1
|
Zeng YW, He AQ, Yang LM, Ozaki Y, Noda I, Xu YZ. Patterns of Cross-Peaks in Two-Dimensional Correlation Spectra to Probe Intermolecular Interactions Described by Two Reversible Reactions. APPLIED SPECTROSCOPY 2024:37028241245136. [PMID: 38646741 DOI: 10.1177/00037028241245136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Two-dimensional correlation spectroscopy is used to investigate the intermolecular interaction between two substances dissolved in the same solutions, where the intermolecular interaction is described by two reversible reactions producing two supramolecular aggregates. The severe overlappings expected among the characteristic peaks of the original solute and aggregates make conventional one-dimensional spectra difficult to accurately reflect the physiochemical nature of the intermolecular interaction. The double asynchronous orthogonal sample design (DAOSD) approach is utilized to analyze the simulated data for proof-of-principle demonstration. The patterns of cross-peaks are much more complex compared with the intermolecular interaction described by only a single reaction. Four major groups of cross-peaks with characteristic patterns observed in the pair of DAOSD asynchronous spectra are systematically analyzed and classified. Further analysis of the spectral feature of the cross-peaks of the DAOSD asynchronous spectra is helpful to exact additional information concerning the variation of the peak position and peak width of the aggregates compared with those of the original solute. The result is important to reveal the physicochemical nature of intermolecular interaction between the solutes (e.g., changes in conformation, dynamical behavior, etc.). The pattern of cross-peaks in the corresponding 2D asynchronous spectra may become rather complex when the peak position, peak width, and peak intensity of two supramolecular aggregates change simultaneously. Further work using artificial intelligence techniques to interpret the complex cross-peaks is still being carried out.
Collapse
Affiliation(s)
- Yi-Wei Zeng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - An-Qi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Li-Min Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
2
|
Zhang X, Ni L, He A, Yang L, Noda I, Ozaki Y, Guo R, Xu Y. A new apparatus and the relevant method to retrieve IR spectra of solutes from the corresponding aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122598. [PMID: 36996520 DOI: 10.1016/j.saa.2023.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
An apparatus and relevant approach to obtaining IR spectra of solutes from the corresponding aqueous solution were developed. In the experiment, aqueous solutions were converted into aerosols using an ultrasonic or a pneumatic device. Subsequently, water in the nebulized solution is completely gasified under a high-speed flow and low vacuum environment. Via this process, the aqueous solution changes into a mixture of a solute or solutes and gaseous water, whose single-beam IR spectra are collected. Then, the newly developed RMF (retrieving moisture-free IR spectrum) method and the relevant approach described in our recent papers have been adopted to treat the resultant single-beam sample spectrum. As a result, the spectral contribution of the vibrational-rotational peaks of gaseous water can be removed or significantly attenuated, and IR spectra of solutes can be obtained. The approach shows an obvious advantage in retrieving the IR spectrum of volatile solutes from its aqueous solution. This capability is showcased by obtaining IR spectra of isopropanol and ethyl acetate successfully. IR spectra of these compounds can be retrieved even if the concentration of the solute is below 10 wt%. Moreover, atomization via ultrasonic/pneumatic methods offers a mild way to gasify solutes whose boiling points are remarkably higher than that of water. This advantage is manifested by acquiring IR spectra of 1-butanol and 1,2-propanediol in the gaseous phase under ambient conditions.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Lei Ni
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Ran Guo
- PerkinElmer Inc., Jiuxianqiao Road, 14, Chaoyang District, Beijing 100015, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
3
|
Xie L, Guo R, Yang L, Ozaki Y, Noda I, Xu Y, Huang K. A new approach to recognizing the correct pattern of cross-peaks from a noisy 2D asynchronous spectrum by detecting intrinsic symmetry via the Kolmogorov-Smirnov test. Phys Chem Chem Phys 2023; 25:12863-12871. [PMID: 37165857 DOI: 10.1039/d2cp05350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The characteristic cluster pattern of cross-peaks in a 2D asynchronous spectrum provides an effective way to reveal the specific physicochemical nature of subtle spectral changes caused by intermolecular interactions. However, the inevitable presence of noise in the 1D spectra used to construct a 2D asynchronous spectrum is significantly amplified, which poses a serious challenge in identifying the correct cluster pattern of the cross-peaks. While mirror symmetry occurs in some types of cross-peaks, it does not occur in other types. The Kolmogorov-Smirnov test provides a statistical means to check whether the mirror symmetry exists or not between a pair of cross-peaks covered by heavy noise. Thus, different types of cross-peak clusters can be distinguished by excavating intrinsic spectral features from the noisy 2D asynchronous spectrum. The effectiveness of this approach in investigating the nature of intermolecular interactions was showcased in both a simulated model system and a real artemisinin/N-methyl pyrrolidone system.
