1
|
Chaulagain N, Garcia JC, Manoj A, Shankar K. Ultrasensitive detection of Ag +and Ce 3+ions using highly fluorescent carboxyl-functionalized carbon nitride nanoparticles. NANOTECHNOLOGY 2024; 35:315502. [PMID: 38604135 DOI: 10.1088/1361-6528/ad3d66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
The fluorescence quenching of carboxyl-rich g-C3N4nanoparticles was found to be selective to Ag+and Ce3+with a limit of detection as low as 30 pM for Ag+ions. A solid-state thermal polycondensation reaction was used to produce g-C3N4nanoparticles with distinct green fluorescence and high water solubility. Dynamic light scattering indicated an average nanoparticle size of 95 nm. The photoluminescence absorption and emission maxima were centered at 405 nm and 540 nm respectively which resulted in a large Stokes shift. Among different metal ion species, the carboxyl-rich g-C3N4nanoparticles were selective to Ag+and Ce3+ions, as indicated by strong fluorescence quenching and a change in the fluorescence lifetime. The PL sensing of heavy metal ions followed modified Stern-Volmer kinetics, and CNNPs in the presence of Ag+/Ce3+resulted in a higher value ofKapp(8.9 × 104M-1) indicating a more efficient quenching process and stronger interaction between CNNP and mixed ions. Sensing was also demonstrated using commercial filter paper functionalized with g-C3N4nanoparticles, enabling practical on-site applications.
Collapse
Affiliation(s)
- Narendra Chaulagain
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, AB T6G 1H9, Canada
| | - John C Garcia
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, AB T6G 1H9, Canada
| | - Aparna Manoj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, India
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
2
|
Zhou Y, Yi Y, He Y, Zhu G. A proof-of-concept electroreduction-free anodic stripping voltammetry analysis of Ag(I) based on S,N-Ti 3C 2T x MXene nanoribbons. Chem Commun (Camb) 2023. [PMID: 38037854 DOI: 10.1039/d3cc04715f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Herein, by preparing sulfur and nitrogen co-doped Ti3C2Tx MXene nanoribbons (S,N-Ti3C2TxR) as a sensing material, a sensitive and novel electroreduction-free anodic stripping voltammetry strategy was designed to detect Ag(I) (Ag+) for the first time, which can successfully avoid the power-consuming electroreduction step, achieving simple, sensitive and efficient detection for Ag+ with a low detection limit and wide linearity.
Collapse
Affiliation(s)
- Yifan Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
- School of Water, Energy and Environment, Cranfield University, Cranfield, Beds, MK430AL, UK
| | - Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, P. R. China
- Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yong He
- Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, P. R. China
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, P. R. China
| |
Collapse
|
3
|
Rasheed T, Ahmad T, Khan S, Ferry DB, Sher F, Ali A, Majeed S. Graphitic carbon nitride derived probes for the recognition of heavy metal pollutants of environmental concern in water bodies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1142. [PMID: 37665398 DOI: 10.1007/s10661-023-11792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Graphitic carbon nitride (g-CN) has a number of valuable features that have been recognized during the studies related to its photocatalytic activity enhancement derived by visible light. Because of these characteristics, g-CN can be used as a detecting signal transducer with different transmission modalities. The latest up-to-date detection capabilities of modified g-CN nanoarchitectures are covered in this study. The structural features and synthetic methodologies have been discussed in a number of reports. Herein, employment of the g-CN as a promising probing modality for the recognition of different toxic heavy metals is the promising feature of the present study.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia.
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals, Korea Research, Institute of Chemical Technology (KRICT) , Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Darim Badur Ferry
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Amjad Ali
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Saadat Majeed
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
4
|
Zhang J, Hou S, Zhang J, Liang N, Zhao L. A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121415. [PMID: 35636140 DOI: 10.1016/j.saa.2022.121415] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Dopamine (DBA) as an important biomarker, plays a crucial role in disease diagnosis. In this study, we have developed a fast and simple aptamer-based fluorescence strategy which used single-wall carbon nanohorns (SWCNHs) as a quencher for dopamine detection. SWCNHs were negatively charged after pretreated, which improved its dispersion in solution. 5-carboxy-fluorescein (FAM) was used to label dopamine aptamer. In the absence of dopamine, FAM-modified aptamer could be absorbed onto the SWCNHs surface due to π-π interaction, resulting in the fluorescence intensity decreased. Dopamine could specifically bind with FAM-DNA to form G-quadruplex, which could not be absorbed onto the surface of SWCNHs. Hence, the fluorescence of FAM-DNA recovered, and the fluorescent intensity as a function of different concentrations of dopamine was measured. We obtained a detection limit of 5 μM for this detection system with a linear detection range of 0.02-2.20 mM. Furthermore, the feasibility of the innovative detection system has been verified by detecting dopamine in spiked serum samples.
