1
|
Wang Y, Wu S, Wang H, Huang X, Ji X, Lv H, Wu J, Liu J, Muyldermans S, Hu Y, Wang S. M13 bacteriophage based fluorescence immunoassay against food allergens of Ara h 3 and Mac i 1. Food Chem 2025; 469:142617. [PMID: 39732076 DOI: 10.1016/j.foodchem.2024.142617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification. The nanobodies (Nbs) displayed on M13 bacteriophage were employed for the rapid fluorescence quantification of peanut allergen Ara h 3 and macadamia allergen Mac i 1 through magnetic separation. Generally, the method was established with detection limits of 9.5 and 10.2 ng/mL for Ara h 3 and Mac i 1, respectively, demonstrating a sensitivity of 2-5 times greater than traditional methods. Collectively, this multiplexed testing offers a potential analytical strategy based on bacteriophage for effective screening of food allergens.
Collapse
Affiliation(s)
- Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Haitao Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xufang Huang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Li W, Xu Z, He Q, Pan J, Zhang Y, El-Sheikh ESA, Hammock BD, Li D. Nanobody-Based Immunoassays for the Detection of Food Hazards-A Review. BIOSENSORS 2025; 15:183. [PMID: 40136980 PMCID: PMC11939871 DOI: 10.3390/bios15030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Food safety remains a significant global challenge that affects human health. Various hazards, including microbiological and chemical threats, can compromise food safety throughout the supply chain. To address food safety issues and ensure public health, it is necessary to adopt rapid, accurate, and highly specific detection methods. Immunoassays are considered to be an effective method for the detection of highly sensitive biochemical indicators and provide an efficient platform for the identification of food hazards. In immunoassays, antibodies function as the primary recognition elements. Nanobodies have significant potential as valuable biomolecules in diagnostic applications. Their distinctive physicochemical and structural characteristics make them excellent candidates for the development of reliable diagnostic assays, and as promising alternatives to monoclonal and polyclonal antibodies. Herein, we summarize a comprehensive overview of the status and prospects of nanobody-based immunoassays in ensuring food safety. First, we begin with a historical perspective on the development of nanobodies and their unique characteristics. Subsequently, we explore the definitions and boundaries of immunoassays and immunosensors, before discussing the potential applications of nanobody-based immunoassays in food safety testing that have emerged over the past five years, and follow the different immunoassays, highlighting their advantages over traditional detection methods. Finally, the directions and challenges of nanobody-based immunoassays in food safety are discussed. Due to their remarkable sensitivity, specificity and versatility, nanobody-based immunoassays hold great promise in revolutionizing food safety testing and ensuring public health and well-being.
Collapse
Affiliation(s)
- Wenkai Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Zhihao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Qiyi He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Junkang Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Yijia Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | | | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Dongyang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.L.); (Z.X.); (Q.H.); (J.P.); (Y.Z.)
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
3
|
Mao F, Yang X, He Z, Sun Z, Zhang S, Liu X. Mimotope peptides for nanobodies: A nontoxic alternative to ochratoxin A and its application in chemiluminescence immunoassays for analysis of pepper samples. Food Chem 2025; 465:142061. [PMID: 39571434 DOI: 10.1016/j.foodchem.2024.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Ochratoxin A (OTA) is a common food contaminant and poses a significant threat to human health, which requires rigorous monitoring. Mimotope peptides (MPs) are commonly used as non-toxic alternatives to toxic small molecules in eco-friendly immunoassays. Herein, with an anti-OTA nanobody as the target protein, cyclic 7-mer MPs of OTA were screened using phage display and immunomagnetic separation. The phage MPs (PMP) with the highest sensitivity and its alkaline phosphatase-tagged MP fusion (ALP-MP) were used to develop a PMP-based chemiluminescent immunoassay (PMP-CLIA) and an ALP-MP-based CLIA (AMP-CLIA). After optimization, PMP-CLIA and AMP-CLIA exhibited a limit of detection of 0.128 ng/mL and 0.232 ng/mL. Good accuracy and selectivity were confirmed for both CLIAs by recovery experiments and cross-reactions. Moreover, they were validated by high performance liquid chromatography in detecting real pepper samples. Thus, two CLIAs based on the nanobody and MPs were demonstrated as reliable tools for monitoring OTA in pepper.