Collapse
Affiliation(s)
- Linchen Xie
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Beijing CKC, PerkinElmer Inc., Beijing 100015, P. R. China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Kun Huang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
De Géa Neves M, Noda I, Siesler HW. Investigation of bread staling by handheld NIR spectroscopy in tandem with 2D-COS and MCR-ALS analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
5
|
Zhang X, Li T, He A, Yang L, Noda I, Ozaki Y, Xu Y. Comprehensive modified approaches to reducing the interference of moisture from an FTIR spectrum and the corresponding second derivative spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122004. [PMID: 36327803 DOI: 10.1016/j.saa.2022.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
We proposed a modified and improved approach to removing the interference of moisture from an IR spectrum and the corresponding second derivative spectrum. The temperature fluctuation in the air of the optical path and baseline-drift lead to the small but persistent presence of the interference of moisture. The problem has been successfully addressed by adopting a double-matching strategy. Additionally, two-dimensional correlationspectra (2D-COS) are generated using the second derivative or third derivative spectrum of the negative base 10 logarithms of the single-beam spectra, thereby removing the linear slope or quadratic portion of baseline-drift. Using the newly adopted approach, the residual interferences of moisture are attenuated. We applied the new approach to the IR spectra and the second derivative spectra of neat hexadecanol and biaxially oriented polypropylene (BOPP) film, and some promising preliminary results are obtained. In hexadecanol, two highly overlapping peaks at 1464 and 1463 cm-1 are revealed. In BOPP, the envelope at 1458 cm-1 is found to be composed of a number of sub-peaks.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Li
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
6
|
Xie L, He A, Han J, Wu Y, Li D, Li X, Yang L, Huang K, Ozaki Y, Noda I, Xu Y. Robust Approach to Estimating the Stoichiometric Ratio of Supramolecular Complexes Using the Volume of Cross-Peaks in 2D Asynchronous Spectra and the Jonckheere–Terpstra Test. Anal Chem 2022; 94:15621-15630. [DOI: 10.1021/acs.analchem.2c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linchen Xie
- School of Biology and Medicine, Beijing City University, Beijing 100094, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jia Han
- School of Biology and Medicine, Beijing City University, Beijing 100094, China
| | - Yi Wu
- School of Biology and Medicine, Beijing City University, Beijing 100094, China
| | - Da Li
- School of Biology and Medicine, Beijing City University, Beijing 100094, China
| | - Xiaopei Li
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Kun Huang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Zhou B, Wang H, Hu S, Yan Q, Zhang P. Effects of montmorillonite (MMT) on the crystallization behavior of poly(L-lactic acid) (PLLA) by variable-temperature FTIR coupled with difference spectrometry, PCMW2D and 2DCOS analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121289. [PMID: 35472702 DOI: 10.1016/j.saa.2022.121289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Effects of montmorillonite (MMT) on the crystallization behavior of poly(L-lactic acid) (PLLA) were investigated by variable-temperature FTIR spectroscopy. The variations of carbonyl band (1800-1720 cm-1) of different PLLA/MMT nanocomposites were focused due to its strong intensity and the involved abundant structure information. Difference spectrometry was used to evaluate the structural variations of PLLA after introducing MMT, and perturbation correlation moving window two-dimensional analysis (PCMW2D) split the temperature range into two sub-regions, i.e., 32-116 ℃ and 116-152 ℃, on the basis of the spectral variation. Two-dimensional correlation spectroscopy (2DCOS) was further applied to such sub-regions in order to find the change order between varied PLLA polymorphs. The results showed that less addition of MMT (≤3%) would lead to a well-exfoliated structure, which not only had no nucleation effect for PLLA, but also delayed the cold crystallization to a higher temperature compared with the one of pure PLLA. However, a higher addition of MMT (≥5%) would lead to an intercalated structure, which acted as a nucleating agent and thus advanced the cold crystallization to a lower temperature. Nevertheless, the introduction of MMT cannot affect the phase transition order between the amorphous, the intermediate, the α'- and the α'-PLLAs based on 2DCOS results.