Collapse
Affiliation(s)
- Jiayu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shanshan Hou
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiaxin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
5
|
Roy R, Chacko AR, Abraham T, Korah BK, John BK, Punnoose MS, Mohan C, Mathew B. Recent Advances in Graphitic Carbon Nitrides (g‐C
3
N
4
) as Photoluminescence Sensing Probe: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Richa Roy
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Anu Rose Chacko
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | | | - Binila K Korah
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Bony K John
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Mamatha Susan Punnoose
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Chitra Mohan
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Beena Mathew
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| |
Collapse
|
6
|
Zhu T, Gou Q, Yang Y, Zhang Y, Chen M. Bis-Schiff base functionalized Fe3O4 nanoparticles for the sensitive fluorescence sensation of copper ions in aqueous medium. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Patel MR, Kailasa SK. Carbon Nitride Nanomaterials: Properties, Synthetic Approaches and New Insights in Fluorescence Spectrometry for Assaying of Metal Ions, Organic and Biomolecules. ChemistrySelect 2022. [DOI: 10.1002/slct.202201849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mayurkumar Revabhai Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Surat 395007 Gujarat India
| | - Suresh Kumar Kailasa
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Surat 395007 Gujarat India
| |
Collapse
|
8
|
Rapid detection of histamine in fish based on the fluorescence characteristics of carbon nitride. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Qu B, Sun J, Li P, Jing L. Current advances on g-C 3N 4-based fluorescence detection for environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127990. [PMID: 34986565 DOI: 10.1016/j.jhazmat.2021.127990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The development of highly-sensitive fluorescence detection systems for environmental contaminants has become high priority research in the past years. Special attention has been paid to graphitic carbon nitride (g-C3N4)-based nanomaterials, whose unique and superior optical property makes them promising and attractive candidates for this purpose. It is necessary to enhance the current understanding of the various classes of g-C3N4-based fluorescence detection systems and their mechanisms, as well as find suitable approaches to improve detection performance for environmental monitoring, protection, and management. In this review, the recent progresses on g-C3N4-based fluorescence detections for environmental contaminants, mainly including their basic principles, mechanisms, applications, modification strategies, and conclusions, are summarized. A particular emphasis is placed on the design and development of modification strategies for g-C3N4 with the objective of improving detection performance. High photoluminescence quantum yield, tunable fluorescence emission characteristics, and strong adsorption capacity of g-C3N4 could ensure the ultrasensitivity and selectivity of fluorescence detection of environmental contaminants. Concluding perspectives on the challenges and opportunities to design highly efficient g-C3N4-based fluorescence detection system are intensively put forward as well.
Collapse
Affiliation(s)
- Binhong Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Jianhui Sun
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China; College of Physical Science and Technology, Heilongjiang University, Harbin 150080, PR China
| | - Peng Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China; College of Physical Science and Technology, Heilongjiang University, Harbin 150080, PR China.
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
10
|
Zhang YY, Zhu T, Wang H, Zheng L, Chen M, Wang W. Preparation of bis-Schiff base immobilized mesoporous SBA-15 nanosensor for the fluorogenic sensing and adsorption of Cu2+. Dalton Trans 2022; 51:7210-7222. [DOI: 10.1039/d2dt00933a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inorganic−organic chemosensing material (MS-NSP) was developed by anchoring the bis-Schiff base fluorophore onto the channel surface of SBA-15 mesoporous silica surface with a quaternary ammonium linker. The mesostructure, morphology,...
Collapse
|
11
|
Oseghe EO, Akpotu SO, Mombeshora ET, Oladipo AO, Ombaka LM, Maria BB, Idris AO, Mamba G, Ndlwana L, Ayanda OS, Ofomaja AE, Nyamori VO, Feleni U, Nkambule TT, Msagati TA, Mamba BB, Bahnemann DW. Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Enhanced Fenton-like catalytic performance of freestanding CuO nanowires by coating with g-C3N4 nanosheets. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Zhu X, Xu H, Zhan Y, Li W, Dong Y, Yu L, Chi Y, Ye H. A simple enzyme-catalyzed reaction induced "switch" type fluorescence biosensor based on carbon nitride nanosheets for the assay of alkaline phosphatase activity. Analyst 2021; 145:6277-6282. [PMID: 32940263 DOI: 10.1039/d0an01224f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An enzyme-catalyzed fluorescence "switch" type sensor was constructed for the determination of alkaline phosphatase (ALP) activity by combining the fluorescence quenching effect of Ag+ on ultrathin g-C3N4 nanosheets (CNNSs) with the simple redox reaction of AA and Ag+. Briefly, Ag+ exhibits a significant quenching effect on the fluorescence of CNNSs. Thus the fluorescence signal of the CNNS-Ag+ system is extremely weak even in the presence of l-ascorbic acid-2-phosphate (AAP) ("off" state). When ALP coexists in the system, the enzyme can specifically catalyze the hydrolysis of AAP to form ascorbic acid (AA), which reduces Ag+ to Ag0. In this case, the fluorescence signal of the system is recovered ("on" state). Based on this principle, a signal-enhanced CNNS fluorescence sensor was developed to determine the activity of alkaline phosphatase. The experimental results show that the detection range of alkaline phosphatase is 0.5-20 U L-1, and the detection limit is 0.05 U L-1 (S/N = 3). Meanwhile, this method was used to assay ALP in serum samples.
