1
|
Wasif Baig M, Pederzoli M, Kývala M, Pittner J. Quantum Chemical and Trajectory Surface Hopping Molecular Dynamics Study of Iodine-Based BODIPY Photosensitizer. J Comput Chem 2025; 46:e70026. [PMID: 40068139 PMCID: PMC11896635 DOI: 10.1002/jcc.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 03/15/2025]
Abstract
A computational study of I-BODIPY (2-ethyl-4,4-difluoro-6,7-diiodo-1,3-dimethyl-4-bora-3a,4a-diaza-s-indacene) has been carried out to investigate its key photophysical properties as a potential triplet photosensitizer capable of generating singlet oxygen. Multireference CASPT2 and CASSCF methods have been used to calculate vertical excitation energies and spin-orbit couplings (SOCs), respectively, in a model (mono-iodinated BODIPY) molecule to assess the applicability of the single-reference second-order algebraic diagrammatic construction, ADC(2), method to this and similar molecules. Subsequently, time-dependent density functional theory (TD-DFT), possibly within the Tamm-Dancoff approximation (TDA), using several exchange-correlation functionals has been tested on I-BODIPY against ADC(2), both employing a basis set with a two-component pseudopotential on the iodine atoms. Finally, the magnitudes of SOC between excited electronic states of all types found have thoroughly been discussed using the Slater-Condon rules applied to an arbitrary one-electron one-center effective spin-orbit Hamiltonian. The geometry dependence of SOCs between the lowest-lying states has also been addressed. Based on these investigations, the TD-DFT/B3LYP and TD-DFT(TDA)/BHLYP approaches have been selected as the methods of choice for the subsequent nuclear ensemble approach absorption spectra simulations and mixed quantum-classical trajectory surface hopping (TSH) molecular dynamics (MD) simulations, respectively. Two bright states in the visible spectrum of I-BODIPY have been found, exhibiting a redshift of the main peak with respect to unsubstituted BODIPY caused by the iodine substituents. Excited-state MD simulations including both non-adiabatic effects and SOCs have been performed to investigate the relaxation processes in I-BODIPY after its photoexcitation to theS 1 $$ {\mathrm{S}}_1 $$ state. The TSH MD simulations revealed that intersystem crossings occur on a time scale comparable to internal conversions and that after an initial phase of triplet population growth a "saturation" is reached where the ratio of the net triplet to singlet populations is about 4:1. The calculated triplet quantum yield of 0.85 is in qualitative agreement with the previously reported experimental singlet oxygen generation yield of 0.99± $$ \pm $$ 0.06.
Collapse
Affiliation(s)
- Mirza Wasif Baig
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
- Faculty of Science, Department of Physical and Macromolecular ChemistryCharles UniversityPrague 2Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| | - Mojmír Kývala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| |
Collapse
|
2
|
Jithinraj TK, Saheer VC, Chakkumkumarath L. Chiral 8-aminoBODIPY-based fluorescent probes with site selectivity for the quantitative detection of HSA in biological samples. Analyst 2023; 148:286-296. [PMID: 36533779 DOI: 10.1039/d2an01525k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human serum albumin (HSA) is one of the vital proteins in blood serum, and its optimum level is a reflection of the physiological well-being of an individual. Any abnormalities in serum HSA levels could often be a sign of disguised physiological disorders. The importance of fast and accurate determination of serum HSA levels has led to the development of various quantification methods. Among these, fluorescence-based methods employ molecular probes capable of producing selective responses on interaction with HSA. Herein, we report chiral 8-aminoBODIPY-based probes having blue emission for the quantitative detection of HSA in buffer and human blood serum. A pair of 8-aminoBODIPY enantiomers, namely R-PEB and S-PEB, were synthesized. They exhibited a fast 'turn-on' fluorescence response towards HSA, allowing its detection and quantification. In PBS buffer, R-PEB and S-PEB showed very good sensitivity with a limit of detection (LoD) of 25 nM (KD = 9.84 ± 0.14 μM) and 39 nM (KD = 18.67 ± 0.21 μM), respectively. The linear relationship observed between the fluorescence intensity of R-PEB/S-PEB and the HSA concentration in serum samples allowed us to generate a reference curve for HSA estimation for practical applications. Examination of unknown serum samples showed a good correlation with the results obtained by the benchmark BCG method. Interestingly, the difference in these probes' dissociation constants and LoD indicated their differential binding to HSA. Considering the availability of multiple ligand binding sites in HSA, their binding preferences were investigated in detail by displacement assays using site-specific drugs. These studies showed the preferential affinity of R-PEB towards site II, which was further substantiated using molecular docking studies. However, these displacement assays could not identify the preferred binding site of S-PEB. Blind docking studies indicated that S-PEB occupied a site closer to FA5. Selective binding of R-PEB to site II and its characteristic photophysical response can be utilized to quickly screen potential site II binding drugs.
