1
|
Chen SH, Cao XY, Li HQ, Deng SW, Jiang K, Shen Q, Li H, Wang ZY. Fluorinated benzothiadiazole fluorescent probe based on ICT mechanism for highly selectivity and sensitive detection of fluoride ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124573. [PMID: 38830328 DOI: 10.1016/j.saa.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Excessive fluoride ion (F-) in the environment can affect health and even endanger life when ingested by the human body. However, most fluoride probes have the disadvantages of low sensitivity and long detection time. Herein, fluorescent probe 3a is successfully synthesized by linking two acetylenyltrimethylsilyl groups at both ends of the fluorinated benzothiadiazole core. After the addition of F- to 3a, the emission at 436 nm is significantly quenched and slightly blue-shifted. It is confirmed by electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and density functional theory calculations (DFT) that these changes are due to the F- triggered Si-C bond cleavage and the subsequent inactivation of intramolecular charge transfer (ICT). The detection limit and response time of probe 3a for F- are 10-8 mol/L and 25 s, respectively. Importantly, fluorescent material 3a can be processed into portable test tools for the visual detection of fluoride ion.
Collapse
Affiliation(s)
- Si-Hong Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Huan-Qing Li
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Si-Wei Deng
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Kai Jiang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Qing Shen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Huang Li
- School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Duan J, Ouyang X, Jiang Z, Liu Z, Wang X. Near-infrared fluorescent indolizine-dicyanomethylene-4H-pyran hybrids for viscosity imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124330. [PMID: 38685160 DOI: 10.1016/j.saa.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The development of near-infrared organic fluorescent dyes with tunable emission profiles is highly required in the field of biological sensing and imaging. In this paper, we designed and synthesized two organic fluorescent dyes, DCM-1 and DCM-2, through the hybridization of indolizine and dicyanomethylene-4H-pyran skeleton. These two compounds show near-infrared fluorescence with emission maximum approximately at 640 and 680 nm, respectively. Notably, both DCM-1 and DCM-2 have specific responses to viscosity without being interfered by biological relevant species. Cell experiments demonstrate that DCM-1 and DCM-2 can detect dynamic changes in viscosity within living cells, suggesting their potential applications in chemical biology research.
Collapse
Affiliation(s)
- Jinyu Duan
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Ouyang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhipeng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqing Wang
- College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Wang T, Lv M, Zhang Y, Gao Y, Cai Z, Zhang Y, Song J, Liu J, Yin H, Shang F. TDDFT Study on the ESIPT Properties of 2-(2'-Hydroxyphenyl)-Benzothiazole and Sensing Mechanism of a Derived Fluorescent Probe for Fluoride Ion. Molecules 2024; 29:1541. [PMID: 38611820 PMCID: PMC11013366 DOI: 10.3390/molecules29071541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The level of fluoride ions (F-) in the human body is closely related to various pathological and physiological states, and the rapid detection of F- is important for studying physiological processes and the early diagnosis of diseases. In this study, the detailed sensing mechanism of a novel high-efficiency probe (PBT) based on 2-(2'-hydroxyphenyl)-benzothiazole derivatives towards F- has been fully investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. F- attacks the O-P bond of PBT to cleavage the dimethylphosphinothionyl group, and the potential products were evaluated by Gibbs free energy and spectroscopic analyses, which ultimately identified the product as HBT-Enol1 with an intramolecular hydrogen bond. Bond parameters, infrared vibrational spectroscopy and charge analysis indicate that the hydrogen bond is enhanced at the excited state (S1), favoring excited state intramolecular proton transfer (ESIPT). The mild energy barrier further evidences the occurrence of ESIPT. Combined with frontier molecular orbital (FMO) analysis, the fluorescence quenching of PBT was attributed to the photoinduced electron transfer (PET) mechanism and the fluorescence turn-on mechanism of the product was attributed to the ESIPT process of HBT-Enol1.
Collapse
Affiliation(s)
- Tingting Wang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.W.); (Y.Z.); (Y.G.); (Z.C.); (Y.Z.); (J.S.)
| | - Meiheng Lv
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.W.); (Y.Z.); (Y.G.); (Z.C.); (Y.Z.); (J.S.)