Collapse
Affiliation(s)
- Bingyao Zhou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Hu
- Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi Yan
- Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pudun Zhang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
He A, Ni L, Fu H, Zhang X, Yu ZQ, Song J, Yang L, Xu Y, Ozaki Y, Noda I. Retrieving Spectra of Pure Components from the DOSY-NMR Experiment via a Comprehensive Approach Involving the 2D Asynchronous Spectrum, 2D Quotient Spectrum, and Genetic Algorithm Refinement. Anal Chem 2022; 94:12360-12367. [PMID: 36048426 DOI: 10.1021/acs.analchem.2c01386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When diffusion coefficients of different components in a mixture are similar, NMR spectra of pure individual components are difficult to be obtained via a diffusion-ordered spectroscopy (DOSY) experiment. Two-dimensional correlation spectroscopy (2D-COS) is used to analyze the data from the DOSY experiment. Through the properties of the systematic absence of cross-peak (SACP) in the 2D asynchronous spectra, spectra of pure components can be obtained even if their diffusion coefficients are similar. However, fluctuations in peak-position and peak-width are often unavoidable in NMR spectra, which makes SACPs unrecognizable. To address the problem, a 2D quotient spectrum is used to identify the masked SACPs. However, undesirable interference peaks due to the fluctuations in peak-position and peak-width are still present when we extract a spectrum of a component by slicing the 2D asynchronous spectrum across the SACP. A genetic algorithm (GA) is used to select a suitable subset of spectra where the diversities of peak-position and peak-width are significantly reduced. Then, we used the selected spectra to construct a refined 2D asynchronous spectrum so that the spectra of pure components with significant attenuated interference can be obtained. The above approach has been proven to be effective on a model system and a real-world example, demonstrating that 2D-COS possesses a bright perspective in the analysis of the bilinear data from DOSY experiments.
Collapse
Affiliation(s)
- Anqi He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lei Ni
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hui Fu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Analytical Instrumentation Center, Peking University, Beijing 100871, P. R. China
| | - Xiu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Analytical Instrumentation Center, Peking University, Beijing 100871, P. R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Li K, Zhou F, He A, Guo R, Yang L, Zhao Y, Xu Y, Noda I, Ozaki Y. Random swapping, an effective and efficient way to boost the intensities of cross peaks in a 2D asynchronous spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120968. [PMID: 35152094 DOI: 10.1016/j.saa.2022.120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Analysis of mixture via chromatographic-spectroscopic and analogous experiments is a common task in analytical chemistry. A 2D/nD asynchronous spectrum is effective in retrieving spectra of pure substances even if different components cannot be separated. However, noise in the 2D/nD asynchronous spectrum becomes a bottleneck in the analysis. Finding a suitable sequence of the 1D spectra used in constructing the 2D/nD asynchronous spectrum is helpful to improve the signal-to-noise level. A 2D/nD asynchronous spectrum is often produced via a large number of 1D spectra. The resultant colossal number of the possible sequences makes stochastic search the only possible way to find a suitable sequence. Random changing (RC) and random swapping (RS) are two ways to obtain a new sequence. We found that the possibility of finding a better sequence via an RS is significantly higher than that via an RC in the advanced stage of stochastic searching. This is the reason why the performance of RS is superior to that of RC in two model systems where 2D asynchronous spectra are used. We applied the RS approach on the analysis of water/isopropanol mixtures, and satisfactory sequences are acquired with affordable computational cost. Thus, the RS approach brings about an opportunity increase the signal-to-noise level of a 2D asynchronous spectrum in the analysis of the bilinear data from complex mixed samples.