Collapse
Affiliation(s)
- Fujing Mao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Liu H, Su Q, Duan S, Huang X, Yang X, Liu A, Liu S, Xu C, Lu X. Development of a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of SARS-CoV-2 Spike Protein in a Fluorescence Enzyme Immunoassay. Anal Chem 2024; 96:20519-20525. [PMID: 39699064 DOI: 10.1021/acs.analchem.4c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The continuous spread and evolution of severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) necessitate the development of convenient and rapid detection methods. In this study, we developed a fluorescence enzyme immunoassay (FEIA) based on a nanobody (Nb)-alkaline phosphatase (ALP) fusion protein for detection of SARS-CoV-2 spike protein. The genetically modified anti-SARS-CoV-2 S-RBD Nb, Nb61, gene was fused with the ALP gene sequences via a flexible linker. Recombinant cloning was used to yield a recombinant prokaryotic expression plasmid, Nb61-ALP-His. The Nb61-ALP-His construct was transformed into E. coli BL21(DE3) and expressed in bacteria. Both Nb61 properties and ALP enzymatic activity were validated by colorimetric and fluorometric analysis. FEIA was optimized and established on the basis of the Nb61-ALP fusion protein. The detection limit of the FEIA was 3.18 ng/mL, with a linear range of 1.9-62.5 ng/mL. Comparison with a commercial kit indicated the reliability of the Nb61-ALP fusion-protein-based FEIA for monitoring the SARS-CoV-2 spike protein. This study highlights the potential of Nb-based enzyme immunoassays as a valuable tool for the rapid and accurate detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Heng Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qianling Su
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Otolaryngology Head and Neck Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Siliang Duan
- Medical College, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, China
| | - Xianing Huang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Yang
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Aiqun Liu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoling Lu
- College of Stomatology, Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences/Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
5
|
Terzapulo X, Kassenova A, Bukasov R. Immunoassays: Analytical and Clinical Performance, Challenges, and Perspectives of SERS Detection in Comparison with Fluorescent Spectroscopic Detection. Int J Mol Sci 2024; 25:2080. [PMID: 38396756 PMCID: PMC10889711 DOI: 10.3390/ijms25042080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoassays (IAs) with fluorescence-based detection are already well-established commercialized biosensing methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Immunoassays with surface-enhanced Raman spectroscopy (SERS) detection have received significant attention from the research community for at least two decades, but so far they still lack a wide clinical commercial application. This review, unlike any other review that we have seen, performs a three-dimensional performance comparison of SERS IAs vs. fluorescence IAs. First, we compared the limit of detection (LOD) as a key performance parameter for 30 fluorescence and 30 SERS-based immunoassays reported in the literature. We also compared the clinical performances of a smaller number of available reports for SERS vs. fluorescence immunoassays (FIAs). We found that the median and geometric average LODs are about 1.5-2 orders of magnitude lower for SERS-based immunoassays in comparison to fluorescence-based immunoassays. For instance, the median LOD for SERS IA is 4.3 × 10-13 M, whereas for FIA, it is 1.5 × 10-11 M. However, there is no significant difference in average relative standard deviation (RSD)-both are about 5-6%. The analysis of sensitivity, selectivity, and accuracy reported for a limited number of the published clinical studies with SERS IA and FIA demonstrates an advantage of SERS IA over FIA, at least in terms of the median value for all three of those parameters. We discussed common and specific challenges to the performances of both SERS IA and FIA, while proposing some solutions to mitigate those challenges for both techniques. These challenges include non-specific protein binding, non-specific interactions in the immunoassays, sometimes insufficient reproducibility, relatively long assay times, photobleaching, etc. Overall, this review may be useful for a large number of researchers who would like to use immunoassays, but particularly for those who would like to make improvements and move forward in both SERS-based IAs and fluorescence-based IAs.
Collapse
Affiliation(s)
| | | | - Rostislav Bukasov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
6
|
Li JD, Shen X, Xu ZL, Liang YF, Shen YD, Yang JY, Wang H. Molecular Evolution of Antiparathion Nanobody with Enhanced Sensitivity and Specificity Based on Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14758-14768. [PMID: 37768036 DOI: 10.1021/acs.jafc.3c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nanobody (Nb) has gained significant attention in immunoassays owing to its numerous advantages, particularly its ease of molecular evolution. However, the limited understanding of how high sensitivity and specificity attained for antihapten Nbs hamper the development of high-performance Nbs. Herein, the antiparathion Nb (Nb9) we prepared previously was chosen as the model, and an approach based on X-ray crystallography, molecular docking, and rational site-directed saturation mutation for constructing a rapid and effective platform for nanobody evolution was described. Based on the structural analysis, two mutants, namely Nb-D5 (IC50 = 2.4 ± 0.2 ng/mL) and Nb-D12 (IC50 = 2.7 ± 0.1 ng/mL), were selected out from a six-sites directed saturation mutation library, 3.5-fold and 3.1-fold sensitivity enhancement over Nb9 to parathion, respectively. Besides, Nb-D12 exhibited improved sensitivity for quinalphos, triazophos, and coumaphos (5.4-35.4 ng/mL), indicating its broader detection potential. Overall, our study advances an effective strategy for the future rational evolution of Nbs with desirable performance.