Collapse
Affiliation(s)
| | | | - Lakshmi Chakkumkumarath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India.
| |
Collapse
|
3
|
Xu L, Zhang T, Huang B, Zheng F, Huang Y, Li Y, Peng Y, Chen L. Chlorophenyl thiophene silicon phthalocyanine: Synthesis, two-photon bioimaging-guided lysosome target, and in vitro photodynamic efficacy. Front Pharmacol 2023; 14:1168393. [PMID: 37124212 PMCID: PMC10133558 DOI: 10.3389/fphar.2023.1168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
The development of efficient photosensitizers with high singlet oxygen quantum yield, strong fluorescent emission, excellent photostability, and specific organelle targeting is in great demand for the enhancement of PDT treatment efficiency. This study designed and synthesized a new two-photon photosensitizer chlorophenyl thiophene axially substituted silicon (IV) phthalocyanine (CBT-SiPc). CBT-SiPc showed specific targeting of lysosomes in living cells and good biocompatibility. Furthermore, high 1O2 generation efficiency and high PDT efficiency in MCF-7 breast cancers under irradiation were also demonstrated. The novel CBT-SiPc showed great potential in the application of lysosome-targeted and two-photon bioimaging-guided photodynamic cancer therapy.
Collapse
Affiliation(s)
- Le Xu
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Tiantian Zhang
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Bingcheng Huang
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | - Fangmei Zheng
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
| | | | - Yuyang Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiru Peng
- College of Chemistry and Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China
- *Correspondence: Yiru Peng, ; Linying Chen,
| | - Linying Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Yiru Peng, ; Linying Chen,
| |
Collapse
|
4
|
Can Karanlık C, Karanlık G, Erdoğmuş A. Water-Soluble Meso-Thienyl BODIPY Therapeutics: Synthesis, Characterization, Exploring Photophysicochemical and DNA/BSA Binding Properties. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Shi Q, Mou C, Xie Z, Zheng M. Exploring BODIPY derivatives as photosensitizers for antibacterial photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 39:102901. [PMID: 35561846 DOI: 10.1016/j.pdpdt.2022.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Abstract
There is urgently needed to develop efficient and safe antimicrobials to replace traditional antibiotics for fighting drug-resistant bacteria. Antimicrobial photodynamic therapy (aPDT), which is a promising antimicrobial strategy that can minimize antibiotic resistance and reduce systemic side effects. Boron-dipyrromethene (BODIPY) is a type of fascinating photosensitizers (PSs) for improving aPDT due to the tunable structures and photophysical features. Herein, six kinds of BODIPY derivatives (BDP1-BDP6) modified with different atoms or groups such as iodine atoms, thiophene, cyano, phenyl, aldehyde and nitro groups were synthesized and their photophysical behaviors were characterized. The results indicated that BDP3, which had 2, 6-diiodo and 8-phenyl substitution, was the best PS candidate with the highest reactive oxygen species (ROS) generation efficacy. BDP3 and BDP5 could rapidly kill Staphylococcus aureus (S. aureus) with the minimum inhibitory concentration (MIC) of 10 nM upon illumination. They also possessed excellent biofilm inhibition ability against S. aureus and could efficaciously restrain the formation of bacterial biofilm. The results of Live/Dead staining assay and scanning electron microscopy (SEM) demonstrated that BDP3 destroyed the cell membrane structure of bacteria by generating ROS, which ultimately led to bacterial lysis and death. Finally, the biosafety evaluation toward the mouse fibroblasts (L929 cells) suggested BDP3 had good cytocompatibility. This work exhibits the great potential of rational designs of PS for aPDT applications.