Collapse
Affiliation(s)
- Kaili Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Beijing CKC, PerkinElmer Inc., Beijing 100015, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Changshu Hi-Tech Industrial Development Zone, Suzhou 215500, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1337, Japan
| |
Collapse
|
10
|
He AQ, Yu ZQ, Song J, Yang LM, Xu YZ, Noda I, Ozaki Y. Novel Method for Extracting the Spectrum of a Supramolecular Complex via a Comprehensive Approach Involving Two-Dimensional Correlation Spectroscopy, Genetic Algorithm, and Grid Searching. Anal Chem 2022; 94:2348-2355. [PMID: 35041394 DOI: 10.1021/acs.analchem.1c05209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A supramolecular complex may be formed by two solutes via a weak intermolecular interaction in a solution. The spectrum of the complex is often inundated by the spectra of the solutes that are not involved in the intermolecular interaction. Herein, a novel spectral analysis approach is proposed to retrieve the spectrum of the supramolecular complex. First, a two-dimensional (2D) asynchronous spectrum is constructed. Then, a genetic algorithm is used to obtain a heuristic spectrum of the supramolecular complex. The heuristic spectrum is a linear combination of the spectrum of the complex and the spectrum of a solute. The coefficients of the linear combination are then obtained, according to which the equilibrium constants are invariant among the sample solutions used to construct the 2D asynchronous spectrum. We have applied the approach to a supramolecular system formed by benzene and I2. In the analysis, several binding models are evaluated, and a benzene molecule interacting with two iodine molecules via halogen bonding turns out to be the only possible model. Hence, the characteristic band of the benzene/I2 supramolecular complex around 1819 cm-1 in the Fourier transform infrared (FTIR) spectrum and the corresponding equilibrium constant are obtained. The above results indicate that the novel approach provides a chance to get new insight into various intermolecular interactions studied by spectroscopy.
Collapse
Affiliation(s)
- An-Qi He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Li-Min Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, P. R. China
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
11
|
Zhang X, He A, Guo R, Zhao Y, Yang L, Morita S, Xu Y, Noda I, Ozaki Y. A new approach to removing interference of moisture from FTIR spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120373. [PMID: 34547685 DOI: 10.1016/j.saa.2021.120373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
An approach is developed to remove the interference of moisture from FTIR spectra. The interference arises from two aspects: the fluctuation on the temperature of the HeNe laser and the fluctuation on the transient concentration of moisture in the light - path of an FTIR spectrometer. The temperature fluctuation on the HeNe laser produces a systematic spectral shift between single-beam sample and background spectra, which often makes spectral subtraction method invalid in removing the interference of moisture. Herein, the Carbo similarity metric (the CAB value) is used to reflect the subtle spectral shift. A database of single-beam background spectra is established based on the concept of big-data and the pigeon-hole theory. The spectral shift is corrected by selecting suitable single-beam background spectra from the database to match with the given single-beam sample spectrum according to the CAB value. The interference caused by the fluctuation of the transient concentration of moisture is removed using a comprehensive 2D-COS method. We apply the approach on two polymeric samples to retrieve high-quality spectra and reliable second derivative spectra without the interference of moisture. The present work provides a new opportunity of obtaining the reliable second derivative spectra in the spectral region masked by moisture.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Beijing CKC, PerkinElmer Inc., Beijing 100015, PR China
| | - Ying Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, PR China.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, Osaka 572-8530, Japan
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Suzhou, Jiangsu 215500, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Biological and Environmental Sciences and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
12
|
Li K, Zhou F, He A, Guo R, Li X, Xu Y, Noda I, Ozaki Y, Wu J. Intensity Enhancement of a Two-Dimensional Asynchronous Spectrum Without Noise Level Fluctuation Escalation Using a One-Dimensional Spectra Sequence Change. APPLIED SPECTROSCOPY 2021; 75:422-433. [PMID: 33103490 DOI: 10.1177/0003702820971714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previously, we demonstrated that the intensities of cross-peaks in a two-dimensional asynchronous spectrum could be enhanced using sequence change of the corresponding one-dimensional spectra. This unusual approach becomes useful when the determination of the sequential order of physicochemical events is not essential. However, it was not known whether the level of noise in the two-dimensional asynchronous spectrum was also escalated as the sequence of one-dimensional spectra changed. We first investigated the noise behavior in a two-dimensional asynchronous spectrum upon changing the sequence of the corresponding one-dimensional spectra on a model system. In the model system, bilinear data from a chromatographic-spectroscopic experiment on a mixture containing two components were analyzed using a two-dimensional asynchronous spectrum. The computer simulation results confirm that the cross-peak intensities in the resultant a two-dimensional asynchronous spectrum were indeed enhanced by more than 100 times as the sequence of one-dimensional spectra changed, whereas the fluctuation level of noise, reflected by the standard deviation of the value of a two-dimensional asynchronous spectrum at a given point, was almost invariant. Further analysis on the model system demonstrated that the special mathematical property of the Hilbert-Noda matrix (the modules of all column vectors of the Hilbert-Noda matrix being a near constant) accounts for the moderate variation of the noise level during the changes of the sequence of one-dimensional spectra. Next, a realistic example from a thermogravimetry-Fourier transform infrared spectroscopy experiment with added artificial noise in seven one-dimensional spectra was studied. As we altered the sequence of the seven FT-IR spectra, the variation of the cross-peak intensities covered four orders of magnitude in the two-dimensional asynchronous spectra. In contrast, the fluctuation of noise in the two-dimensional asynchronous spectra was within two times. The above results clearly demonstrate that a change in the sequence of one-dimensional spectra is an effective way to improve the signal-to-noise level of the two-dimensional asynchronous spectra.