Collapse
Affiliation(s)
- Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Li JD, Wu GP, Li LH, Wang LT, Liang YF, Fang RY, Zhang QL, Xie LL, Shen X, Shen YD, Xu ZL, Wang H, Hammock BD. Structural Insights into the Stability and Recognition Mechanism of the Antiquinalphos Nanobody for the Detection of Quinalphos in Foods. Anal Chem 2023; 95:11306-11315. [PMID: 37428097 PMCID: PMC10829938 DOI: 10.1021/acs.analchem.3c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Nanobodies (Nbs) have great potential in immunoassays due to their exceptional physicochemical properties. With the immortal nature of Nbs and the ability to manipulate their structures using protein engineering, it will become increasingly valuable to understand what structural features of Nbs drive high stability, affinity, and selectivity. Here, we employed an anti-quinalphos Nb as a model to illustrate the structural basis of Nbs' distinctive physicochemical properties and the recognition mechanism. The results indicated that the Nb-11A-ligand complexes exhibit a "tunnel" binding mode formed by CDR1, CDR2, and FR3. The orientation and hydrophobicity of small ligands are the primary determinants of their diverse affinities to Nb-11A. In addition, the primary factors contributing to Nb-11A's limited stability at high temperatures and in organic solvents are the rearrangement of the hydrogen bonding network and the enlargement of the binding cavity. Importantly, Ala 97 and Ala 34 at the active cavity's bottom and Arg 29 and Leu 73 at its entrance play vital roles in hapten recognition, which were further confirmed by mutant Nb-F3. Thus, our findings contribute to a deeper understanding of the recognition and stability mechanisms of anti-hapten Nbs and shed new light on the rational design of novel haptens and directed evolution to produce high-performance antibodies.
Collapse
Affiliation(s)
- Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guang-Pei Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Li-Hua Li
- Future Technology Institute, South China Normal University, 510631, China
| | - Lan-Teng Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ru-Yu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiu-Ling Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ling-Ling Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California-Davis, California 95616, United States
| |
Collapse
|
8
|
Wu R, Guo J, Wang M, Liu H, Ding L, Yang R, Liu LE, Liu Z. Fluorescent Sensor Based on Magnetic Separation and Strand Displacement Amplification for the Sensitive Detection of Ochratoxin A. ACS OMEGA 2023; 8:15741-15750. [PMID: 37151502 PMCID: PMC10157876 DOI: 10.1021/acsomega.3c01408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin, and it is a significant threat to human health throughout the food chain. In this study, a sensitive and specific fluorescent sensor based on magnetic separation technology combined with chain displacement amplification was developed for fast and easy detection of OTA in food. The designed strand displacement amplification can improve the sensitivity for the detection, and the magnetic nanomaterials can provide a large surface area, thus enhancing the capture efficiency of the target from the sample. Based on those designs, the experimental results showed that the proposed method displayed excellent performance. The linearity range was 0.5-128.0 ng/mL. The detection limit was 0.125 ng/mL; the relative standard deviations were 3.92-7.71%. Additionally, the developed method was satisfactorily applied to determine OTA in wheat, corn, and red wine samples at three spiked levels (1.0, 8.0, and 64.0 ng/mL). The recoveries ranged from 85.45 to 107.8% for wheat flour, 101.34 to 108.35% for corn flour, and 91.15 to 93.80% for red wine, respectively. Compared with high-performance liquid chromatography, the proposed method showed a lower limit of detection and equal recovery. Hence, the designed method is a potential and good detecting tool for OTA residue analysis in complex matrix samples.
