1
|
Nica MA, Anuța V, Nicolae CA, Popa L, Ghica MV, Cocoș FI, Dinu-Pîrvu CE. Exploring Deep Eutectic Solvents as Pharmaceutical Excipients: Enhancing the Solubility of Ibuprofen and Mefenamic Acid. Pharmaceuticals (Basel) 2024; 17:1316. [PMID: 39458957 PMCID: PMC11510164 DOI: 10.3390/ph17101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. Methods: A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients. MNT-based DESs exhibited the most significant solubility enhancements. Results: IBU solubility reached 379.69 mg/g in MNT: PEG 400 (1:1) and 356.3 mg/g in MNT:oleic acid (1:1), while MFA solubility peaked at 17.07 mg/g in MNT:Miglyol 812®N (1:1). In contrast, solubility in hydrophilic DES systems was significantly lower, with choline chloride: glycerol (1:2) and arginine: glycolic acid (1:8) showing the best results. While demonstrating lower solubility compared to the MNT-based systems, sugar-based DESs exhibited increased tunability via water and glycerol addition both in terms of solubility and physicochemical properties, such as viscosity and surface tension. Conclusions: Our study introduces novel DES systems, expanding the repertoire of pharmaceutically acceptable DES formulations and opening new avenues for the rational design of tailored solvent systems to overcome solubility challenges and enhance drug delivery.
Collapse
Affiliation(s)
- Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristian Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Florentina-Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-A.N.); (L.P.); (M.V.G.); (F.-I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
2
|
Ma H, Zhao Y, He W, Wang J, Hu Q, Chen K, Yang L, Ma Y. Quantitative analysis of three ingredients in Salvia miltiorrhiza by near infrared spectroscopy combined with hybrid variable selection strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124273. [PMID: 38615417 DOI: 10.1016/j.saa.2024.124273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Rosmarinic acid (RA), Tanshinone IIA (Tan IIA), and Salvianolic acid B (Sal B) are crucial compounds found in Salvia miltiorrhiza. Quickly predicting these components can aid in ensuring the quality of S. miltiorrhiza. Spectral preprocessing and variable selection are essential processes in quantitative analysis using near infrared spectroscopy (NIR). A novel hybrid variable selection approach utilizing iVISSA was employed in this study to enhance the quantitative measurement of RA, Tan IIA, and Sal B contents in S. miltiorrhiza. The spectra underwent 108 preprocessing approaches, with the optimal method being determined as orthogonal signal correction (OSC). iVISSA was utilized to identify the intervals (feature bands) that were most pertinent to the target chemical. Various methods such as bootstrapping soft shrinkage (BOSS), competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), variable combination population analysis (VCPA), successive projections algorithm (SPA), iteratively variable subset optimization (IVSO), and iteratively retained informative variables (IRIV) were used to identify significant feature variables. PLSR models were created for comparison using the given variables. The results fully demonstrated that iVISSA-SPA calibration model had the best comprehensive performance for Tan IIA, and iVISSA-BOSS had the best comprehensive performance for RA and Sal B, and correlation coefficients of cross-validation (R2cv), root mean square errors of cross-validation (RMSECV), correlation coefficients of prediction (R2p), and root mean square errors of prediction (RMSEP) were 0.9970, 0.0054, 0.9990 and 0.0033, 0.9992, 0.0016, 0.9961 and 0.0034, 0.9998, 0.0138, 0.9875 and 0.1090, respectively. The results suggest that NIR spectroscopy, along with PLSR and a hybrid variable selection method using iVISSA, can be a valuable tool for quickly quantifying RA, Sal B, and Tan IIA in S. miltiorrhiza.