Collapse
Affiliation(s)
- Kaili Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Jiangsu JITRI Molecular Engineering Inst. Co., Ltd, Suzhou, China
| | - Xiaopei Li
- Instrumental Analysis Center, 12400Dalian Polytechnic University, Dalian, China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Jiangsu JITRI Molecular Engineering Inst. Co., Ltd, Suzhou, China
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
- Department of Chemistry, School of Science and Technology, 12907Kwansei Gakuin University, Hyogo, Japan
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, 12465Peking University, Beijing, China
| |
Collapse
|
13
|
Kang XY, He AQ, Guo R, Yang LM, Cheng YS, Xu YZ, Liu KX, Chen JE, Ozaki Y, Noda I. Identification of systematic absence of cross-peaks (SACPs) in a two-dimensional asynchronous Spectrum using an auxiliary 2D quotient Spectrum and a statistical test. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118789. [PMID: 32799191 DOI: 10.1016/j.saa.2020.118789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Systematic Absence of Cross Peaks (SACPs) in a two-dimensional (2D) asynchronous spectrum, a sensitive indicator of the signal purity, is very important in analyzing bilinear data. However, identification of SACPs in practice remains a challenge because of noise in the corresponding 2D asynchronous spectrum. We firstly show that SACP can be identified via a statistical test using a large amount of 2D asynchronous spectra. To meet the practical demand that SACPs must be identified based on a single 2D asynchronous spectrum in many cases, we use a 2D quotient spectrum (Q (x, y)) as an effective auxiliary tool to recognize SACPs. The expectation of Q(x, y) is zero when (x, y) is within SACP or background regions in the corresponding 2D asynchronous spectrum. When (x, y) is in a cross-peak region, the expectation of the absolute value of Q(x, y) is a constant regardless of whether the cross-peak in a 2D asynchronous spectrum is strong or weak. Thus, a unified threshold can be set up to differentiate the SACP region from cross-peak region via the auxiliary 2D quotient spectrum. We have applied this approach on two real-world examples and satisfactory results have been obtained. This result demonstrates that the statistical test with a 2D quotient spectrum is applicable in real-world systems.
Collapse
Affiliation(s)
- Xiao-Yan Kang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
| | - An-Qi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ran Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Suzhou, Jiangsu 215500, China
| | - Li-Min Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China.
| | - Yuan-Shan Cheng
- Department of Psychology, Nanyang Technological University, Singapore, city, 639798, Singapore
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Suzhou, Jiangsu 215500, China.