Collapse
Affiliation(s)
- Ruoyu Wu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jiaping Guo
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Minkai Wang
- Department
of Neurosurgery, First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China
| | - Huimin Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Lihua Ding
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ruiying Yang
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Li-e Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Zhiyong Liu
- Key
Laboratory of Food Safety Quick Testing and Smart Supervision Technology
for State Market Regulation, Beijing 100094, People’s
Republic of China
| |
Collapse
|
9
|
Jin Z, Sheng W, Liu J, Liu C, Ma Y, Wang S, Zhang W, Huang N. A fluorescence immunoassay based on GSH destroying MnO 2@QDs for the simultaneous ultrasensitive detection of four mycotoxins in cereals. Food Chem 2023; 420:136099. [PMID: 37037114 DOI: 10.1016/j.foodchem.2023.136099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
A novel fluorescence immunoassay based on MnO2 nanoflowers loading multicolor quantum dots and glutathione destroying MnO2 nanoflowers to release quantum dots combined with magnetic separation is developed for rapid, ultra-sensitive, and simultaneous quantitative detection of ochratoxin A, aflatoxin B1, fumonisin B1, and zearalenone in cereal samples. The test linear range of assay is from 0.001 to 200 μg L-1. The limit of detection for ochratoxin A, aflatoxin B1, fumonisin B1, and zearalenone is 0.0001 μg L-1, 0.0001 μg L-1, 0.0003 μg L-1, and 0.0001 μg L-1, respectively. The simultaneous detection of four mycotoxins can be achieve within 30 min. The test results of four mycotoxins in the incurred corn, rice, and oat samples have been confirmed by ultra-performance liquid chromatography tandem mass spectrometry, the differences between results are considered no significantly different (p > 0.05). This multiplexed test scheme has provided a potential analysis strategy for multiple food risk factors.
Collapse
Affiliation(s)
- Zixin Jin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Junli Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenchen Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yueru Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wanli Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Zuo H, Wang X, Liu W, Chen Z, Liu R, Yang H, Xia C, Xie J, Sun T, Ning B. Nanobody-based magnetic chemiluminescence immunoassay for one-pot detection of ochratoxin A. Talanta 2023; 258:124388. [PMID: 36921368 DOI: 10.1016/j.talanta.2023.124388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
Ochratoxin A (OTA) contamination seriously threatens food safety and human health and requires sensitive and rapid tools for monitoring. In this study, a convenient enzyme-linked immunosorbent assay based on Avi-labeled nanobody Nb-2G/streptavidin-alkaline phosphatase and magnetic beads (MBS-ELISA) was established for the sensitive detection of OTA, which could be used for one-pot detection without immobilization. After optimization, the 50% inhibitory concentration (IC50) and the lowest limit of detection value of the MBS-ELISA was 1.17 ng/mL and 0.07 ng/mL and the linear range was 248.8 pg/mL-5.28 ng/mL, respectively, which accords with state criteria for food safety. The developed one-step MBS-ELISA was almost 20-times more sensitive than the classic BA-ELISA and could generate results within 15 min, which was significantly less than the classic BA-ELISA at approximately 3 h. The MBS-ELISA indicated good recovery (86.4-114.3%) in spiked sorghum, buckwheat, and mung bean. Thus, MBS-ELISA represents a very promising strategy for the simple, rapid, and accurate detection of OTA and other toxic and hazardous contaminants.
Collapse
Affiliation(s)
- Hu Zuo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wentao Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zongfen Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ruonan Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Han Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chunyan Xia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jinli Xie
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Baoan Ning
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
11
|
Rapid and sensitive noncompetitive immunoassay for detection of aflatoxin B1 based on anti-immune complex peptide. Food Chem 2022; 393:133317. [DOI: 10.1016/j.foodchem.2022.133317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
|
12
|
Dai S, Li Q, Li W, Zhang Y, Dou M, Xu R, Wang T, Lu X, Wang F, Li J. Advances in functional photonic crystal materials for the analysis of chemical hazards in food. Compr Rev Food Sci Food Saf 2022; 21:4900-4920. [PMID: 36117270 DOI: 10.1111/1541-4337.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023]
Abstract
Chemical contaminants in food generally include natural toxins (mycotoxins, animal toxins, and phytotoxins), pesticides, veterinary drugs, environmental pollutants, heavy metals, and illegal additives. Developing a low-cost, simple, and rapid detection technology for harmful substances in food is urgently needed. Analytical methods based on different advanced materials have been developed into rapid detection methods for food samples. In particular, photonic crystal (PC) materials have a unique surface periodic structure, structural color, a large surface area, easy integration with photoelectronic and magnetic devices which have great advantages in the development of rapid, low-cost, and highly sensitive analytical methods. This review focuses on the PC materials in the view of their fabrication processes, functionalized recognition components for the specific recognition of hazardous substances, and applications in the separation, enrichment, and detection of chemical hazards in real samples. Suspension array based on three-dimensional PC microspheres by droplet-based microfluidic assembly is a great promising and powerful platform for food safety detection fields. For the PCs selective analysis, biological antibodies, aptamers, and molecularly imprinted polymers (MIPs) could be modified for specific recognition of target substances, particularly MIPs because of their low-cost and easy mass production. Based on these functional PCs, various toxic and hazardous substances can be selectively enriched or recognized in real samples and further quantified in combination of liquid chromatography method or optical detection methods including fluorescence, chemiluminescence, and Raman spectroscopy.
