1
|
Ekerim SE, Taşci N, Demirkan MF. Determination of glyphosate with a novel optic membrane sensor. Food Chem 2025; 475:143361. [PMID: 39952180 DOI: 10.1016/j.foodchem.2025.143361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Glyphosate has been a widely used herbicide since the 1970s. However, glyphosate causes serious health problems if exposed to it for a long time. Therefore, quick and reliable determination of glyphosate becomes an important issue. This study proposes a solution to this issue with a highly selective and sensitive fluorescent polymeric membrane sensor for glyphosate determination with a wide linear working range (1-18 ppb) and low detection limit (0.84 ppb). The developed sensor can measure glyphosate at pH 8.0 and is applicable to real samples with recovery percentages varying between 98.4 and 111.5. Additionally, this sensor can respond in a short time and can be reused up to 200 times. The repeatability of the method was found to be 10.47 ± 0.11 at a 95 % confidence level and the relative standard deviation was 1.76 for the analysis results of 10 ppb samples. All these features make proposed method, an ambitious alternative tool for glyphosate detection.
Collapse
Affiliation(s)
- Sabiha Elif Ekerim
- Faculty of Science, Chemistry Department, Gebze Technical University, Kocaeli, Türkiye
| | - Neşe Taşci
- Faculty of Science, Chemistry Department, Gebze Technical University, Kocaeli, Türkiye
| | | |
Collapse
|
2
|
Al-Farhan BS, Hamad AA. The first spectrofluorimetric-based approach for studying stability-indicating assay and quantifying midodrine in its bulk powder, prescribed matrices; application to content homogeneity testing and sustainability evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126257. [PMID: 40273766 DOI: 10.1016/j.saa.2025.126257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
A novel application of a spectrofluorimetric method has been developed and validated for the stability analysis and quantification of midodrine hydrochloride in tablets and crude form. This study describes a technique based on the selective derivatization of midodrine's (MDN) primary amine group with NBD-Cl reagent under a borate buffer system (pH 8.5), yielding a highly fluorescent benzofurazan derivative. The product was measured at λex = 462 nm and λem = 537 nm, demonstrating a linear range of 30-600 ng/mL (r = 0.9998). The method's detection (8.9 ng/mL) and quantitation (26.98 ng/mL) limits were determined. Validation followed ICH guidelines, confirming precision, accuracy (recovery: 98.9-100.7 %), and absence of excipient interference in commercial formulations (tablets and oral drops). The method was applied to assess stress-induced degradation (acid, alkali, oxidation, aqueous, and photolytic conditions) and determine degradation kinetics under each condition. Additionally, content uniformity analysis of tablets was performed per USP guidelines, demonstrating robustness for quality control applications.
Collapse
Affiliation(s)
- Badriah Saad Al-Farhan
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Abdulhafez Hamad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
3
|
Chen D, Wang C, Yang D, Deng H, Li Q, Chen L, Zhao G, Shi J, Zhang K, Yang Y. A portable smartphone-based detection of glyphosate based on inhibiting peroxidase-like activity of heptanoic acid/Prussian blue decorated Fe 3O 4 nanoparticles. RSC Adv 2022; 12:25060-25067. [PMID: 36199893 PMCID: PMC9443076 DOI: 10.1039/d2ra03382h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
The rapid and onsite detection of glyphosate in tobacco products is still a great challenge. In this study, a novel smartphone-assisted sensing platform for the detection of glyphosate has been successfully proposed through the peroxidase-like activity of Fe3O4-based nanozyme. Heptanoic acid/Prussian blue (PB) decorated Fe3O4 nanoparticles (Fe3O4@C7/PB) could catalyze and oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS, colorless) into a steel blue colored product in the presence of hydrogen peroxide. Glyphosate could specifically inhibit the peroxidase-like activity of Fe3O4@C7/PB by occupying the active site, thereby the glyphosate detection could be accomplished within 10 min by monitoring the color change of ABTS. This study has developed a smartphone-based portable detection platform for online analysis of glyphosate with a detection limit of 0.1 μg mL-1. The absorbance response curve of glyphosate showed good linearity in the concentration range of 0.125-15 μg mL-1 at 415, 647, and 730 nm. Moreover, by employing a co-precipitation technology and inhibiting the peroxidase-like activity, the glyphosate analysis would be less affected by the tobacco sample matrix. The nanosensor possesses excellent selectivity and anti-interference ability, which has application value in actual samples for onsite screening.