| | - Ke-Xin Liu
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
| | - Jia-Er Chen
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
14
|
Jin Q, Ma L, Zhou W, Himmelhaver C, Chintalapalle R, Shen Y, Li X. Strong interaction between Au nanoparticles and porous polyurethane sponge enables efficient environmental catalysis with high reusability. Catal Today 2020; 358:246-253. [PMID: 33716402 PMCID: PMC7944585 DOI: 10.1016/j.cattod.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel and recoverable platform of polyurethane (PU) sponge-supported Au nanoparticle catalyst was obtained by a water-based in-situ preparation process. The structure, chemical, and morphology properties of this platform were characterized by XRD, TGA, SEM, FT-IR, and XPS. The Au/PU sponge platform exhibited excellent catalytic performances in catalytic reductions of p-nitrophenol and o-nitroaniline at room temperature, and both catalytic reactions could be completed within 4.5 and 1.5 min, respectively. Furthermore, the strong interaction between Au nanoparticles and the PU sponge enabled the catalyst system to maintain a high catalytic efficiency after 5 recycling times, since the PU sponge reduced the trend of leaching and aggregation of Au nanoparticles. The unique nature of Au nanoparticles and the porous PU sponge along with their strong interaction resulted in a highly efficient, recoverable, and cost-effective multifunctional catalyst. The AuNP/Sponge nanocatalyst platform has great potential for wide environmental and other catalytic applications.
Collapse
Affiliation(s)
- Qijie Jin
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Cindy Himmelhaver
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Ramana Chintalapalle
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yuesong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
- Environmental Science and Engineering, Biomedical Engineering, Border Biomedical Research Center University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
15
|
|
16
|
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal Chim Acta 2020; 1133:150-177. [PMID: 32993867 DOI: 10.1016/j.aca.2020.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Infrared (IR; or mid-infrared, MIR; 4000-400 cm-1; 2500-25,000 nm) spectroscopy has become one of the most powerful and versatile tools at the disposal of modern bioscience. Because of its high molecular specificity, applicability to wide variety of samples, rapid measurement and non-invasivity, IR spectroscopy forms a potent approach to elucidate qualitative and quantitative information from various kinds of biological material. For these reasons, it became an established bioanalytical technique with diverse applications. This work aims to be a comprehensive and critical review of the recent accomplishments in the field of biomolecular and bioanalytical IR spectroscopy. That progress is presented on a wider background, with fundamental characteristics, the basic principles of the technique outlined, and its scientific capability directly compared with other methods being used in similar fields (e.g. near-infrared, Raman, fluorescence). The article aims to present a complete examination of the topic, as it touches the background phenomena, instrumentation, spectra processing and data analytical methods, spectra interpretation and related information. To suit this goal, the article includes a tutorial information essential to obtain a thorough perspective of bio-related applications of the reviewed methodologies. The importance of the fundamental factors to the final performance and applicability of IR spectroscopy in various areas of bioscience is explained. This information is interpreted in critical way, with aim to gain deep understanding why IR spectroscopy finds extraordinarily intensive use in this remarkably diverse and dynamic field of research and utility. The major focus is placed on the diversity of the applications in which IR biospectroscopy has been established so far and those onto which it is expanding nowadays. This includes qualitative and quantitative analytical spectroscopy, spectral imaging, medical diagnosis, monitoring of biophysical processes, and studies of physicochemical properties and dynamics of biomolecules. The application potential of IR spectroscopy in light of the current accomplishments and the future prospects is critically evaluated and its significance in the progress of bioscience is comprehensively presented.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Zhou B, Hu S, Zhang P. Isothermal crystalline polymorphs of poly(l-lactic acid) by FTIR coupled with two-dimensional correlation spectroscopy and perturbation-correlation moving-window two-dimensional analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117953. [PMID: 31865107 DOI: 10.1016/j.saa.2019.117953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The evolutions of the crystalline polymorphs of poly(l-lactic acid) (PLLA) at 85 °C and 145 °C were respectively studied by Fourier transform infrared (FTIR) spectroscopy coupled with two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analysis in the carbonyl stretching band region (1820-1720 cm-1). The perturbation region was divided into a few sub-regions by PCMW2D based on the spectral variations. Further 2DCOS analyses were implemented on these sub-regions. Four stages were identified for crystallization at 85 °C, in which the transformation of amorphous PLLA to α'-PLLA was found in the initial stage (0-30 min), while some of α'-PLLA was also changed to α-PLLA in the growth stage (30-150 min). For isothermal crystallization at 145 °C, the amorphous and the intermediate PLLAs were first changed to the crystalline forms in the initial period (0-30 min), then alternate changes between α-, α'- and intermediate phases occurred in the other periods with the extension of crystallization.