Collapse
Affiliation(s)
- Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yaodan Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tingting Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoyue Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Fenying Wang
- College of Chemistry, Nanchang University, Nanchang, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Xiao Y, Zhang X, Ma L, Fang H, Yang H, Zhou Y. Fluorescence and absorbance dual-mode immunoassay for detecting Ochratoxin A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121440. [PMID: 35660151 DOI: 10.1016/j.saa.2022.121440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, a simple dual-mode immunoassay for detecting Ochratoxin A (OTA) was developed by mixing G-quadruplex/N-methylmesoporphyrin IX (G4/NMM) and 3,3',5,5'-tetramethylbenzidine (TMB). The fluorescence of G4/NMM can be quenched by oxidized TMB (oxTMB) because the absorbance of oxTMB overlapped with the fluorescence emission of G4/NMM. In the absence of OTA, large amounts of oxTMB were formed with blue color and the fluorescence of G4/NMM was quenched. In the presence of OTA, the concentration of oxTMB was decreased, therefore the fluorescence of G4/NMM increased. The linear range of fluorescence immunoassay was 0.195-25 ng/mL, and the linear range of the absorbance immunoassay was 0.049-1.563 ng/mL. Thus, the linear range of this dual-mode immunoassay can be expanded to 0.049-25 ng/mL. Meanwhile, the new method showed good selectivity for OTA. Besides, the satisfactory recovery rates implied the new method had a potential value for practical sample detection.
Collapse
Affiliation(s)
- Yao Xiao
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Xingping Zhang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Liyuan Ma
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Huajuan Fang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
14
|
Development of a self-assembled heptameric nanobody/streptavidin-binding peptide fusion for ultrasensitive detection of serum biomarkers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Wang Y, Xianyu Y. Nanobody and Nanozyme-Enabled Immunoassays with Enhanced Specificity and Sensitivity. SMALL METHODS 2022; 6:e2101576. [PMID: 35266636 DOI: 10.1002/smtd.202101576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Immunoassay as a rapid and convenient method for detecting a variety of targets has attracted tremendous interest with its high specificity and sensitivity. Among the commonly used immunoassays, enzyme-linked immunosorbent assay has been widely used as a gold standard method in various fields that consists of two main components including a recognition element and an enzyme label. With the rapid advances in nanotechnology, nanobodies and nanozymes enable immunoassays with enhanced specificity and sensitivity compared with conventional antibodies and natural enzymes. This review is focused on the applications of nanobodies and nanozymes in immunoassays. Nanobodies advantage lies in their small size, high specificity, mass expression, and high stability. Nanozymes with peroxidase, phosphatase, and oxidase activities and their applications in immunoassays are highlighted and discussed in detail. In addition, the challenges and outlooks in terms of the use of nanobodies and the development of novel nanozymes in practical applications are discussed.
Collapse
Affiliation(s)
- Yidan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
16
|
Su B, Bei Z, Pei H, Xie X, Sun Z, Chen Q, Cao H, Liu X. Generation of a nanobody-alkaline phosphatase heptamer fusion for ratiometric fluorescence immunodetection of trace alpha fetoprotein in serum. Int J Biol Macromol 2022; 201:507-515. [PMID: 35063488 DOI: 10.1016/j.ijbiomac.2022.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Alpha fetoprotein (AFP) is an important biomarker for diagnosis of hepatocellular carcinoma (HCC). Whereas, it is always a challenge to detect trace AFP in serum. In this work, a ratiometric fluorescence enzyme immunoassay (RFEIA) was developed using nanobody-alkaline phosphatase (Nb-AP) heptamer and MnFe layered double hydroxides nanoflakes (MnFe LDH) for ultrasensitive detection of AFP. The Nb-AP heptamer (Nb-C4bpα-AP) was constructed by fusion expression of Nb, AP, and α-chain of C4 binding protein (C4bpα), where the C4bpα contributed to multimerization through self-assembly. The dual functional Nb-C4bpα-AP can recognize AFP, dephosphorylate ascorbic acid-2-phosphate (AAP) into ascorbic acid (AA), and thus tune the MnFe LDH-mediated ratiometric fluorescence, which was generated from the oxidization of MnFe LDH on o-phenylenediamine (OPD) and the catalyzation of MnFe LDH on the cyclization reaction between AA and OPD. By integration of Nb-C4bpα-AP, MnFe LDH, AAP, and OPD, the RFEIA showed a limit of detection of 0.013 ng/mL with good selectivity, accuracy and precision. Furthermore, results of clinical serum samples tested by the RFEIA were well confirmed by the automated chemiluminescence immunoassay analyzer. Thus, this work demonstrated that the Nb-C4bpα-AP is a robust immunoreagent and the developed RFEIA could be a very promising tool for diagnosis of HCC.