Collapse
Affiliation(s)
- Dan Chen
- Peking University, School of Materials Science and Engineering Beijing 100871 China
- Yunnan Institute of Tobacco Quality Inspection & Supervision Kunming 650500 China
| | - Chunqiong Wang
- Yunnan Institute of Tobacco Quality Inspection & Supervision Kunming 650500 China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology Kunming 650500 China
| | - Huimin Deng
- China National Tobacco Quality Supervision & Test Center Zhengzhou 450001 China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology Kunming 650500 China
| | - Li Chen
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou China
| | - Gaokun Zhao
- Yunnan Academy of Tobacco Agricultural Sciences Kunming 650021 China
| | - Junli Shi
- Yunnan Academy of Tobacco Agricultural Sciences Kunming 650021 China
| | - Ke Zhang
- Yunnan Institute of Tobacco Quality Inspection & Supervision Kunming 650500 China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology Kunming 650500 China
| |
Collapse
|
4
|
Yang Y, Li L, Lin L, Wang X, Li J, Liu H, Liu X, Huo D, Hou C. A dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for determination of Cu 2+ and glyphosate. Anal Bioanal Chem 2022; 414:2619-2628. [PMID: 35084508 DOI: 10.1007/s00216-022-03898-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Herein, a dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for Cu2+ and glyphosate determination was constructed. Fluorescence silicon nanoparticles (SiNPs) were prepared by hydrothermal reaction, which has maximum fluorescence intensity under the excitation of 355 nm. o-Phenylenediamine (OPD) was oxidized through Cu2+ to generate 2,3-diaminophenazine (oxOPD). The obtained oxOPD showed a strong absorption peak at 417 nm and quenched the fluorescence of SiNPs at 446 nm due to fluorescence resonance energy transfer (FRET). Meanwhile, oxOPD produced a new fluorescence emission at 556 nm forming a ratiometric state. With increasing Cu2+, the original solution changed from colorless to yellow. When glyphosate was present, the interaction between Cu2+ and the functional groups of glyphosate could reduce the oxidation of oxOPD, resulting in the enhancement of fluorescence at 446 nm and the decrease of fluorescence at 556 nm. Furthermore, the addition of glyphosate changed yellow solution to colorless. Under the optimal conditions of OPD (1 mM), 20 mM Tris-HCl buffer (pH 7.5), and incubation time (4 h), the ratiometric fluorescence sensor had good selectivity and showed a wide linear range of 0.025-20 μM with the LOD of 0.008 μM for Cu2+ and 0.15-1.5 μg/mL with the LOD of 0.003 μg/mL for glyphosate, respectively. Besides, it is worth mentioning that this developed sensing system showed good performance in real samples, providing a simple and reliable dual-signal detection strategy.
Collapse
Affiliation(s)
- Yixia Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Li Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Liyun Lin
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, Guangdong, China
| | - Xianfeng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Huan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.,Chongqing Institute for Food and Drug Control, Chongqing, 401121, People's Republic of China
| | - Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China. .,Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
5
|
Sun F, Ye XL, Wang YB, Yue ML, Li P, Yang L, Liu YL, Fu Y. NPA-Cu 2+ Complex as a Fluorescent Sensing Platform for the Selective and Sensitive Detection of Glyphosate. Int J Mol Sci 2021; 22:9816. [PMID: 34575982 PMCID: PMC8469908 DOI: 10.3390/ijms22189816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Glyphosate is a highly effective, low-toxicity, broad-spectrum herbicide, which is extensively used in global agriculture to control weeds and vegetation. However, glyphosate has become a potential threat to human and ecosystem because of its excessive usage and its bio-concentration in soil and water. Herein, a novel turn-on fluorescent probe, N-n-butyl-4-(3-pyridin)ylmethylidenehydrazine-1,8-naphthalimide (NPA), is proposed. It efficiently detected Cu2+ within the limit of detection (LOD) of 0.21 μM and displayed a dramatic turn-off fluorescence response in CH3CN. NPA-Cu2+ complex was employed to selectively and sensitively monitor glyphosate concentrations in real samples accompanied by a fluorescence turn-on mode. A good linear relationship between NPA and Cu2+ of glyphosate was found in the range of 10-100 μM with an LOD of 1.87 μM. Glyphosate exhibited a stronger chelation with Cu2+ than NPA and the system released free NPA through competitive coordination. The proposed method demonstrates great potential in quantitatively detecting glyphosate in tap water, local water from Songhua River, soil, rice, millet, maize, soybean, mung bean, and milk with mild conditions, and is a simple procedure with obvious consequences and no need for large instruments or pretreatment.
Collapse
Affiliation(s)
- Fang Sun
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (F.S.); (Y.-B.W.); (M.-L.Y.); (P.L.); (L.Y.); (Y.-L.L.)
| | - Xin-Lu Ye
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Yu-Bo Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (F.S.); (Y.-B.W.); (M.-L.Y.); (P.L.); (L.Y.); (Y.-L.L.)
| | - Ming-Li Yue
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (F.S.); (Y.-B.W.); (M.-L.Y.); (P.L.); (L.Y.); (Y.-L.L.)
| | - Ping Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (F.S.); (Y.-B.W.); (M.-L.Y.); (P.L.); (L.Y.); (Y.-L.L.)
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (F.S.); (Y.-B.W.); (M.-L.Y.); (P.L.); (L.Y.); (Y.-L.L.)
| | - Yu-Long Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (F.S.); (Y.-B.W.); (M.-L.Y.); (P.L.); (L.Y.); (Y.-L.L.)
