential for Sensor and Imaging Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202103408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramanjaneyulu Mala
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Dhakshinamurthy Divya
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Priyadharshni Vijayan
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Mathivanan Narayanasamy
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Sathiah Thennarasu
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| |
Collapse
|
9
|
Mahata S, Janani G, Mandal BB, Manivannan V. A coumarin based visual and fluorometric probe for selective detection of Al(III), Cr(III) and Fe(III) ions through “turn-on” response and its biological application. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Korzec M, Malarz K, Mrozek-Wilczkiewicz A, Rzycka-Korzec R, Schab-Balcerzak E, Polański J. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118442. [PMID: 32408229 DOI: 10.1016/j.saa.2020.118442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the n-hexyl group in EtOH had the highest PL quantum yield (Ф = 85%) compared to the others. Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland.
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Rzycka-Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Jarosław Polański
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
11
|
Mukherjee S, Betal S, Chattopadhyay AP. Dual sensing and synchronous fluorescence spectroscopic monitoring of Cr 3+and Al 3+ using a luminescent Schiff base: Extraction and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117837. [PMID: 31784221 DOI: 10.1016/j.saa.2019.117837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/27/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
A well designed, new pyrene based small molecule (L) was synthesized from 1:1 condensation reaction of 1-aminopyrene and 6-(1,3-benzodioxal-5-yl)-2-pyridine carboxaldehyde which was characterized by absorption, emission spectrometry, FTIR, NMR and mass studies. Interestingly the UV-vis and fluorescence spectroscopic studies revealed that the ligand (L) works as a dual turn-on luminescent chemosensor for chromium(III) (Cr3+) and aluminium(III) (Al3+) in aqueous environment which were further supported by DFT and TDDFT studies. L shows a significant colour change from pale yellow to reddish yellow with a detection limit of ~10-9 M in the presence of Cr3+ and Al3+ whereas there were no noteworthy changes in the presence of other monovalent and divalent metal ions. The molecular signaling in the presence of Cr3+, Al3+, Fe3+ and EDTA was compared with advanced level combinational INHIBIT gate based on 4 input logic gates. Herein, first derivative constant wavelength synchronous fluorescence spectroscopy (1st DCWSFS) was applied for the determination of Cr3+, Al3+ ion concentrations in a mixture via increment of spectral resolution of the respective overlapping peaks. 1st DCWSFS is reported to be used in pharmaceuticals but very few works have been done for determination of metal ion concentration in environmental sample without prior separation. The individual Cr3+and Al3+ ion concentrations in a mixture were determined through liquid-liquid extraction process and the efficiencies were compared with 1st derivative SFS method. It was observed that 1st derivative SFS process is more efficient than conventional liquid-liquid extraction process. Therefore, 1st DCWSFS method using sensor L might be useful as a diagnostic tool for detection of individual metal ion concentrations (Cr3+ and Al3+) from a mixture which will be cost-effective, time saving and more precise.
Collapse
Affiliation(s)
- Soma Mukherjee
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India.
| | - Soumi Betal
- Department of Environmental Science, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | | |
Collapse
|
12
|
A fluorescent light-up probe for selective detection of Al3+ and its application in living cell imaging. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Mukherjee S, Betal S, Chattopadhyay AP. Luminescence sensing, DFT, extraction and monitoring of Cr3+ and Al3+via the application of first derivative fluorescence spectroscopy. NEW J CHEM 2020. [DOI: 10.1039/d0nj01029d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Turn-on recognition of an anthracene-based Schiff base followed by the use of a sensitive technique for metal estimation without prior separation.