Collapse
Affiliation(s)
- Benchao Su
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zheng Bei
- Cadre Sanatorium of Hainan, Haikou 571100, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Su B, Xu H, Xie G, Chen Q, Sun Z, Cao H, Liu X. Generation of a nanobody-alkaline phosphatase fusion and its application in an enzyme cascade-amplified immunoassay for colorimetric detection of alpha fetoprotein in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120088. [PMID: 34167066 DOI: 10.1016/j.saa.2021.120088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Sensitive detection of liver disease biomarkers can facilitate the diagnosis of primary hepatoma and other benign liver diseases, and the alpha fetoprotein (AFP) was selected as the model macromolecule in this work. Herein an enzyme cascade-amplified immunoassay (ECAIA) based on the nanobody-alkaline phosphatase fusion (Nb-ALP) and MnO2 nanoflakes was developed for detecting AFP. The bifunctional biological macromolecule Nb-ALP serves as the detection antibody and the reporter molecule. The MnO2 nanoflakes mimic the oxidase for catalyzing the 3,3',5,5'-tetramethylbenzidine (TMB) into the blue oxidized TMB, which has a quantitative signal at the wavelength of 650 nm. Moreover, the Nb-ALP could dephosphorylate the ascorbic acid-2-phosphate (AAP) to form the ascorbic acid (AA) that can disintegrate the nanoflakes to reduce their oxidation capacity with the content decrease of the oxidized TMB. Using the constructed TMB-MnO2 colorimetric sensing system for Nb-ALP and the optimized experimental parameters, the ECAIA has a limit of detection (LOD) of 0.148 ng/mL which is 18.7-fold lower than that of the p-nitrophenylphosphate (pNPP)-based method (LOD = 2.776 ng/mL). The ECAIA showed good selectivity for AFP with observed negligible cross-reactions with several common cancer biomarkers. The recovery rate for AFP spiked in human serum ranged from 94.8% to 113% with the relative standard deviation from 0.3% to 6.5%. For analysis of the actual human serum samples, a good linear correlation was found between the results tested by the ECAIA and the automatic chemiluminescence analyzer. Thus, the ECAIA was demonstrated to be a promising tool for highly sensitive and selective detection of AFP, providing a reference for analysis of other macromolecule biomarkers.
Collapse
Affiliation(s)
- Benchao Su
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Huan Xu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Guifang Xie
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
18
|
Yan T, Zhu J, Li Y, He T, Yang Y, Liu M. Development of a biotinylated nanobody for sensitive detection of aflatoxin B 1 in cereal via ELISA. Talanta 2021; 239:123125. [PMID: 34920257 DOI: 10.1016/j.talanta.2021.123125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023]
Abstract
Aflatoxin B1 (AFB1) contamination is a severe threat to food safety and human health, and requires continuous monitoring. In this study, we developed a biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) by using biotinylated nanobody Nb26 and streptavidin-conjugated polymerized horseradish peroxide (SA-PolyHRP) for sensitive and rapid detection of AFB1 in cereal. Under the optimal condition, the IC50 value of the BA-ELISA was improved to 0.21 ng mL-1 for AFB1, satisfying the requirement of detection limit in practical applications. The total assay time of our strategy is reduced to 50 min from 2 h in conventional competitive ELISA. Additionally, the BA-ELISA saves as much as 98% of the antibody in comparison to the previous classic ELISA. Our work also demonstrated an interesting phenomenon that the biotinylated Nb26 achieved better selectivity to AFB1, which could possibly result from the steric hindrance that interferes reaction between the Nb26 and the AFB1 analogs. Furthermore, the assay was used to detect AFB1 in two cereal samples, and the results were in good agreement with that obtained by high performance liquid chromatography. The developed BA-ELISA can be used for routine screening analysis of AFB1, and offers a promising strategy for measuring low concentrations of food contaminants.