Collapse
Affiliation(s)
- Xi Zhu
- College of Life Sciences, Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Cao X, Zhen L, Wang X. A mesoporous silica-based fluorescent chemosensor bearing bis-Schiff base for the sensitive detection of Cu2+ ions. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
|
16
|
Mohanraj J, Durgalakshmi D, Saravanan R. Water-soluble graphitic carbon nitride for clean environmental applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116172. [PMID: 33280911 DOI: 10.1016/j.envpol.2020.116172] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The removal of halogenated dye and sensing of pharmaceutical products in the water bodies with quick purification time is of high need due to the scarcity of drinking water. The present work reported on the preparation of graphitic carbon nitride (g-C3N4) for quick time water contaminant adsorption, followed by synthesizing silver nanoparticles decorated graphitic carbon nitride for pharmaceutical product sensing using in-situ SERS technique. The prepared graphitic carbon nitride is used to study the adsorption behavior of water contaminants at room temperature, in the presence of methylene blue (MB) as an adsorbate model. The water-soluble graphitic carbon nitride, even at low concentration, possesses an excellent ability to adsorb halogenated organic dye. As a result, the dyes are found to adsorb within ∼5s even without any additional physical or chemical activation. From the UV-Vis absorption investigations, it has been perceived that in the presence of graphitic carbon nitride (g-C3N4) the dye adsorption efficacy is observed nearly 80% with the well fitted linearly of R2 = 0.9731. Effective in-situ surface-enhanced Raman scattering (SERS) studies for Ag nanoparticles decorated graphitic carbon nitride has been carried out and the obtained result shows good sensing performance of the material towards acetaminophen drug. This method opens the possibility of the Nobel metal decorated graphitic carbon nitride for real-time sensing of SERS-based drug products along with the development of high-performance sensing of the target analyte in the future.
Collapse
Affiliation(s)
- Jagannathan Mohanraj
- Department of Medical Physics, CEG Campus, Anna University, Chennai, 600 025, India
| | | | - Rajendran Saravanan
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| |
Collapse
|
17
|
Wang S, Liu J, Zhao H, Zhang F. Carboxymethyl chitosan crosslinked ꞵ-cyclodextrin containing hydrogen bonded NC QDs nanocomposites to design fluorescence probes for manganese ion (II) sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111556. [PMID: 33321620 DOI: 10.1016/j.msec.2020.111556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
The direct determination Mn2+ using carboxymethyl chitosan crosslinked with cyclodextrin containing hydrogen-bonded NC QDs (NC QD/CCSCD nanocomposites). The probable mechanism of the NC QD/CCSCD nanocomposites' fluorescence was quenched by Mn2+ could be interpreted as acyclic crown ether chelation. Mn2+ induced the NC QD/CCSCD clusters assembly to form large aggregates, which resulted in aggregation-caused quenching. The linear detection (I = 479.93-15.94C (R2 = 0.9954)) can be established at Mn2+ concentrations from 0 to 21.11 × 10-6 mol/L. Common metal ions, except iron and magnesium, showed minimal effect on detection. It could satisfy the standard range of Mn2+ in actual water samples. The method which using chelating assembly mechanism to build a novel sensor would provide a new model for the application of polymer materials in this field, but the precise assembly of polymer is an unsolved challenge.
Collapse
Affiliation(s)
- Shan Wang
- School of Chemistry and Chemical Engineering of Xianyang Normal University, Xianyang 712000, PR China.
| | - Jing Liu
- School of Chemistry and Chemical Engineering of Xianyang Normal University, Xianyang 712000, PR China
| | - Huihui Zhao
- School of Chemistry and Chemical Engineering of Xianyang Normal University, Xianyang 712000, PR China
| | - Fang Zhang
- School of Chemistry and Chemical Engineering of Xianyang Normal University, Xianyang 712000, PR China
| |
Collapse
|
18
|
A new strategy for determination of trace PO43− using CNDAu as resonance Rayleigh scattering and fluorescence dual-mode probe. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Wang N, Wang X, Lv J, Yang P, Jia W, Bian W, Choi MM. A fluorescent probe using phosphorus-doped graphite carbon nitride nanosheets for the detection of silver ions and cell imaging. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The fluorescent phosphorus-doped graphite carbon nitride (P-g-C3N4) nanosheets have been synthesized as a fluorescence probe using an ultrasonic exfoliating method. The as-prepared P-g-C3N4 nanosheets were characterized by multiple analytical techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and infrared spectroscopy. The fluorescence intensity of P-g-C3N4 nanosheets decreases with the increase in concentration of silver ions. A good linear relationship was achieved between the corresponding fluorescence intensity of P-g-C3N4 nanosheets and the concentration of silver ions in the range of 20 nmol/L – 3.2 μmol/L. The quenching mechanism of interaction between P-g-C3N4 nanosheets and silver ions was primarily discussed. The proposed fluorescence probe has been successfully applied to detect silver ions in real water samples and the recoveries range from 96.8% to 103.7%.