Collapse
Affiliation(s)
- Soma Mukherjee
- Department of Environmental Science
- University of Kalyani, Kalyani
- Nadia – 741235
- India
| | - Soumi Betal
- Department of Environmental Science
- University of Kalyani, Kalyani
- Nadia – 741235
- India
| | | |
Collapse
|
14
|
Ye F, Wu N, Li P, Liu YL, Li SJ, Fu Y. A lysosome-targetable fluorescent probe for imaging trivalent cations Fe 3+, Al 3+ and Cr 3+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117242. [PMID: 31207489 DOI: 10.1016/j.saa.2019.117242] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
An effective morpholine-type naphthalimide chemsensor, N-p-chlorophenyl-4-(2-aminoethyl)morpholine-1,8-naphthalimide (CMN) has been developed as a lysosome-targeted fluorometric sensor for trivalent metal ions (Fe3+, Al3+ and Cr3+). Upon the addition of Fe3+, Al3+ or Cr3+ ions, the probe CMN showed an evident naked-eye color changes which pale yellow solution of CMN turned deepened and it displayed turn-on fluorescence response in methanol. CMN showed a significant selective and sensitive toward Fe3+, Al3+ or Cr3+ ions, while there was no obvious behavior to other monovalent or divalent metal ions from the UV-vis and fluorescence spectrum. Based on the Job's plot analyses the 1:1 coordination mode of CMN with Fe3+, Al3+ or Cr3+ was proposed. The limit of detection (LOD) observed were 0.65, 0.69 and 0.68 μM for Fe3+, Al3+ and Cr3+ ions, respectively. The N-atom of morpholine directly involved in complex formation, CMN emitted fluorescence through inhibition of photoinduced electron transfer (PET). This probe exhibited excellent imaging ability for Fe3+, Al3+and Cr3+ ions in living cells with low cytotoxicity. Significantly, the cellular confocal microscopic research indicated that the lysosome-targeted group of morpholine moiety was introduced which realized the capability of imaging lysosomal trivalent metal ions in living cells for the first time.
Collapse
Affiliation(s)
- Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Wu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Long Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Jie Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
15
|
Ren B, Yang Y, Qu Y, Cao J, Wu Y. Two fluorophore compounds based on 1, 8-naphthalimide: Synthesis, crystal structure, and optical properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
A significant fluorescent “turn-on” chemosensor for Al3+ detection and application in real sample, logic gate and bioimaging. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Sun XJ, Ma YQ, Fu H, Xing ZY, Sun ZG, Shen Y, Li JL. A Highly Selective Fluorescence "Turn on" and Absorbance-Ratiometric Detection of Al 3+ in Totally H 2O and its Application in Test Paper. J Fluoresc 2019; 29:577-586. [PMID: 30937611 DOI: 10.1007/s10895-019-02374-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
Abstract
A novel naphthalene based fluorescence probe NBDH was designed and synthesized. Probe NBDH exhibited highly selective and sensitive responses towards Al3+ in HEPES-NaOH buffer solution (pH = 7.4). In addition, the detection of NBDH to Al3+ could be achieved through dual channels embodied in significant fluorescent turn-on signal and ratiometric absorbance response. The stoichiometry ratio of NBDH-Al3+ was 1:1 by fluorescence job' plot and binging mechanism was further varified by the FT-IR, NMR titration and HRMS. Furthermore, NBDH was achieved in real sample detection, and a series of color test paper were developed for visual detecting Al3+ ions.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu-Qing Ma
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhi-Yong Xing
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Zhi-Gang Sun
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Shen
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Long Li
- School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
| |
Collapse
|
18
|
A Novel 1,8-Naphthalimide-Based “Turn-on” Fluorescent Sensor for Fe3+. J Fluoresc 2019; 29:445-450. [DOI: 10.1007/s10895-019-02354-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
|
19
|
Saini A, Kaur R, Singh N, Kuwar A, Kaur N. High Performance Fluorescent Turn-On Probe for Amitriptyline Based on Hybrid Nanoassembly of Organic-Inorganic Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:135-143. [PMID: 35016336 DOI: 10.1021/acsabm.8b00482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fluorescence methods have gained enormous attention due to their ease in use, simplicity, selectivity and sensitivity. Fluorescent chemosensors respond instantly by converting molecular recognition to fluorescent signals. The consumption of pharmaceutical products by living beings is on great increase. The disposal of such compounds in the environment is a matter of great concern as these compounds enter aquatic environment and show accumulation in tissues of aquatic organisms. In the present study, we have utilized naphthalimide based receptors to fabricate organic nanoparticles (ONPs). These ONPs were used for the development of hybrid nanoassemblies, and the developed nanoassemblies were characterized with the help of transmission electron microscopy and dynamic light scattering studies. The photophysical studies were performed and the hybrid assembly developed using receptor 2 demonstrated a turn-on fluorescence emission behavior on binding with Amitriptyline. The present sensing system acted as promising candidate for determination of Amitriptyline among other contending drug molecules. The established system can recognize Amitriptyline up to a detection limit of 48 nM in aqueous medium. Electrochemical recognition studies show binding of hybrid nanoassembly of receptor 2 with Amitriptyline with limit of detection of 21 nM.