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (F.S.); (Y.-B.W.); (M.-L.Y.); (P.L.); (L.Y.); (Y.-L.L.)
| |
Collapse
|
6
|
Li Q, Chai L, Dong G, Zhang X, Du L. NBD-Based Environment-Sensitive Fluorescent Probes for the Human Ether-a-Go-Go-Related Gene Potassium Channel. Front Mol Biosci 2021; 8:666605. [PMID: 34055884 PMCID: PMC8160426 DOI: 10.3389/fmolb.2021.666605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Three environment-sensitive probes were developed for the hERG channel based on the nitrobenzoxadiazole fluorophore herein. After careful evaluation, probes M1 and M3 were found to have a high affinity for imaging the hERG channel in the cell-based experiment. Compared with other fluorescent labeling technologies (such as fluorescent proteins), these probes afford a convenient and economical method to determine hERG channel in vitro and in cellulo. Therefore, these probes are expected to be applicable for usage in physiological and pathological studies of hERG channels and have the potential to establish a screening system for hERG channels.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, China
| | - Lijuan Chai
- Department of Internal Medicine, Hospital of Shandong University, Jinan, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, China
| | - Xiaomeng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, China
| |
Collapse
|
7
|
Sawetwong P, Chairam S, Jarujamrus P, Amatatongchai M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn-ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021; 225:122077. [PMID: 33592801 DOI: 10.1016/j.talanta.2020.122077] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
Abstract
We report a novel three-dimensional microfluidic paper-based analytical device (3D-μPAD) with colorimetric detection, using Mn-ZnS quantum dot embedded molecularly imprinted polymer (Mn-ZnS QD-MIP), for selective glyphosate determination in whole grain samples. Detection is based on the catalytic activity of Mn-ZnS QD-MIP in the H2O2 oxidation of ABTS. Glyphosate imprinted polymer is successfully synthesized on the Mn-ZnS QD surface using a poly (N-isopropylacrylamide) (NIPAM) and N, N'-Methylenebisacrylamide (MBA) as the functional monomers. The catalytic activity depends on binding or non-binding of glyphosate molecules on the synthetic recognition sites of the Mn-ZnS QD-MIP. Glyphosate selectively binds to the cavities embedded on the Mn-ZnS QD surface, and subsequently turns-off or inhibits the ABTS oxidation and color change to light green. The change of reaction color from dark green to light green depends on the concentration of glyphosate. We report, for the first time, using the relatively new penguard enamel colour to create a hydrophobic barrier. The foldable 3D-μPAD comprises three layers (top/center/bottom), named as the detection zone, immobilized Mn-ZnS QD-MIP disc, and sample loading. Assay on the 3D-μPAD can determine glyphosate by ImageJ detection, over an operating range of 0.005-50 μg mL-1 and with a detection limit of 0.002 μg mL-1. Our 3D-μPAD exhibits high accuracy, with a 0.4% (intra-day) and 0.7% (inter-day) relative difference from the certified CRM value. Moreover, the fabricated 3D-μPAD provides good reproducibility (1.7% RSD for ten devices). The developed 3D-μPAD was successfully applied to determine the glyphosate concentration in whole grain samples and shows great promise as an alternative highly selective and sensitive colorimetric method. The 3D-μPAD is well suited to food-quality control and onsite environmental-monitoring applications, without sophisticated instrumentation.
Collapse
Affiliation(s)
- Pornchanok Sawetwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Sanoe Chairam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
8
|
Wu HL, Long WJ, Wang T, Dong MY, Yu RQ. Recent applications of multiway calibration methods in environmental analytical chemistry: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Li C, Begum A, Xue J. Analytical methods to analyze pesticides and herbicides. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1770-1785. [PMID: 32762111 DOI: 10.1002/wer.1431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews studies published in 2019, in the area of analytical techniques for determination of pesticides and herbicides. It should be noted that some of the reports summarized in this review are not directly related to but could potentially be used for water environment studies. Based on different methods, the literatures are organized into six sections, namely extraction methods, electrochemical techniques, spectrophotometric techniques, chemiluminescence and fluorescence methods, chromatographic and mass spectrometric techniques, and biochemical assays. PRACTITIONER POINTS: Totally 141 research articles have been summarized. The review is divided into six parts. Chromatographic and mass spectrometric techniques are the most widely used methods.
Collapse
Affiliation(s)
- Chao Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Afruza Begum
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Canada
| | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Canada
| |
Collapse
|
10
|
Wu HL, Wang T, Yu RQ. Recent advances in chemical multi-way calibration with second-order or higher-order advantages: Multilinear models, algorithms, related issues and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
A system composed of polyethylenimine-capped upconversion nanoparticles, copper(II), hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine for colorimetric and fluorometric determination of glyphosate. Mikrochim Acta 2019; 186:835. [DOI: 10.1007/s00604-019-3936-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/12/2019] [Indexed: 01/18/2023]
|
12
|
Analytical chemistry assisted by multi-way calibration: A contribution to green chemistry. Talanta 2019; 204:700-712. [DOI: 10.1016/j.talanta.2019.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022]
|