Collapse
Affiliation(s)
- Ning Wang
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xuan Wang
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Junjie Lv
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Peng Yang
- The Sixth Affiliated Hospital of Shanxi Medical University and the Affiliated Taigang General Hospital, Taiyuan 030001, Shanxi Province, China
| | - Weihua Jia
- The Sixth Affiliated Hospital of Shanxi Medical University and the Affiliated Taigang General Hospital, Taiyuan 030001, Shanxi Province, China
| | - Wei Bian
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Martin M.F. Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol, BS8 2QG, United Kingdom
| |
Collapse
|
20
|
Feng S, Lv J, Pei F, Lv X, Wu Y, Hao Q, Zhang Y, Tong Z, Lei W. Fluorescent MoS 2 QDs based on IFE for turn-off determination of FOX-7 in real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118131. [PMID: 32062514 DOI: 10.1016/j.saa.2020.118131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
A novel method for turn-off sensing 1,1-diamino-2,2-dinitroethylene (FOX-7) in aqueous medium was first proposed based on the inner filter effect (IFE) of FOX-7 on the fluorescence of molybdenum disulfide quantum dots (MoS2 QDs). Water-soluble MoS2 QDs as the fluorophore were prepared by the simple hydrothermal method. The morphology, structure, composition and optical properties of the prepared MoS2 QDs were characterized by Transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis absorption and photoluminescence spectra. The results showed that the MoS2 QDs had good water dispersibility and emitted strong photoluminescence with a particle size of 2 nm. Under the optimal experimental conditions, the fluorescence signal of MoS2 QDs was quenched in the concentrations range of FOX-7 (0.5-100 μM) and the limit of detection (LOD) of the sensor was 0.19 μM. The method had been applied to analyze the real water samples with good selectivity and stability. Moreover, the quenching mechanism was studied systematically by the Fourier transform infrared (FT-IR), UV-vis absorption spectra, fluorescence lifetime, and Stern-Volmer equation, which had been proved to be static quenching. The fluorescence quenching mechanism is mainly IFE and electron transfer.
Collapse
Affiliation(s)
- Shasha Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingjing Lv
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fubin Pei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuchu Lv
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi Wu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
21
|
Mei H, Shu H, Lv M, Liu W, Wang X. Fluorescent assay based on phenyl-modified g-C 3N 4 nanosheets for determination of thiram. Mikrochim Acta 2020; 187:159. [PMID: 32036451 DOI: 10.1007/s00604-020-4135-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/23/2020] [Indexed: 11/30/2022]
Abstract
Phenyl-modified graphitic carbon nitride nanosheets (Ph-g-C3N4 NSs) were synthesized by a thermal copolymerization and ultrasonic exfoliation method. The Ph-g-C3N4 NSs are used as a fluorescent assay for determination of thiram. The results of X-ray photoelectron spectroscopy, 13C solid-state nuclear magnetic resonance and Fourier transform infrared spectra confirm that phenyl group is integrated into the heptazine network of g-C3N4. Compared to the g-C3N4 NSs, the Ph-g-C3N4 NSs show bigger stokes shift about 185 nm and higher fluorescence intensity. The fluorescence of Ph-g-C3N4 NSs is quenched by Cu2+ via the photo-induced electron transfer mechanism, which then recovers in the presence of thiram. The fluorescence restoring of Ph-g-C3N4 NSs is correlated with the concentration of thiram. Under the optimized conditions, the fluorescent intensity of g-C3N4 NSs at excitation/emission wavelengths of 310/455 nm give a linear range of 33.0-670 nM with detection limit of 9.90 nM. While fluorescent assay based on the Ph-g-C3N4 NSs show the linear range of 6.70-1300 nM at excitation/emission wavelengths of 310/495 nm with detection limit of 2.01 nM. Graphical abstract Schematic representation of fluorescent "on-off-on" assay based on phenyl-modified graphitic carbon nitride nanosheets (Ph-g-C3N4 NSs) for determination of thiram.
Collapse
Affiliation(s)
- He Mei
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Huawei Shu
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Mengyu Lv
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Wei Liu
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
| | - Xuedong Wang
- Health Assessment Center, Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China. .,National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
22
|
Jiang X, Yang Y, Li H, Qi X, Zhou X, Deng M, Lü M, Wu J, Liang S. A Water-Soluble Fluorescent Probe for the Selective Sensing of Ag + and its Application in Imaging of Living Cells and Nematodes. J Fluoresc 2020; 30:121-129. [PMID: 31930435 DOI: 10.1007/s10895-019-02477-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
In this study, an imidazole-coumarin based fluorescent probe was developed for the selective and sensitive detection of Ag+ in aqueous solution. Using a combination of Job plot, NMR titrations, and DFT calculations, the binding properties between Ag+ and the probe were deeply investigated, and the results revealed a 1:1 binding stoichiometry between the probe and Ag+ with a binding constant of 1.02 × 106 M-1. The detection limit was found to be 150 nM, which satisfies the requirement for the quantitative detection of Ag+ in real water samples. Moreover, the new probe, Ic, was successfully applied to sense Ag+ in HeLa and HepG2 cells as well as in C. elegans, indicating that it could be a useful tool for the environmental monitoring of Ag+ pollution. These results demonstrated that Ic could serve as a high-efficiency and low-cost fluorescent probe for tracking Ag+ in an aquatic environment and biological organisms.