Collapse
Affiliation(s)
- Bingyao Zhou
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Hu
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pudun Zhang
- College of Chemistry, Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
18
|
Guo R, Zhang X, He AQ, Yu ZQ, Ling XF, Xu YZ, Noda I, Ozaki Y, Wu JG. Sample–Sample Correlation Asynchronous Spectroscopic Method Coupled with Multivariate Curve Resolution-Alternating Least Squares To Analyze Challenging Bilinear Data. Anal Chem 2019; 92:1477-1484. [DOI: 10.1021/acs.analchem.9b04730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ran Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Xin Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, P.R. China
| | - An-Qi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Xiao-Feng Ling
- The Third School of Clinical Medicine of Peking University, Beijing 100083, P.R. China
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Jin-Guang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
19
|
Guo R, Zhang X, He AQ, Zhang F, Li QB, Zhang ZY, Tauler R, Yu ZQ, Morita S, Xu YZ, Noda I, Ozaki Y, Wu JG. A novel systematic absence of cross peaks-based 2D-COS approach for bilinear data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117103. [PMID: 31146205 DOI: 10.1016/j.saa.2019.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
A novel approach to use two-dimensional correlation spectroscopy (2D-COS) to analyze bilinear data is proposed. A phenomenon called Systematic Absence of Cross Peaks (SACPs) is observed in a 2D asynchronous spectrum. Two theorems relevant to SACPs have been derived. The SACP-based 2D-COS method has been successfully applied on analyzing bilinear data from mixed samples (including one model system and two real systems). Implicit isolated peaks can be identified and assigned to different components based on characteristic pattern of SACPs even if the time-related profiles of different components are severely overlapped. Based on the results of SACPs, spectra of pure components can be retrieved. Identification of SACPs can still be achieved in the presence of artifacts. Thus, neither noise nor baseline drift can produce significant influence on the results obtained from the approach described in this paper. We have used several well-established chemometric methods, including N-Findr, VCA, and MCR with various initial settings, on two systems that can be successfully solved using the 2D-COS method. The chemometric methods mentioned above cannot provide correct spectra of pure components because of severe problem of rotational ambiguity derived from severe overlapping of the time-related profiles. Only when the information from SACPs in 2D-COS is used as additional constraints in MCR calculation, correct spectra can be obtained. That is to say, the SACP-based 2D-COS method provides intrinsic information which is crucial in the analysis of chromatographic-spectroscopic and analogous data even if the time-related profiles of different components overlap severely.
Collapse
Affiliation(s)
- Ran Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Xin Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - An-Qi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Fei Zhang
- Analytical Instrumentation Center, Peking University, Beijing 100871, PR China
| | - Qing-Bo Li
- School of Instrumentation Science and Opto-Electronics Engineering, Precision Opto-Mechatronics Technology Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
| | - Zhuo-Yong Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Roma Tauler
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, Osaka, Japan
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Chemistry, School of Science and Engineering, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Jin-Guang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
20
|
Guo R, Zhang X, Zhang F, Zhang ZY, Yu ZQ, Xu YZ, Noda I, Ozaki Y. A preliminary study on constructing a high-dimensional asynchronous spectrum to analyze bilinear data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:76-84. [PMID: 30877894 DOI: 10.1016/j.saa.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
A novel approach to constructing high-dimensional asynchronous spectra (nD-Asyn) is proposed. Three theorems relevant to 1D slices of nD-Asyn are revealed. nD-Asyn is used to analyze bilinear data from mixtures containing multiple components obtained via hyphenated techniques. The spectral contribution of different components can be removed in a stepwise manner by increasing the dimensions of asynchronous spectra. As a result, the spectra of different components can be faithfully recovered even if the time-related profiles of different components severely overlap. Moreover, correct results can still be obtained via the nD-Asyn even if a considerable level of noise and baseline drift are present. The nD-Asyn approach is compared with MCR-ALS using different constraints in analyzing the data for a simulated and also for a real system. The nD-Asyn produced correct spectrum of every component. Only when complete constraints obtained from nD-Asyn method is utilized in the MCR-ALS calculation, correct spectra of all the components can be obtained. Thus, nD-Asyn can be used alone or in conjunction with MCR-ALS to analyze bilinear data containing contributions of multiple components.
Collapse
Affiliation(s)
- Ran Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Key laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Xin Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Fei Zhang
- Analytical Instrumentation Center, Peking University, Beijing 100871, PR China
| | - Zhuo-Yong Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Yi-Zhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|