Collapse
Affiliation(s)
- Tingting Yan
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, 430071, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Hubei Optics Valley Laboratory, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Ou AF, Chen ZJ, Zhang YF, He QY, Xu ZL, Zhao SQ. Preparation of Anti-Aristolochic Acid I Monoclonal Antibody and Development of Chemiluminescent Immunoassay and Carbon Dot-Based Fluoroimmunoassay for Sensitive Detection of Aristolochic Acid I. Foods 2021; 10:foods10112647. [PMID: 34828932 PMCID: PMC8622072 DOI: 10.3390/foods10112647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aristolochic acid (AA) toxicity has been shown in humans regarding carcinogenesis, nephrotoxicity, and mutagenicity. Monitoring the AA content in drug homologous and healthy foods is necessary for the health of humans. In this study, a monoclonal antibody (mAb) with high sensitivity for aristolochic acid I (AA-I) was prepared. Based on the obtained mAb, a chemiluminescent immunoassay (CLEIA) against AA-I was developed, which showed the 50% decrease in the RLUmax (IC50) value of 1.8 ng/mL and the limit of detection (LOD) of 0.4 ng/mL. Carbon dots with red emission at 620 nm, namely rCDs, were synthesized and employed in conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) to improve the assay sensitivity of a fluoroimmunoassay (FIA). Oxidized 3,3'',5,5''-tetramethylbenzidine dihydrochloride (oxTMB) can quench the emission of the rCDs through the inner-filter effect; therefore, the fluorescence intensity of rCDs can be regulated by the concentration of mAb. As a result, the assay sensitivity of FIA was improved by five-fold compared to CLEIA. A good relationship between the results of the proposed assays and the standard ultra-high performance liquid chromatography-triple quadrupole mass spectrometer (UPLC-QQQ-MS/MS) of real samples indicated good accuracy and practicability of CLEIA and FIA.
Collapse
Affiliation(s)
- Ai-Fen Ou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (A.-F.O.); (Q.-Y.H.)
- Department of Food, Guangzhou City Polytechnic, Guangzhou 510006, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.-J.C.); (Y.-F.Z.); (Z.-L.X.)
| | - Yi-Feng Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.-J.C.); (Y.-F.Z.); (Z.-L.X.)
| | - Qi-Yi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (A.-F.O.); (Q.-Y.H.)
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.-J.C.); (Y.-F.Z.); (Z.-L.X.)
| | - Su-Qing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (A.-F.O.); (Q.-Y.H.)
- Correspondence:
| |
Collapse
|
20
|
Chen ZJ, Huang Z, Sun YM, Xu ZL, Liu J. The Most Active Oxidase-Mimicking Mn 2 O 3 Nanozyme for Biosensor Signal Generation. Chemistry 2021; 27:9597-9604. [PMID: 33857336 DOI: 10.1002/chem.202100567] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 11/08/2022]
Abstract
Oxidase-mimicking nanozymes are more desirable than peroxidase-mimicking ones since H2 O2 can be omitted. However, only a few nanomaterials are known for oxidase-like activities. In this work, we compared the activity of Mn2 O3 , Mn3 O4 and MnO2 and found that Mn2 O3 had the highest oxidase activity. Interestingly, the activity of Mn2 O3 was even inhibited by H2 O2 . The oxidase-like activity of Mn2 O3 was not much affected by the presence of proteins such as bovine serum albumin (BSA), but the physisorption of antibodies to Mn2 O3 was not strong enough to withstand the displacement by BSA. We then treated Mn2 O3 with 3-aminopropyltriethoxysilane to graft an amine group, which was used to conjugate antibodies using glutaraldehyde as a crosslinker. A one-step indirect competitive ELISA (icELISA) was developed for the detection of isocarbophos, and an IC50 of 261.7 ng/mL was obtained, comparable with the results of the standard two-step assay using horseradish peroxidase (HRP)-labeled antibodies. This assay has the advantage of significant timesaving for rapid detection of large amounts of samples. This work has discovered a highly efficient oxidase-mimicking nanozyme useful for various nano- and analytical applications.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| |
Collapse
|
21
|
Hu Y, Sun Y, Gu J, Yang F, Wu S, Zhang C, Ji X, Lv H, Muyldermans S, Wang S. Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chem 2021; 353:129481. [PMID: 33725546 DOI: 10.1016/j.foodchem.2021.129481] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The interaction between conventional immunoglobulins (Igs) and the Ig-binding surface proteins of Staphylococcus aureus (S. aureus) have obstructed the development of immuno-assays to detect these bacteria. The current study aimed to select nanobodies (Nbs) recognizing specifically S. aureus and to establish an immuno-assay to uncover S. aureus contaminations in foods. An alpaca was immunized with an inactivated S. aureus strain followed by the construction of a Nb library from which four target-specific Nbs were retrieved. Subsequently, a sandwich ELISA employing the Nb147 and biotinylated-Nb147 pair to capture and to detect S. aureus, respectively, was established to possess a detection limit of 1.4 × 105 colony forming units (CFU)/mL. The dedicated immuno-assay has been verified by detecting 10 CFU/mL of S. aureus in milk samples after an 8 h-enrichment step. This study provides the basis of an easy, reproducible and effective immuno-assay to screen for S. aureus contaminations in foods.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ying Sun