- Research Center of Advanced Biological Manufacture, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Yuhang Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.W.); (Y.Z.); (Y.G.); (Z.C.); (Y.Z.); (J.S.)
| | - Yue Gao
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.W.); (Y.Z.); (Y.G.); (Z.C.); (Y.Z.); (J.S.)
| | - Zexu Cai
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.W.); (Y.Z.); (Y.G.); (Z.C.); (Y.Z.); (J.S.)
| | - Yifan Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.W.); (Y.Z.); (Y.G.); (Z.C.); (Y.Z.); (J.S.)
| | - Jiaqi Song
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (T.W.); (Y.Z.); (Y.G.); (Z.C.); (Y.Z.); (J.S.)
| | - Jianyong Liu
- Research Center of Advanced Biological Manufacture, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Hang Yin
- Research Center of Advanced Biological Manufacture, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Fangjian Shang
- College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China;
| |
Collapse
|
4
|
Zheng Y, Zhai SM, Xiao MM, Dong PZ, Xu JR, Zhao BX. A novel ratiometric fluorescence probe based on the FRET-ICT mechanism for detecting fluoride ions and viscosity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123822. [PMID: 38176193 DOI: 10.1016/j.saa.2023.123822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Fluoride ion is not only important for dental health, but also a contributing factor in a variety of diseases. At the same time, fluoride ions and cell viscosity are both important to the physiological environment of mitochondria. We developed a dual-response ratiometric fluorescent probe BDF based on Förster resonance energy transfer (FRET) and intramolecular charge transfer (ICT) mechanism for the detection of F- and viscosity. BDF has an outstanding intramolecular energy transfer efficiency of 97.7% and shows excellent performance for fluorine ion detection. In addition, when the system viscosity increases, the fluorescence emission intensity of BDF is greatly heightened, indicating the possibility of viscosity detection. Finally, based on the fluorescence properties of BDF, we used the probe to detect F- in the toothpaste sample and image exogenous fluoride ions in HeLa cells.
Collapse
Affiliation(s)
- Yi Zheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Shu-Mei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Meng-Min Xiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Pei-Zhen Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jia-Rui Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
5
|
Li H, Wang J, Kim H, Peng X, Yoon J. Activatable Near-Infrared Versatile Fluorescent and Chemiluminescent Dyes Based on the Dicyanomethylene-4H-pyran Scaffold: From Design to Imaging and Theranostics. Angew Chem Int Ed Engl 2024; 63:e202311764. [PMID: 37855139 DOI: 10.1002/anie.202311764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Activatable fluorescent and chemiluminescent dyes with near-infrared emission have indispensable roles in the fields of bioimaging, molecular prodrugs, and phototheranostic agents. As one of the most popular fluorophore scaffolds, the dicyanomethylene-4H-pyran scaffold has been applied to fabricate a large number of versatile activatable optical dyes for analytes detection and diseases diagnosis and treatment by virtue of its high photostability, large Stokes shift, considerable two-photon absorption cross-section, and structural modifiability. This review discusses the molecular design strategies, recognition mechanisms, and both in vitro and in vivo bio-applications (especially for diagnosis and therapy of tumors) of activatable dicyanomethylene-4H-pyran dyes. The final section describes the current shortcomings and future development prospects of this topic.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
6
|
Dai H, Yang J, Ye Z, Liu C, Xu B, Shi G, Su S, Zhang Y, Chi Z. Near‐Infrared Colorimetric and Ratiometric Fluorescence Sensor for Fluoride Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui Dai
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry. South China Normal University Guangzhou 510006 China
| | - Jinglian Yang
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry. South China Normal University Guangzhou 510006 China
| | - Zijian Ye
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry. South China Normal University Guangzhou 510006 China
| | - Cong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry. South China Normal University Guangzhou 510006 China
| | - Bingjia Xu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry. South China Normal University Guangzhou 510006 China
| | - Guang Shi
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education School of Chemistry. South China Normal University Guangzhou 510006 China
| | - Shichen Su
- Institute of Semiconductor Science and Technology South China Normal University Guangzhou 510631 China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd. Qingyuan 511517 Chinac
| | - Yujian Zhang
- Department of Materials Chemistry Huzhou University Huzhou 313000 China
| | - Zhenguo Chi
- State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
7
|
Hou TT, Cai Y, Zhang ZY, Wang CY, Tang YH, Zhu MQ, Wang YL. Progress of Dicyanomethylene-4H-Pyran Derivatives in Biological Sensing Based on ICT Effect. Front Chem 2022; 10:903253. [PMID: 35677595 PMCID: PMC9167996 DOI: 10.3389/fchem.2022.903253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the typical fluorescent cores, dicyanomethylene-4H-pyran (DCM) derivatives exhibit excellent photophysical and photochemical properties, such as large Stokes shift, excellent light stability, and tunable near-infrared (NIR) emission. The luminescence mechanism of DCM probes mainly depends on the intramolecular charge transfer (ICT). Hence, by regulating the ICT process, the probes can specifically act on the target molecule. Accordingly, a series of NIR DCM probes have been constructed to detect the ions, reactive oxygen species (ROS), and biological macromolecules in cells. However, there is no relevant review to summarize it at present. This minireview mainly summarizes the NIR DCM probes based on ICT effect and their applications in biosensors and biological imaging in recent years. This will be beneficial to innovatively construct new DCM probes and actively promote their application in the future.
