1
|
Wang X, Yan W, Pang DW, Cai J. From synthesis to chiroptical activities: advancements in circularly polarized luminescent inorganic quantum dots. NANOSCALE 2024; 17:158-186. [PMID: 39574313 DOI: 10.1039/d4nr03600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Circularly polarized luminescence (CPL) in inorganic quantum dots (QDs) represents a burgeoning and dynamic research domain, offering immense potential across a spectrum of applications, including three-dimensional displays, optical data storage, asymmetric catalysis, and chiral sensing. However, the persistent trade-off between fluorescence brightness and the emission dissymmetry factor highlights the nascent stage of current research. This review delves into the synthesis methodologies of CPL QDs, providing an exhaustive analysis of existing approaches and the resulting material properties. It elucidates the critical factors influencing CPL characteristics, such as ligand types, interaction modes, and QD architectures. Furthermore, it synthesizes the theoretical frameworks underlying chirality and CPL generation, ranging from time-dependent density functional theory (TDDFT) to ab initio molecular dynamics (AIMD), thereby deepening the understanding of CPL mechanisms within QDs. The review culminates with a comprehensive exploration of potential applications, alongside a forward-looking perspective on the future trajectory of CPL QD research.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| | - Wenhui Yan
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiarong Cai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
2
|
Mahesha P, Shetty NS, Kulkarni SD, Sinha RK. A selective bis-thiophene chalcone-based spectrofluorimetric sensor for Fe 3. LUMINESCENCE 2024; 39:e4823. [PMID: 38965884 DOI: 10.1002/bio.4823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024]
Abstract
A highly selective bis thiophene-based chalcone as a chemosensor for detecting Fe3+ metal ions in DMF: H2O (9:1). This sensor was selective toward ferric ions over other metal ions with a detection limit in micromolar range.
Collapse
Affiliation(s)
- Priyanka Mahesha
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitinkumar S Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Suresh D Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajeev K Sinha
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
3
|
Ren E, Qiu H, Yu Z, Cao M, Sohail M, Lu GP, Zhang X, Lin Y. Nanozyme sensor array based on Fe, Se co-doped carbon material for the discrimination of Sulfur-containing compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134127. [PMID: 38554521 DOI: 10.1016/j.jhazmat.2024.134127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Developing methods for the accurate identification and analysis of sulfur-containing compounds (SCCs) is of great significance because of their essential roles in living organisms and the diagnosis of diseases. Herein, Se-doping improved oxidase-like activity of iron-based carbon material (Fe-Se/NC) was prepared and applied to construct a four-channel colorimetric sensor array for the detection and identification of SCCs (including biothiols and sulfur-containing metal salts). Fe-Se/NC can realize the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by activating O2 without relying on H2O2, which can be inhibited by different SCCs to diverse degrees to produce different colorimetric response changes as "fingerprints" on the sensor array. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that nine kinds of SCCs could be well discriminated. The sensor array was also applied for the detection of SCCs with a linear range of 1-50 μM and a limit of detection of 0.07-0.2 μM. Moreover, colorimetric sensor array inspired by the different levels of SCCs in real samples were used to discriminate cancer cells and food samples, demonstrating its potential application in the field of disease diagnosis and food monitoring. ENVIRONMENTAL IMPLICATIONS: In this work, a four-channel colorimetric sensor array for accurate SCCs identification and detection was successfully constructed. The colorimetric sensor array inspired by the different levels of SCCs in real samples were also used to discriminate cancer cells and food samples. Therefore, this Fe-Se/NC based sensor array is expected to be applied in the field of environmental monitoring and environment related disease diagnosis.
Collapse
Affiliation(s)
- Enxiang Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haochen Qiu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhixuan Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min Cao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Shruthi B, Revanasiddappa HD, Shivamallu C, Iqbal M, Amachawadi RG, Majani SS, Kollur SP. Highly selective fluorescent and colorimetric methylphenyl-based sensor towards Zn2+ ion detection: Synthesis, X-ray crystallography and selectivity studies. Inorganica Chim Acta 2023; 556:121614. [DOI: 10.1016/j.ica.2023.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
5
|
Wang H, Mu W, Liu Y, Lu Y, Qiu Y, Ma Q. An innovative study on the "on-off-on" detection of sulfur ions based on a TSPP-riboflavin fluorescent probe. RSC Adv 2022; 12:5871-5877. [PMID: 35424537 PMCID: PMC8982097 DOI: 10.1039/d1ra08986b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
In this paper, 5,10,15,20-(4-sulphonatophenyl) porphyrin (TSPP) was synthesized by a facile route and used as a fluorescent probe to construct a sensor system based on the high water solubility and high quantum yield. It was found that when riboflavin (RF) was introduced into the TSPP solution, the fluorescence intensity of TSPP decreased for the peaks at 645 nm and 700 nm based on the principle of the electrostatic attractions and hydrophobic interactions between TSPP and riboflavin. When the fluorescence emission peak of riboflavin appeared at 550 nm, the fluorescence sensor system changed from the "on" state to the "off" state. When sulfur ions (S2-) were further introduced into the TSPP-riboflavin system, the fluorescence intensity of riboflavin was further decreased based on the specific reaction between S2- and riboflavin. However, the fluorescence signal of TSPP was restored and the fluorescence sensing system changed from the "off" state to the "on" state. Therefore, TSPP was used as a fluorescent probe to construct an "on-off-on" fluorescent sensing system, the linear range of S2- detected by this system is 5.0 × 10-9 to 3.6 × 10-5 M, and the detection limit (LOD) is 1.1 × 10-9 M. The sensing system has higher accuracy and sensitivity, and it can be successfully used in the sensing of S2- in real samples.