Collapse
Affiliation(s)
| | | | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupanagar, Panjab 140 001, India
| | - Anil Kuwar
- School of Chemical Sciences, North Maharashtra University, Jalgaon 425 001, India
| | | |
Collapse
|
20
|
He X, Wu C, Qian Y, Li Y, Zhang L, Ding F, Chen H, Shen J. Highly sensitive and selective light-up fluorescent probe for monitoring gallium and chromium ions in vitro and in vivo. Analyst 2019; 144:3807-3816. [DOI: 10.1039/c9an00625g] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here reported an NBDT sensor could be effectively responsive to gallium and chromium for bio-imaging in vivo.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| | - Chenglin Wu
- Organ Transplant Center
- The First Affiliated Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Yuna Qian
- Wenzhou Institute of Biomaterials and Engineering
- Chinese Academy of Science
- Wenzhou
- China
| | - Yahui Li
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| | - Lilei Zhang
- College of Food and Drug
- Luoyang Normal University
- Luoyang
- China
| | - Feng Ding
- Department of Microbiology and Immunology
- School of Basic Medical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Hong Chen
- College of Food and Drug
- Luoyang Normal University
- Luoyang
- China
| | - Jianliang Shen
- School of Ophthalmology & Optometry
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
21
|
Rohini G, Ramaiah K, Sreekanth A. Naphthalene dianhydride based selective detection targetable fluorescent probe for monitoring exogenous Iron in living cells. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Guo Z, Niu Q, Li T. Highly sensitive oligothiophene-phenylamine-based dual-functional fluorescence "turn-on" sensor for rapid and simultaneous detection of Al 3+ and Fe 3+ in environment and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:76-84. [PMID: 29674242 DOI: 10.1016/j.saa.2018.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Developing low-cost and efficient sensors for rapid, selective and sensitive detection of the transition metal ions in environmental and food science is very important. In this study, a novel dual-functional fluorescent "turn-on" sensor 3TP based on oligothiophene-phenylamine Schiff base has been synthesized for discrimination and simultaneous detection of both Al3+ and Fe3+ ions with high selectivity and anti-interference over other metal ions. Sensor 3TP displayed a very fast fluorescence-enhanced response towards Al3+ and Fe3+ ions with low detection limits (0.177μM for Al3+ and 0.172μM for Fe3+) and wide pH response range (4.0-12.0). The Al3+/Fe3+ sensing mechanisms were investigated by fluorescence experiments, 1H NMR titrations, FT-IR and ESI-MS spectra. Importantly, sensor 3TP was served as an efficient solid material for the highly sensitive and selective detection of Fe3+ on TLC plates. Moreover, the sensor 3TP has been successfully used to detect trace Al3+ and Fe3+ in environment and food samples with satisfactory results and good recoveries, revealing a convenient, reliable and accurate method for Al3+ and Fe3+ analysis in real samples.
Collapse
Affiliation(s)
- Zongrang Guo
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
23
|
Highly Selective Detection of Cr 3 + Ion with Colorimetric & Fluorescent Response Via Chemodosimetric Approach in Aqueous Medium. J Fluoresc 2018; 28:663-670. [PMID: 29654524 DOI: 10.1007/s10895-018-2228-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
So far, very few numbers of chemosensors for Cr3+ ion have been reported. However, the main drawback of reported receptors are the lack of selectivity and other trivalent cations such as Fe3+, Al3+ and anions like F- and -OAc frequently interfere with such assays. This paper present the synthesis, characterization & sensor studies of Schiff base containing naphthalene moiety which selectively detect Cr3+ ion by chemodosimetric approach. Using FT-IR, 1H NMR, 13C NMR and ESI mass spectroscopic techniques the probe was characterized. This receptor exhibit more selectivity and sensitivity towards Cr3+ than other divalent and trivalent cations like Mn2+, Zn2+, Co2+, Ni2+, Cd2+, Cu2+, Hg2+, Fe3+, and Al3+ ions. After the addition of chromium ion the receptor get change from yellow to colorless in aqueous medium. But no color change was observed on the addition of other metal ions. Using UV-Vis and PL studies, it was confirmed that the selective hydrolysis of imine group of receptor by Cr3+ ions takes place with high fluorescence enhancement that is corresponding to 1-naphthylamine. Receptor acts as selective chemodosimeter for Cr3+ ions with 2:1 stoichiometry and micro molar detection limit. This chemodosimetric approach was applied successfully for bio-imaging of HeLa cells.