Collapse
Affiliation(s)
- Ting-Ting Hou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Yi Cai
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Zhen-Yu Zhang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Cai-Yun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Ying-Hao Tang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- One Health Institute, Hainan University, Haikou, China
- *Correspondence: Ya-Long Wang,
| |
Collapse
|
8
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Wang X, Li T, Ma C. A novel ICT-based chemosensor for F - and its application in real samples and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125384. [PMID: 33607583 DOI: 10.1016/j.jhazmat.2021.125384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
A novel colorimetric and fluorescent chemosensor MQS-Si with intramolecular charge transfer character has been designed and synthesized. The chemosensor shows exclusively "off-on" fluorescence response toward F- at 620 nm in HEPES (pH 7.4): DMSO solution (7:3, v/v), which is attributed to the specific cleavage of Si-O bond. The ultrasensitive detection limit for F- in the fluorescence measurement is down to 30 nM. Application of the chemosensor has been demonstrated by selective detection of F- in drinking water, urine and serum samples and fluorescence imaging of F- in living cells and zebrafish, which proves that MQS-Si has a promising application in vitro and in vivo detection of F- and may be utilized for the diagnosis of fluorosis and esteofluorosis.
Collapse
Affiliation(s)
- Xiaochun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Chemistry and Life Science, Anshan Normal University, Anshan 114016, PR China.
| | - Tiechun Li
- College of Chemistry and Life Science, Anshan Normal University, Anshan 114016, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
10
|
Mondal S, Roy SG, Ghosh K. Anthraimidazoledione Derivatives in Fluoride Sensing Ensuing Si‐O Bond Cleavage in Organic and Aqueous Medium. ChemistrySelect 2020. [DOI: 10.1002/slct.202001122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Subhendu Mondal
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | | | - Kumaresh Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| |
Collapse
|
11
|
An ICT-based fluorescent probe for the detection of fluoride ions in cellular mitochondria. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Li D, Li C, Liang A, Jiang Z. A silver nanosol SERS quantitative method for trace F− detection using the oxidized tetramethylbenzidine as molecular probes. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Wang Y, Yu F, Luo X, Li M, Zhao L, Yu F. Visualization of carboxylesterase 2 with a near-infrared two-photon fluorescent probe and potential evaluation of its anticancer drug effects in an orthotopic colon carcinoma mice model. Chem Commun (Camb) 2020; 56:4412-4415. [DOI: 10.1039/d0cc00297f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have established a near-infrared two-photon fluorescent probe for the detection of CE2 with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yan Wang
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Feifei Yu
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma
- Ministry of Education, College of Pharmacy
- Key Laboratory of Hainan Trauma and Disaster Rescue
- College of Clinical Medicine, College of Emergency and Trauma
- Hainan Medical University
| | - Xianzhu Luo
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Mingshun Li
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Linlu Zhao
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma
- Ministry of Education, College of Pharmacy
- Key Laboratory of Hainan Trauma and Disaster Rescue
- College of Clinical Medicine, College of Emergency and Trauma
- Hainan Medical University
| | - Fabiao Yu
- The Key Laboratory of Life-Organic Analysis
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|