Collapse
Affiliation(s)
- Huan Wang
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Wencheng Mu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Yuanyuan Liu
- Yinchuan City Center for Disease Control and Prevention Ningxia China
| | - Yongchang Lu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Yuang Qiu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| | - Qin Ma
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University China
| |
Collapse
|
6
|
Shao Y, Yang G, Lin J, Fan X, Guo Y, Zhu W, Cai Y, Huang H, Hu D, Pang W, Liu Y, Li Y, Cheng J, Xu X. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 2021; 11:9262-9295. [PMID: 34646370 PMCID: PMC8490512 DOI: 10.7150/thno.64511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid development of chiral inorganic nanostructures has greatly expanded from intrinsically chiral nanoparticles to more sophisticated assemblies made by organics, metals, semiconductors, and their hybrids. Among them, lots of studies concerning on hybrid complex of chiral molecules with achiral nanoparticles (NPs) and superstructures with chiral configurations were accordingly conducted due to the great advances such as highly enhanced biocompatibility with low cytotoxicity and enhanced penetration and retention capability, programmable surface functionality with engineerable building blocks, and more importantly tunable chirality in a controlled manner, leading to revolutionary designs of new biomaterials for synergistic cancer therapy, control of enantiomeric enzymatic reactions, integration of metabolism and pathology via bio-to nano or structural chirality. Herein, in this review our objective is to emphasize current research state and clinical applications of chiral nanomaterials in biological systems with special attentions to chiral metal- or semiconductor-based nanostructures in terms of the basic synthesis, related circular dichroism effects at optical frequencies, mechanisms of induced optical chirality and their performances in biomedical applications such as phototherapy, bio-imaging, neurodegenerative diseases, gene editing, cellular activity and sensing of biomarkers so as to provide insights into this fascinating field for peer researchers.
Collapse
Affiliation(s)
- Yining Shao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Guilin Yang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiaying Lin
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaofeng Fan
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yue Guo
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wentao Zhu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Ying Cai
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huiyu Huang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wei Pang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
7
|
Prabakaran G, Velmurugan K, Vickram R, David CI, Thamilselvan A, Prabhu J, Nandhakumar R. Triphenyl-imidazole based reversible coloro/fluorimetric sensing and electrochemical removal of Cu 2+ ions using capacitive deionization and molecular logic gates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119018. [PMID: 33096446 DOI: 10.1016/j.saa.2020.119018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
A simple hydroxyl-substituted triphenyl-imidazole based receptor (HTPI) which selectively detects Cu2+ ion by colorimetric and fluorimetric methods was developed. HTPI detects the Cu2+ ions with the absorption enhancement and fluorescence quenching by the possible ligand to metal charge transfer (LMCT) and the chelation-enhanced quenching (CHEQ) approaches, respectively. HTPI showed high selectivity and sensitivity for Cu2+ ions detection over other interfering and competing metal ions. Interestingly, HTPI detects Cu2+ ion (LOD) at nanomolar concentrations (19 × 10-9 M (UV-vis) & 27 × 10-9 M (fluorescence), respectively), which is lower than the permissible level of Cu2+ ion reported by World Health Organization (WHO). Furthermore, HTPI was applied to the molecular logic gate function by using chemical inputs, and Cu2+ ion was potentially removed (95%) via Capacitive Deionization technique.