Collapse
|
24
|
Fluorescent and colourimetric 1, 8-naphthalimide-appended chemosensors for the tracking of metal ions: selected examples from the year 2010 to 2017. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0411-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Selective recognition of Cr3+ in multivitamin formulations in aqueous medium by fluorescent organic–inorganic nanohybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3300-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Shumilova TA, Rüffer T, Lang H, Kataev EA. Straightforward Design of Fluorescent Receptors for Sulfate: Study of Non-Covalent Interactions Contributing to Host-Guest Formation. Chemistry 2017; 24:1500-1504. [PMID: 29027757 DOI: 10.1002/chem.201704098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 01/07/2023]
Abstract
A straightforward design of receptors for binding and sensing of sulfate in aqueous medium was developed. The design involves the connection of two naphthalimide-based pH probes through a hydrogen-bonding motif. The structure of the receptor-sulfate complex, predicted by DFT calculations, was unambiguously confirmed by NMR measurements. There are three major interactions stabilizing the host-guest complex: electrostatic interactions, hydrogen bonding, and stacking interactions of the dyes. Study of two control receptors containing either one dye or methyl amide groups instead of amides, revealed that electrostatic and hydrogen bonding interactions contribute the most to affinity and selectivity of receptors. The receptors can detect sulfate in a 1:1 THF-buffer mixture in pH window 3.6-4.5 demonstrating up to 7-fold fluorescence enhancement. To the best of our knowledge, the reported PET (photoinduced electron transfer) anion probes possess the largest response for sulfate in aqueous solution yet described.
Collapse
Affiliation(s)
- Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tobias Rüffer
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Heinrich Lang
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
27
|
Li B, Tian J, Zhang D, Tian F. A novel colorimetric fluorescence sensor for Fe3+
based on quinoline Schiff base. LUMINESCENCE 2017; 32:1567-1573. [DOI: 10.1002/bio.3361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/24/2017] [Accepted: 05/09/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Bin Li
- College of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot P. R. China
| | - Jianfei Tian
- College of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot P. R. China
| | - Dan Zhang
- College of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot P. R. China
| | - Fuli Tian
- College of Chemistry and Chemical Engineering; Inner Mongolia University; Hohhot P. R. China
| |
Collapse
|
28
|
Triphenylamine‐BODIPY Fluorescent Dendron: Click Synthesis and Fluorometric Chemodosimeter for Hg
2+
, Fe
3+
Based on the C=N Bond. ChemistrySelect 2017. [DOI: 10.1002/slct.201700033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
|
30
|
Gupta A, Kumar N. A review of mechanisms for fluorescent ‘‘turn-on’’ probes to detect Al3+ ions. RSC Adv 2016. [DOI: 10.1039/c6ra23682k] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The adverse effect of Al3+ ions on human health as well as the environment makes it desirable to develop sensitive and specific techniques for the detection of Al3+ ions.
Collapse
Affiliation(s)
- Ankush Gupta
- Department of Chemistry
- DAV University
- Jalandhar-144012
- India
| | - Naresh Kumar
- Department of Chemistry
- DAV University
- Jalandhar-144012
- India
| |
Collapse
|
31
|
Dai Y, Liu X, Wang P, Fu J, Yao K, Xu K. A new fluorescent probe based on quinoline for detection of Al3+ and Fe3+ with “off–on–off” response in aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra23296e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new quinoline-based fluorescent probe has been designed and synthesized. It showed highly selective relay recognition of Al3+ and Fe3+via a fluorescence “off–on–off” mechanism by central metal displacement.
Collapse
Affiliation(s)
- Yanpeng Dai
- Engineering Laboratory for Flame Retardant and Functional Materials of Henan Province
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- China
| | - Xiaoyan Liu
- Engineering Laboratory for Flame Retardant and Functional Materials of Henan Province
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- China
| | - Peng Wang
- Engineering Laboratory for Flame Retardant and Functional Materials of Henan Province
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- China
| | - Jiaxin Fu
- Engineering Laboratory for Flame Retardant and Functional Materials of Henan Province
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- China
| | - Kun Yao
- Engineering Laboratory for Flame Retardant and Functional Materials of Henan Province
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- China
| | - Kuoxi Xu
- Engineering Laboratory for Flame Retardant and Functional Materials of Henan Province
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- China
| |
Collapse
|
32
|
Janakipriya S, Tamilmani S, Thennarasu S. A novel 2-(2′-aminophenyl)benzothiazole derivative displays ESIPT and permits selective detection of Zn2+ ions: experimental and theoretical studies. RSC Adv 2016. [DOI: 10.1039/c6ra09713h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synthesis of a novel 2-(2′-aminophenyl)benzothiazole based probe (1) and demonstration of excited state intramolecular proton transfer (ESIPT) with a large Stokes shift (∼246 nm) are presented.
Collapse
Affiliation(s)
- Subramaniyan Janakipriya
- Organic and Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai-600 020
- India
| | | | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory
- CSIR-Central Leather Research Institute
- Chennai-600 020
- India
| |
Collapse
|