Collapse
Affiliation(s)
- Xueqin Jiang
- The Pharmacy School of Southwest Medical University, Luzhou, China
| | - Youzhe Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaogang Zhou
- The Pharmacy School of Southwest Medical University, Luzhou, China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jianming Wu
- The Pharmacy School of Southwest Medical University, Luzhou, China.
- The Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Luzhou, China.
| | - Sicheng Liang
- The Pharmacy School of Southwest Medical University, Luzhou, China.
- The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
23
|
A ratiometric probe based on Ag2S quantum dots and graphitic carbon nitride nanosheets for the fluorescent detection of Cerium. Talanta 2019; 200:249-255. [DOI: 10.1016/j.talanta.2019.03.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/22/2022]
|
24
|
Zhang H, Huang Y, Zheng Y, Zhou J, Wu Q, Zhang Z, Gan F, Chen W. Fluorescence covalent interaction enhanced sensor for lead ion based on novel graphitic carbon nitride nanocones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:141-146. [PMID: 30933777 DOI: 10.1016/j.saa.2019.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/23/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Novel graphitic carbon nitride nanocones (g-CNNCs) were synthesized for the first time in this study. The SEM, TEM, XPS and FT-IR were used to research the structure of the g-CNNCs. We found that the g-CNNCs showed high selective and sensitive for fluorescence enhancement detection of Pb2+ ion via covalent interaction. In addition, the g-CNNCs exhibit stable and specific concentration-dependent fluorescence intensity in the presence of Pb2+ ion in the range of 1-200 μmol·dm-3, and the limit of detection was estimated to be 0.0438 μmol·dm-3 (3S/k). More importantly, the g-CNNCs were used to detect practical samples with satisfactory results.
Collapse
Affiliation(s)
- Hanqiang Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China; College of Chemistry and Materials, Longyan University, Longyan 364000, PR China.
| | - Yihong Huang
- Zhangzhou College of Science & Technology, Zhangzhou 363202, PR China
| | - Yulin Zheng
- College of Chemistry and Materials, Longyan University, Longyan 364000, PR China
| | - Jiangcong Zhou
- College of Chemistry and Materials, Longyan University, Longyan 364000, PR China
| | - Quansheng Wu
- College of Chemistry and Materials, Longyan University, Longyan 364000, PR China
| | - Zhusen Zhang
- College of Chemistry and Materials, Longyan University, Longyan 364000, PR China
| | - Feng Gan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Wuhua Chen
- College of Chemistry and Materials, Longyan University, Longyan 364000, PR China.
| |
Collapse
|
25
|
Yang R, Mu WY, Chen QY. Urazole-Au Nanocluster as a Novel Fluorescence Probe for Curcumin Determination and Mitochondria Imaging. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01519-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Lv J, Feng S, Ding Y, Chen C, Zhang Y, Lei W, Hao Q, Chen SM. A high-performance fluorescent probe for dopamine detection based on g-C 3N 4 nanofibers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:300-307. [PMID: 30660062 DOI: 10.1016/j.saa.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
A novel fluorescent sensor based on g-C3N4 nanofibers for the sensitive detection of dopamine (DA) has been proposed. We synthesized g-C3N4 nanofibers by directly hydrolyzing bulk g-C3N4 in the alkaline atmosphere (3 M NaOH). The obtained ultrathin g-C3N4 nanofibers were verified by characterizations of Transmission electronic microscope (TEM), X-ray diffractometer (XRD), Fourier transformation-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). It was found that the fluorescence intensity of g-C3N4 nanofibers was obviously quenched by DA. Fluorescence resonance energy transfer (FRET) between DA and g-C3N4 nanofibers led to the fluorescence reduction of g-C3N4 nanofibers. The fluorescent probe based on g-C3N4 nanofibers exhibits linear responses to the concentration of DA in the range from 0 to 4 μM and 4 to 20 μM, the limit of detection is 17 nM. The fluorescent probe shows excellent stability, good selectivity with its application in serums.
Collapse
Affiliation(s)
- Jingjing Lv
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shasha Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yong Ding
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenglong Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
27
|
Tang W, Tian Y, Li B, Liu Q, Wang D, Jing X, Zhang J, Xu S. Fe 3+-selective and sensitive "on-off" fluorescence probe based on the graphitic carbon nitride nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:341-347. [PMID: 30472598 DOI: 10.1016/j.saa.2018.11.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
An effective and facile "on-off" fluorescence sensing approach for the determination of Fe3+ ion using a large area and relatively uniform size graphitic carbon nitride nanosheets (GCNS) was developed. The prepared GCNS have blue and stable emission, as well as excellent water dispersion, and were applied as an effective fluorescent probe that based on the quenched fluorescence for selective and sensitive detection of Fe3+ ion. Herein, we explain the ambiguous fluorescence quenching mechanism between the GCNS and Fe3+, which mainly springs from the redox potential and empty d orbital of Fe3+. The redox potential and unfilled d orbit of Fe3+ endow it excellent binding force with GCNS, which generates most obvious fluorescence quenching effect with respect to other metal ions. The limit of detection (LOD) for Fe3+ was found to be about 2.06 μM. Therefore, the prepared GCNS has the potential to be used as a fluorescent probe for detection.