Collapse
Affiliation(s)
- G Prabakaran
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - K Velmurugan
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - R Vickram
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - C Immanuel David
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - A Thamilselvan
- Electro Organic-Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630 003, India
| | - J Prabhu
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - R Nandhakumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India.
| |
Collapse
|
8
|
Chen S, Sun Y, Li X, Song H. N-acetyl- -cysteine modified CuFe2O4@SiO2 core-shell nanoparticles as chiral probes for recognition of chiral tyrosine. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Wang Z, Xiao X, Yang Y, Zou T, Xing X, Zhao R, Wang Z, Wang Y. L-Aspartic Acid Capped CdS Quantum Dots as a High Performance Fluorescence Assay for Sliver Ions (I) Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1165. [PMID: 31416227 PMCID: PMC6724099 DOI: 10.3390/nano9081165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 01/31/2023]
Abstract
A new high performance fluorescence assay for detection of Ag+ based on CdS quantum dots (QDs) using L-Aspartic acid (L-Asp) as a stabilizer was proposed in this work. The CdS quantum dots conjugation with L-Aspartic acid (L-Asp@CdS QDs) were successfully synthesized via a simple hydrothermal process. The QDs have a fluorescence emission band maximum at 595 nm with a quantum yield of 11%. The obtained CdS QDs exhibit a particle size of 1.63 ± 0.28 nm and look like quantum dot flowers. Basically, the fluorescence intensity of L-Asp@CdS QDs can be enhanced only upon addition of Ag+ and a redshift in the fluorescence spectrum was observed. Under optimum conditions, the fluorescence enhancement of L-Asp@CdS QDs appeared to exhibit a good linear relationship in between 100-7000 nM (R2 = 0.9945) with the Ag+ concentration, with a detection limit of 39 nM. The results indicated that the L-Asp@CdS QDs were well used in detection for Ag+ as fluorescence probe in aqueous solution with high sensitivity and selectivity. Moreover, the sensing system has been applied in detection Ag+ in real water samples. The recovery test results were 98.6%~113%, and relative standard deviation (n = 5) is less than 3.6%, which was satisfactory.
Collapse
Affiliation(s)
- Zhezhe Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Xuechun Xiao
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Yue Yang
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Tong Zou
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Xinxin Xing
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Rongjun Zhao
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
- Department of Physics, Yunnan University, Kunming 650091, China
| | - Zidong Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China
| | - Yude Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.
| |
Collapse
|
10
|
Ngamdee K, Chaiendoo K, Saiyasombat C, Busayaporn W, Ittisanronnachai S, Promarak V, Ngeontae W. Highly selective circular dichroism sensor based on d-penicillamine/cysteamine‑cadmium sulfide quantum dots for copper (II) ion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:313-321. [PMID: 30579214 DOI: 10.1016/j.saa.2018.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
A highly selective circular dichroism sensor based on cysteamine-capped cadmium sulfide quantum dots (Cys-CdS QDs) was successfully developed for the determination of Cu2+. Basically, the Cys-CdS QDs are not active in circular dichroism spectroscopy. However, the circular dichroism probe (DPA@Cys-CdS QDs) can be simply generated in situ by mixing achiral Cys-CdS QDs with D-penicillamine. The detection principle was based on measuring the circular dichroism signal change upon the addition of Cu2+. The strong CD signal of the DPA@Cys-CdS QDs dramatically decreased in the presence of Cu2+, while other cations did not result in any spectral changes. In addition, the degree of the CD signal decrease was linearly proportional to the concentration of Cu2+ in the range of 0.50-2.25 μM (r2 = 0.9919) with a detection limit of 0.34 μM. Furthermore, the proposed sensor was applied to detect Cu2+ in drinking water samples with %recovery values of 102-114% and %RSD less than 6%.
Collapse
Affiliation(s)
- Kessarin Ngamdee
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanokwan Chaiendoo
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong 21210, Thailand
| | - Vinich Promarak
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong 21210, Thailand
| | - Wittaya Ngeontae
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence for Environmental and Hazardous Waste Management (EHWM), Bangkok 10330, Thailand.
| |
Collapse
|
11
|
A critical review on the metal sensing capabilities of optically active nanomaterials: Limiting factors, mechanism, and performance evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Shaily S, Kumar A, Ahmed N. A coumarin–chalcone hybrid used as a selective and sensitive colorimetric and turn-on fluorometric sensor for Cd2+ detection. NEW J CHEM 2017. [DOI: 10.1039/c7nj02569f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chalcone-based naked-eye colorimetric chemical sensor, (E)-4-hydroxy-3-(3-(4-methoxyphenyl)acryloyl)-2H-chromen-2-one 1a, was developed for selective and sensitive recognition of Cd2+ in mixed aqueous–organic media.
Collapse
Affiliation(s)
- Shaily Shaily
- Department of Chemistry
- Indian Institute of Technology
- Roorkee–247667
- India
- Department of Chemistry
| | - Ajay Kumar
- Department of Chemistry
- D.B.S. (P.G.) College
- Dehradun–248001
- India
| | - Naseem Ahmed
- Department of Chemistry
- Indian Institute of Technology
- Roorkee–247667
- India
| |
Collapse
|