Collapse
Affiliation(s)
- Hongliang Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528437, China.
| | - Yu Zhao
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528437, China
| | - Wenxiu He
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528437, China
| | - Jiwen Wang
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528437, China
| | - Qianqian Hu
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528437, China
| | - Kehan Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Lianlin Yang
- National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528437, China
| | - Yonglin Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; National and Local Joint Engineering Research Center for Ultrafine Granular Powder of Herbal Medicine, Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528437, China
| |
Collapse
|
3
|
Rapid Determination of Cellulose and Hemicellulose Contents in Corn Stover Using Near-Infrared Spectroscopy Combined with Wavelength Selection. Molecules 2022; 27:molecules27113373. [PMID: 35684314 PMCID: PMC9182057 DOI: 10.3390/molecules27113373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
The contents of cellulose and hemicellulose (C and H) in corn stover (CS) have an important influence on its biochemical transformation and utilization. To rapidly detect the C and H contents in CS by near-infrared spectroscopy (NIRS), the characteristic wavelength selection algorithms of backward partial least squares (BIPLS), competitive adaptive reweighted sampling (CARS), BIPLS combined with CARS, BIPLS combined with a genetic simulated annealing algorithm (GSA), and CARS combined with a GSA were used to select the wavelength variables (WVs) for C and H, and the corresponding regression correction models were established. The results showed that five wavelength selection algorithms could effectively eliminate irrelevant redundant WVs, and their modeling performance was significantly superior to that of the full spectrum. Through comparison and analysis, it was found that CARS combined with GSA had the best comprehensive performance; the predictive root mean squared errors of the C and H regression model were 0.786% and 0.893%, and the residual predictive deviations were 3.815 and 12.435, respectively. The wavelength selection algorithm could effectively improve the accuracy of the quantitative analysis of C and H contents in CS by NIRS, providing theoretical support for the research and development of related online detection equipment.
Collapse
|
4
|
Liu J, Jin S, Bao C, Sun Y, Li W. Rapid determination of lignocellulose in corn stover based on near-infrared reflectance spectroscopy and chemometrics methods. BIORESOURCE TECHNOLOGY 2021; 321:124449. [PMID: 33285506 DOI: 10.1016/j.biortech.2020.124449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
In this study, a rapid detection method based on near-infrared reflectance spectroscopy was proposed for measuring the contents of cellulose, hemicellulose and lignin in corn stover. In the basis of strategies of variable selection, feature extraction and nonlinear modeling, BiPLS-PCA-SVM was constructed using backward interval partial least squares combined with principal component analysis and support vector machine, which was used to improve the performance of spectral regression calibration model. For BiPLS-PCA-SVM model, the determination coefficients, root mean squared error and residual predictive deviation for the validation set were 0.906, 0.900% and 3.213 for cellulose; 0.987, 0.797% and 9.071 for hemicellulose; and 0.936, 0.264% and 4.024 for lignin, correspondingly. The results indicate that near-infrared reflectance spectroscopy combined with BiPLS-PCA-SVM can provide a reliable alternative strategy to detect contents of lignocellulosic components for pretreated corn stover in the anaerobic digestion process.
Collapse
Affiliation(s)
- Jinming Liu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Shuo Jin
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changhao Bao
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| | - Wenzhe Li
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
5
|
Tian B, Ding Z, Zong S, Yang J, Wang N, Wang T, Huang X, Hao H. Manipulation of Pharmaceutical Polymorphic Transformation Process Using Excipients. Curr Pharm Des 2020; 26:2553-2563. [PMID: 32053064 DOI: 10.2174/1381612826666200213122302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the pharmaceutical field, it is vital to ensure a consistent product containing a single solid-state form of the active pharmaceutical ingredient (API) in the drug product. However, some APIs are suffering from the risk of transformation of their target forms during processing, formulation and storage. METHODS The purpose of this review is to summarize the relevant category of excipients and demonstrate the availability and importance of using excipients as a key strategy to manipulate pharmaceutical polymorphic transformation. RESULTS The excipient effects on solvent-mediated phase transformations, solid-state transitions and amorphous crystallization are significant. Common pharmaceutical excipients including amino acids and derivatives, surfactants, and various polymers and their different manipulation effects were summarized and discussed. CONCLUSION Appropriate use of excipients plays a role in manipulating polymorphic transformation process of corresponding APIs, with a promising application of guaranteeing the stability and effectiveness of drug dosage forms.
Collapse
Affiliation(s)
- Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiyong Ding
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuyi Zong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinyue Yang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|