Collapse
Affiliation(s)
- Wenhua Tang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Ying Tian
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China.
| | - Bingpeng Li
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Qunhuo Liu
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Dongqing Wang
- College of Life Science, China Jiliang University, Hangzhou 310018, PR China
| | - Xufeng Jing
- Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, PR China
| | - Junjie Zhang
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China
| | - Shiqing Xu
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, PR China
| |
Collapse
|
28
|
Kadam AN, Moniruzzaman M, Lee SW. Dual Functional S-Doped g-C₃N₄ Pinhole Porous Nanosheets for Selective Fluorescence Sensing of Ag⁺ and Visible-Light Photocatalysis of Dyes. Molecules 2019; 24:E450. [PMID: 30691240 PMCID: PMC6384794 DOI: 10.3390/molecules24030450] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 11/17/2022] Open
Abstract
This study explores the facile, template-free synthesis of S-doped g-C₃N₄ pinhole nanosheets (SCNPNS) with porous structure for fluorescence sensing of Ag⁺ ions and visible-light photocatalysis of dyes. As-synthesized SCNPNS samples were characterized by various analytical tools such as XRD, FT-IR, TEM, BET, XPS, and UV⁻vis spectroscopy. At optimal conditions, the detection linear range for Ag⁺ was found to be from 0 to 1000 nM, showing the limit of detection (LOD) of 57 nM. The SCNPNS exhibited highly sensitive and selective detection of Ag⁺ due to a significant fluorescence quenching via photo-induced electron transfer through Ag⁺⁻SCNPNS complex. Moreover, the SCNPNS exhibited 90% degradation for cationic methylene blue (MB) dye within 180 min under visible light. The enhanced photocatalytic activity of the SCNPNS was attributed to its negative zeta potential for electrostatic interaction with cationic dyes, and the pinhole porous structure can provide more active sites which can induce faster transport of the charge carrier over the surface. Our SCNPNS is proposed as an environmental safety tool due to several advantages, such as low cost, facile preparation, selective recognition of Ag⁺ ions, and efficient photocatalytic degradation of cationic dyes under visible light.
Collapse
Affiliation(s)
- Abhijit N Kadam
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si, Korea.
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si, Korea.
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si, Korea.
| |
Collapse
|
29
|
Wu YC, Jiang K, Luo SH, Cao L, Wu HQ, Wang ZY. Novel dual-functional fluorescent sensors based on bis(5,6-dimethylbenzimidazole) derivatives for distinguishing of Ag + and Fe 3+ in semi-aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:632-641. [PMID: 29880253 DOI: 10.1016/j.saa.2018.05.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Three novel bisbenzimidazole derivatives have been synthesized and developed as dual-functional fluorescent sensors for the rapid and highly selective detection of Ag+ and Fe3+ ions in semi-aqueous medium with distinct spectral response for the first time. The absorption intensity is drastically decreased after the addition of Ag+. Contrarily, it is markedly increased upon the addition of Fe3+. And there is a good linear relation at low concentration of both Ag+ and Fe3+, which provides a quantitative method for their detection. Similarly, the sensors show a distinct fluorescence response towards Ag+ and Fe3+ with a different fluorescence color change under UV light. In addition, no significant changes and interference can be observed with other metal ions. The sensing mechanism studies confirm that the N atom in CN of benzimidazole ring of sensor 4a may bind with Ag+ or Fe3+ ion to form metal complex. And there is only a static quenching process for the 4-Ag+ complex system, but both dynamic and static quenching processes occur in the 4-Fe3+ complex system. Moreover, sensors 4 can steadily work in solution with a wide range of pH 4-13 and rapidly respond to Ag+ and Fe3+ with a response time of 10 s. Finally, the sensors have been successfully applied to the visual detection of Ag+ and Fe3+ not only in solution, but also in test paper.
Collapse
Affiliation(s)
- Yan-Cheng Wu
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Jiang
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China
| | - Shi-He Luo
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Liang Cao
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China
| | - Han-Qing Wu
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China
| | - Zhao-Yang Wang
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
30
|
Liu H, Gao X, Zhuang X, Tian C, Wang Z, Li Y, Rogach AL. A specific electrochemiluminescence sensor for selective and ultra-sensitive mercury(ii) detection based on dithiothreitol functionalized copper nanocluster/carbon nitride nanocomposites. Analyst 2019; 144:4425-4431. [DOI: 10.1039/c9an00667b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel electrochemiluminescence sensor based on the combination of copper nanoclusters and carbon nitride nanosheets was fabricated for detecting Hg2+.