Collapse
Affiliation(s)
- Qiaoxia Shi
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Chengjian Mou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| |
Collapse
|
6
|
Hu W, Zhang R, Zhang XF, Liu J, Luo L. Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120965. [PMID: 35131619 DOI: 10.1016/j.saa.2022.120965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
We have systematically examined the formation of singlet oxygen O2(1Δg), the excited triplet state (T1), and excited singlet state (S1) for halogenated BODIPY photosensitizers (halogen = Cl, Br, and I) in eight solvents to understand how halogen atoms and solvent affect these properties. The phosphorescence spectra and lifetimes of singlet oxygen generated by these halogenated BODIPYs have been measured by steady state/time resolved NIR emission, while the formation quantum yield of singlet oxygen (ΦΔ) has been determined by chemical method using diphenylisobenzofuran (DPBF) as the trapping agent. The formation quantum yield ΦΔ of singlet oxygen can be as high as 0.96 for iodinated BODIPY and 0.71 for brominated BODIPY. The triplet state T1 absorption spectra of brominated and iodinated BODIPYs have been recorded by laser flash photolysis method, in which T1 shows high formation efficiency and long lifetime. The formation and decay of excited singlet state S1 of four BODIPYs have been measured by ground state (S0) absorption and steady state/time resolved fluorescence. The results show that larger halogen atoms on BODIPY core lead to smaller fluorescence quantum yield, shorter fluorescence lifetime and higher singlet oxygen formation quantum yield due to heavy atom effect that promotes the formation of triplet state. On the other hand, higher solvent polarity causes lower singlet oxygen formation quantum yield, smaller fluorescence quantum yield, and shorter fluorescence lifetime. This solvent effect is explained by the presence of photoinduced charge transfer (ICT) process from halogen atoms to BODIPY. The ICT efficiency has been estimated and the results are agreed with ICT theory. ICT process in halogenated BODIPYs has never been revealed in literature. HOMO/LUMO obtained from DFT calculation also supports the presence of ICT. The involvement of ICT in the photosensitizing process of halogenated BODIPYs provides new insights for designing BODIPY photosensitizers for photodynamic therapy of tumor.
Collapse
Affiliation(s)
- Wenbin Hu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Rui Zhang
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China.
| | - Jiatian Liu
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| | - Lin Luo
- Department of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei Province 066004, China
| |
Collapse
|
7
|
A novel TICT-based near-infrared fluorescent probe for light-up sensing and imaging of human serum albumin in real samples. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Song M, Fu W, Liu Y, Yao H, Zheng K, Liu L, Xue J, Xu P, Chen Y, Huang M, Li J. Unveiling the molecular mechanism of pH-dependent interactions of human serum albumin with chemotherapeutic agent doxorubicin: A combined spectroscopic and constant-pH molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Raskolupova VI, Popova TV, Zakharova OD, Nikotina AE, Abramova TV, Silnikov VN. Human Serum Albumin Labelling with a New BODIPY Dye Having a Large Stokes Shift. Molecules 2021; 26:2679. [PMID: 34063643 PMCID: PMC8124464 DOI: 10.3390/molecules26092679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
BODIPY dyes are photostable neutral derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. These are widely used as chemosensors, laser materials, and molecular probes. At the same time, BODIPY dyes have small or moderate Stokes shifts like most other fluorophores. Large Stokes shifts are preferred for fluorophores because of higher sensitivity of such probes and sensors. The new boron containing BODIPY dye was designed and synthesized. We succeeded to perform an annulation of pyrrole ring with coumarin heterocyclic system and achieved a remarkable difference in absorption and emission maximum of obtained fluorophore up to 100 nm. This BODIPY dye was equipped with linker arm and was functionalized with a maleimide residue specifically reactive towards thiol groups of proteins. BODIPY residue equipped with a suitable targeting protein core can be used as a suitable imaging probe and agent for Boron Neutron Capture Therapy (BNCT). As the most abundant protein with a variety of physiological functions, human serum albumin (HSA) has been used extensively for the delivery and improvement of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare albumin-based multimodal constructions. The released sulfhydryl groups of the homocysteine functional handle in thiolactone modified HSA were labeled with BODIPY dye to prepare a labeled albumin-BODIPY dye conjugate confirmed by MALDI-TOF-MS, UV-vis, and fluorescent emission spectra. Cytotoxicity of the resulting conjugate was investigated. This study is the basis for a novel BODIPY dye-albumin theranostic for BNCT. The results provide further impetus to develop derivatives of HSA for delivery of boron to cancer cells.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Anastasia E. Nikotina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 2, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrent’ev Ave, 8, 630090 Novosibirsk, Russia; (V.I.R.); (T.V.P.); (O.D.Z.); (A.E.N.); (V.N.S.)