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaxin Gu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Feier Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chuan Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Chen ZJ, Huang Z, Huang S, Zhao JL, Sun Y, Xu ZL, Liu J. Effect of proteins on the oxidase-like activity of CeO2 nanozymes for immunoassays. Analyst 2021; 146:864-873. [DOI: 10.1039/d0an01755h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein adsorption inhibits the oxidase-like activity of CeO2 nanoparticles. Coating a partial shell of silica on CeO2 and subsequent conjugation of antibodies allow highly sensitive and selective detection of fenitrothion.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
- Department of Chemistry
| | - Zhicheng Huang
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Song Huang
- Guangzhou Institute for Food Control
- Guangzhou 510410
- China
| | - Jin-Lin Zhao
- Guangzhou Institute for Food Control
- Guangzhou 510410
- China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Juewen Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
23
|
Huang X, Tang X, Jallow A, Qi X, Zhang W, Jiang J, Li H, Zhang Q, Li P. Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice. Toxins (Basel) 2020; 12:toxins12110682. [PMID: 33138019 PMCID: PMC7693749 DOI: 10.3390/toxins12110682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 01/01/2023] Open
Abstract
Ochratoxin A (OTA) is a known food contaminant that affects a wide range of food and agricultural products. The presence of this fungal metabolite in foods poses a threat to human health. Therefore, various detection and quantification methods have been developed to determine its presence in foods. Herein, we describe a rapid and ultrasensitive tracer-based fluorescence polarization immunoassay (FPIA) for the detection of OTA in rice samples. Four fluorescent tracers OTA-fluorescein thiocarbamoyl ethylenediamine (EDF), OTA-fluorescein thiocarbamoyl butane diamine (BDF), OTA-amino-methyl fluorescein (AMF), and OTA-fluorescein thiocarbamoyl hexame (HDF) with fluorescence polarization values (δFP = FPbind-FPfree) of 5, 100, 207, and 80 mP, respectively, were synthesized. The tracer with the highest δFP value (OTA-AMF) was selected and further optimized for the development of an ultrasensitive FPIA with a detection range of 0.03-0.78 ng/mL. A mean recovery of 70.0% to 110.0% was obtained from spiked rice samples with a relative standard deviation of equal to or less than 20%. Good correlations (r2 = 0.9966) were observed between OTA levels in contaminated rice samples obtained by the FPIA method and high-performance liquid chromatography (HPLC) as a reference method. The rapidity of the method was confirmed by analyzing ten rice samples that were analyzed within 25 min, on average. The sensitivity, accuracy, and rapidity of the method show that it is suitable for screening and quantification of OTA in food samples without the cumbersome pre-analytical steps required in other mycotoxin detection methods.
Collapse
Affiliation(s)
- Xiaorong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Abdoulie Jallow
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
| | - Xin Qi
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Wen Zhang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Jun Jiang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Hui Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
- Correspondence: (Q.Z.); (P.L.); Tel.: +86-27-8681-2943 (P.L.)
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
- Correspondence: (Q.Z.); (P.L.); Tel.: +86-27-8681-2943 (P.L.)
| |
Collapse
|
24
|
Chen Q, Wang Y, Mao F, Su B, Bao K, Zhang Z, Xie G, Liu X. Development of a horseradish peroxidase-nanobody fusion protein for visual detection of ochratoxin A by dot immunoassay. RSC Adv 2020; 10:33700-33705. [PMID: 35519041 PMCID: PMC9056725 DOI: 10.1039/d0ra06576e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022] Open
Abstract
Ochratoxin A (OTA) is a common cereal mycotoxin that seriously threatens food safety and public health. Herein a horseradish peroxidase-nanobody fusion protein (HRP-Nb) retaining antibody and enzyme activity was obtained after inclusion body denaturation and renaturation and enzyme reconstitution, which served both as the primary antibody and reporter enzyme and was applied to develop a membrane-based dot immunoassay (HN-DIA) for OTA visual detection. Based on the optimal experimental conditions, the HN-DIA could be finished in 10 min with a cut-off limit of 50 μg kg-1 in rice and oat samples by eye. The HN-DIA showed high selectivity for OTA and had good accuracy and reproducibility in the recovery experiments. Spiked sample analysis results of the HN-DIA and high performance liquid chromatography (HPLC) correlated well with each other. Therefore, the proposed HN-DIA has the potential for rapid screening of OTA and other small molecule pollutants in food and the environment by naked eye.
Collapse
Affiliation(s)
- Qi Chen
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Fujing Mao
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Benchao Su
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Kunlu Bao
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Zeling Zhang
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Guifang Xie
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| |
Collapse
|