Collapse
Affiliation(s)
- Huitao Liu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Xueqing Gao
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
- Department of Materials Science and Engineering
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Zhenguang Wang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
- China
| | - Yanxiu Li
- Department of Materials Science and Engineering
- and Centre for Functional Photonics (CFP)
- City University of Hong Kong
- Kowloon
- Hong Kong SAR
| | - Andrey L. Rogach
- Department of Materials Science and Engineering
- and Centre for Functional Photonics (CFP)
- City University of Hong Kong
- Kowloon
- Hong Kong SAR
| |
Collapse
|
31
|
Xu S, Chen L, Ma L. Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Mikrochim Acta 2018; 185:492. [PMID: 30284027 DOI: 10.1007/s00604-018-3016-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
The authors describe a fluorescent probe for sensitive and selective determination of quercetin, an indicator for the freshness of drinks. The probe consists of silica ball encapsulated graphitic carbon nitride (g-C3N4) modified with a molecularly imprinted polymer (MIP). It was synthesized via reverse microemulsion. The resulting MIP@g-C3N4 nanocomposite was characterized by fluorescence spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. Quercetin quenches the fluorescence of the MIP@g-C3N4 probe. The effect was used to quantify quercetin in grape juice, tea juice, black tea, and red wine by fluorometry (λexc = 350 nm, λem = 460 nm). Response is linear in the 10-1000 ng mL-1 quercetin concentration range. The detection limit is 2.5 ng mL-1, recoveries range between 90.7 and 94.1%, and relative standard deviations are between 2.1 and 5.5%. Graphical abstract Schematic of the synthesis of the MIP@g-C3N4 by a reverse microemulsion method. The probe was applied for the selective recognition and fluorometric determination of quercetin.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China
| | - Ligang Chen
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China.
| | - Ling Ma
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
32
|
Yang H, Li X, Wang X, Chen W, Bian W, Choi MMF. Silver-doped graphite carbon nitride nanosheets as fluorescent probe for the detection of curcumin. LUMINESCENCE 2018; 33:1062-1069. [DOI: 10.1002/bio.3509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Haifen Yang
- School of Pharmacy; Shanxi Medical University; Taiyuan P. R. China
| | - Xuebing Li
- School of Basic Medical Science; Shanxi Medical University; Taiyuan P. R. China
| | - Xinxv Wang
- Shanxi Experimental Secondary School; Taiyuan P. R. China
| | - Wenfang Chen
- School of Basic Medical Science; Shanxi Medical University; Taiyuan P. R. China
| | - Wei Bian
- School of Basic Medical Science; Shanxi Medical University; Taiyuan P. R. China
| | - Martin M. F. Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church; Bristol UK
| |
Collapse
|
33
|
Li Y, Dong L, Wang X, Liu Y, Liu H, Xie M. Development of graphite carbon nitride based fluorescent immune sensor for detection of alpha fetoprotein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:103-109. [PMID: 29448167 DOI: 10.1016/j.saa.2018.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
A novel fluorescent immunosensor for determination of alpha fetoprotein (AFP) in serum samples has been developed based on the nano graphite carbon nitride (g-C3N4) as fluorophore and immunomagnetic beads (MBs) as separation material. The bulk g-C3N4 was obtained by thermal polymerization of melamine, and then carboxylated and exfoliated to acquire the carboxylated nano g-C3N4 (c-n-g-C3N4), which has been characterized and the results showed that it had excellent fluorescent properties. The antibodies of AFP (Ab1, Ab2) were conjugated to the MBs and the c-n-g-C3N4, respectively. In assay of AFP detection, the magnetic part of the immunosensor, MBs-Ab1, would form the sandwich type complex with the signal part of the sensor, c-n-g-C3N4-Ab2. The developed immunosensor could simplify the process of separation due to the MBs. The results illustrated that proposed approach held a good linearity between the fluorescence intensity of the sensor and the AFP concentration ranging from 5-600ng/mL with the limit of detection as low as 0.43ng/mL, and its spiking recoveries ranged from 98.2% to 105.9% with RSD from 2.1% to 3.5%. The fabricated fluorescent immunosensor possesses the merits of good sensitivity, excellent selectivity, high biocompatibility and low cost, and the results provide a novel clue to develop immunosensor for determination of the biomarkers in complex matrices.