| |
Collapse
|
10
|
Klimenko IV, Ksenofontov AA, Klimenko MS, Antina EV, Berezin MB, Lobanov AV. A New Water-Soluble Form of BODIPY Luminophores Based on Cremophor®: Synthesis, Spectral Properties, and in vitro Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s199079312101019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Song M, Liu G, Liu Y, Cheng Z, Lin H, Liu J, Wu Z, Xue J, Hong W, Huang M, Li J, Xu P. Using porphyrins as albumin-binding molecules to enhance antitumor efficacies and reduce systemic toxicities of antimicrobial peptides. Eur J Med Chem 2021; 217:113382. [PMID: 33751980 DOI: 10.1016/j.ejmech.2021.113382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Antimicrobial peptides (AMPs) are originally developed for anti-infective treatments. Because of their membrane-lytic property, AMPs have been considered as candidates of antitumor agents for a long time. However, their antitumor applications are mainly hampered by fast renal clearance and high systemic toxicities. This study proposes a strategy aiming at addressing these two issues by conjugating AMPs with porphyrins, which bind to albumin increasing AMPs' resistance against renal clearance and thus enhancing their antitumor efficacies. Porphyrins' photodynamic properties can further augment AMPs' antitumor effects. In addition, circulating with albumin ameliorates AMPs' systemic toxicities, i.e. hemolysis and organ dysfunctions. As an example, we conjugated an AMP, K6L9, with pyropheophorbide-a (PPA) leading to a conjugate of PPA-K6L9. PPA-K6L9 bound to albumin with a KD value at the sub-micromolar range. Combining computational and experimental approaches, we characterized the molecular interaction of PPA-K6L9 with albumin. Furthermore, PPA-conjugation promoted K6L9' antitumor effects by prolonging its in vivo retention time, and reduced the hemolysis and hepatic injuries, which confirmed our design strategy.
Collapse
Affiliation(s)
- Meiru Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Ge Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Yichang Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Ziwei Cheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Haili Lin
- Department of Pharmacy, The Peoples Hospital of Fujian Province, Fuzhou, China
| | - Jianyong Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Zaisheng Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinping Xue
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A∗STAR (Agency of Science, Technology and Research), 117608, Singapore
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China.
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China; National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fujian, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
12
|
Bakar KA, Feroz SR. A critical view on the analysis of fluorescence quenching data for determining ligand-protein binding affinity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117337. [PMID: 31302564 DOI: 10.1016/j.saa.2019.117337] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 05/03/2023]
Abstract
The past decade has seen an increase in the number of research papers on ligand binding to proteins based on fluorescence spectroscopy. In most cases, determination of the binding affinity is made by analyzing the quenching of protein fluorescence induced by the ligand. However, many such articles, even those published in reputed journals, suffer from several mistakes with regard to analysis of fluorescence quenching data. Using the binding of phenylbutazone to human serum albumin as a model, we consider some of these mistakes and show how they affect the values of the association constant. In particular, the failure to correct for the inner filter effect and the use of unsuitable equations are discussed. Ligand binding data presented in these articles should be treated with caution, especially in the absence of data from complementary techniques.
Collapse
Affiliation(s)
- Khairul Azreena Bakar
- Centre for Biotechnology and Functional Foods, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Shevin Rizal Feroz
- Centre for Biotechnology and Functional Foods, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|