Collapse
Affiliation(s)
- Yike Li
- Analytical & Testing Center of Beijing Normal University, Beijing 100875, PR China
| | - Lingyu Dong
- Analytical & Testing Center of Beijing Normal University, Beijing 100875, PR China
| | - Xiangfeng Wang
- Analytical & Testing Center of Beijing Normal University, Beijing 100875, PR China
| | - Yuan Liu
- Analytical & Testing Center of Beijing Normal University, Beijing 100875, PR China
| | - Hailing Liu
- Analytical & Testing Center of Beijing Normal University, Beijing 100875, PR China
| | - Mengxia Xie
- Analytical & Testing Center of Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
34
|
Wang H, Lu Q, Li M, Li H, Liu Y, Li H, Zhang Y, Yao S. Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Anal Chim Acta 2018; 1027:121-129. [PMID: 29866261 DOI: 10.1016/j.aca.2018.03.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 01/20/2023]
Abstract
Although great advances have been achieved in synthesis of fluorescent graphitic carbon nitride quantum dots (g-C3N4-dots), it is still challenging to develop g-C3N4-dots with high fluorescence quantum yield (FLQY) and multiple sensing functionalities. Herein, the oxygen and sulfur co-doped graphitic carbon nitride quantum dots (OS-g-C3N4-dots) with high FLQY of 33.9% were firstly synthesized by a simple electrochemical "tailoring" process. It was found that OS-g-C3N4-dots could specifically bind copper ions (Cu2+) and silver ions (Ag+), accompanied with a dramatic "turn-off" fluorescence response. With the help of different masking agents, OS-g-C3N4-dots are able to selectively detect Cu2+ and Ag+. Furthermore, the generated OS-g-C3N4-dots/Ag+ displayed a "turn-on" fluorescent response specific to biothiols (HCy, Cys and GSH). Therefore, the multiple functional sensing platforms based on "ON-OFF-ON" fluorescence response of OS-g-C3N4-dots for the detection of Cu2+, Ag+ and biothiols were constructed. Under the optimal conditions, the detection limits of Cu2+, Ag+, HCy, Cys and GSH were as low as 7.0 × 10-10 M, 2.0 × 10-9 M, 1.0 × 10-8 M, 1.0 × 10-8 M and 8.4 × 10-9 M, respectively. Moreover, the prepared platforms could be successfully applied to the determination of Cu2+, Ag+ and biothiols in practical samples and exhibited excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Mingxia Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Huan Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Yalan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
35
|
Wang G, Wang S, Yan C, Bai G, Liu Y. DNA-functionalized gold nanoparticle-based fluorescence polarization for the sensitive detection of silver ions. Colloids Surf B Biointerfaces 2018; 167:150-155. [PMID: 29642046 DOI: 10.1016/j.colsurfb.2018.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Despite their practical applications, Ag+ ions are environmental pollutants and affect human health. So the effective detection methods of Ag+ ions are imperative. Herein, we developed a simple, sensitive, selective, and cost-effective fluorescence polarization sensor for Ag+ detection in aqueous solution using thiol-DNA-functionalized gold nanoparticles (AuNPs). In this sensing strategy, Ag+ ions can specifically interact with a cytosine-cytosine (CC) mismatch in DNA duplexes and form stable metal-mediated cytosine-Ag+-cytosine (C-Ag+-C) base pairs. The formation of the C-Ag+-C complex results in evident changes in the molecular volume and fluorescence polarization signal. To achieve our aims, we prepared two complementary DNA strands containing C-base mismatches (probe A: 5'-SH-A10-TACCACTCCTCAC-3' and probe B: 5'-TCCTCACCAGTCCTA-FAM-3'). The stable hybridization between probe A and probe B occurs with the formation of the C-Ag+-C complex in the presence of Ag+ ions, leading to obvious fluorescence quenching in comparison to the system without AuNP enhancement. The assay can be used to identify nanomolar levels of Ag+ within 6 min at room temperature, and has extremely high specificity for Ag+, even in the presence of higher concentrations of interfering metal ions. Furthermore, the sensor was successfully applied to the detection of Ag+ ions in environmental water samples and showed excellent selectivity and high sensitivity, implying its promising application in the future.
Collapse
Affiliation(s)
- Gongke Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Shuangli Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Changling Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Guangyue Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yufang Liu
- School of Physics and Materials Science, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
36
|
Hatamie A, Marahel F, Sharifat A. Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence. Talanta 2018; 176:518-525. [DOI: 10.1016/j.talanta.2017.08.059] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022]
|
37
|
Chandra S, Chowdhuri AR, Mahto TK, Laha D, Sahu SK. Sulphur and nitrogen doped carbon dots: A facile synthetic strategy for multicolour bioimaging, tiopronin sensing, and Hg 2+ ion detection. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Zhuang Q, Sun L, Ni Y. One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 2016; 164:458-462. [PMID: 28107958 DOI: 10.1016/j.talanta.2016.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 01/01/2023]
Abstract
A facile, simple, and relatively environment-friendly hydrothermal approach was developed for one-step synthesis of graphitic carbon nitride nanosheets (GCNNs) using melamine and sodium citrate as the precursors. The prepared GCNNs emit strong fluorescence with a high quantum yield of 48.3%. The GCNNs were then characterized by various techniques including transmission electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis absorption spectroscopy. In addition, the fluorescence quenching behavior of the GCNNS by mercuric ions (Hg2+) was exploited to fabricate a label-free fluorescence quenching sensor for sensitive and selective detection of Hg2+. The results showed that there existed a linear relationship between the fluorescence intensity and the concentration of Hg2+ from 0.001 to 1.0μM with a detection limit of 0.3nM. Finally, the sensor was successfully used to detection of Hg2+ in water and milk samples.
Collapse
Affiliation(s)
- Qianfen Zhuang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Liming Sun
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yongnian Ni
- College of Chemistry, Nanchang University, Nanchang 330031, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|