1
|
Liu LL, Zhang HW, Ren JY, Wang L, Zhang Y. A molecular sensor for selective recognition of Fe 3+ by a functional seven-nuclear Zn(II) cluster compound formed from a quinoline-modified half-salamo-type Precursor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125762. [PMID: 39884210 DOI: 10.1016/j.saa.2025.125762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
In this paper, we designed and synthesized a novel based on quinoline modification half-salamo-type Zn(II) complex([Zn7(L)6(μ3-OCH3)6]·(ClO4)2), namely ZP. The structure of ZP was determined by X-ray single-crystal diffraction, in which the Zn(II) ions displayed in two different coordination modes, ultimately forming a highly symmetric heptanuclear structure. The Zn(II) complex probe modified by quinoline luminescent group has excellent luminescence properties and selectively recognizes Fe3+ in aqueous solution. When Fe3+ is added to the aqueous solution of ZP, ZP exhibits an obvious fluorescence quenching effect in a relatively short period of time, with a high sensitivity. The lowest detection limit of ZP for Fe3+ was further determined by fluorescence titration to be 5.8 × 10-8 M-1. In order to further explore the mechanism of Fe3+ quenching on ZP fluorescence, we performed fluorescence titration experiments, XPS as well as ESI-MS characterization, which proved that the recognition of Fe3+ by ZP is the substitution of metal ions leading to fluorescence quenching. At the same time, we also examined the practical application of ZP in life, and found that ZP can quantitatively detect the content of Fe3+ in drugs and actual water samples, and the experimental results were highly consistent with test result of ICP-MS, which further demonstrated that the detection of ZP was highly accurate. In addition, the detection of Fe3+ by ZP can be applied over a wide pH range without interference from other metal ions.
Collapse
Affiliation(s)
- Le-Le Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Hai-Wei Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jia-Ying Ren
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Li Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
2
|
Ghanbari B, Zamani P. Spectroscopic Rationalization of Selective Colorimetric Chemosensing of Fe(lll) in Aqueous Medium by a New Mono-Substituted Dibenzodiaza-Crown Ether Macrocyclic Ligand Appended with Mono 2-Benzimidazole N-Pendant Side Arm. J Fluoresc 2025; 35:1695-1705. [PMID: 38441712 DOI: 10.1007/s10895-024-03650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2025]
Abstract
Optical chemosensor L comprising of a new mono-N-substituted derivative of dibenzodiaza-crown ether macrocyclic ligand bearing a 2-benzimidazole (2Bim) side arm was synthesized, and characterized by FT-IR, elemental microanalyses, 1H NMR, and 13C NMR, UV-visible, fluorescence (FL) spectroscopy. The colorimetric chemosensing behavior of L toward the library metal ions was examined, wherein L represented a prompt and selective yellow-to-purple color change for Fe(III) cation in a 25µM solution with LOD as 0.23 µM in ethanol:water (9:1, v/v), even in the presence of the other library metal ions (LMI). Based on the 1H NMR, UV-visible, and FL observations the coordination sphere of Fe(III) was shared with two 2-benzoimidazole (2Bim) side arms which were also confirmed by the elemental microanalyses (in the solid state) and the Job plot method (in the solution) of the complex. Moreover, the above-mentioned color change was attributed to the presence of a strong charge transfer (LMCT) band for the Fe(III)/L interaction in the solution. Furthermore, the viscosity measurement in the presence of Fe(III) uncovered an increase at 0.5-1.0 ratios for Fe(III)/L, attributable to the formation of a self-assembly in the solution. A TLC paper strip was impregnated by L for selective detection of Fe(III), demonstrating a live color change for Fe(III) at 0-5 mM in the presence of LMI.
Collapse
Affiliation(s)
- Bahram Ghanbari
- Department of Chemistry, Sharif University of Technology, PO Box 11155-3516, Tehran, Iran.
| | - Pardis Zamani
- Department of Chemistry, Sharif University of Technology, PO Box 11155-3516, Tehran, Iran
| |
Collapse
|
3
|
Sushma, Sharma S, Ghosh KS. Fluorescence chemosensing and bioimaging of metal ions using schiff base probes working through photo-induced electron transfer (PET). Crit Rev Anal Chem 2024:1-32. [PMID: 39559829 DOI: 10.1080/10408347.2024.2418327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Though metal ions like copper, iron, zinc, etc. are essential, but their dyshomeostasis is associated with several disorders. Therefore, fast, sensitive, and cost-effective monitoring of these cations will have a significant impact. Many recently reported small organic molecules were able to detect a specific metal ion because of certain variations in the electron/charge transfer processes occurring in those molecules after binding with metal ions. In this context, Schiff base molecules were widely used as fluorescence turn-on/turn-off probes for the detection of metal ions like Al3+, Cu2+, Zn2+, Fe3+, Ag+, heavy metal ions, etc. In this article, we have reviewed the recent developments in fluorimetric chemosensing of metal ions by Schiff bases based on the photo-induced electron transfer (PET) process. A variety of examples have been discussed in which PET was used as a cation recognition mechanism. Particular focus is placed on the molecular probes used for sensing, including their design, selectivity, sensitivity, and in some cases their potential bioimaging applications.
Collapse
Affiliation(s)
- Sushma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| | - Shivani Sharma
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, India
| |
Collapse
|
4
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Arora P, Zheng H, Munusamy S, Jahani R, Wang L, Guan X. Probe-assisted detection of Fe 3+ ions in a multi-functionalized nanopore. Biosens Bioelectron 2024; 251:116125. [PMID: 38359668 PMCID: PMC10922892 DOI: 10.1016/j.bios.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Iron is an essential element that plays critical roles in many biological/metabolic processes, ranging from oxygen transport, mitochondrial respiration, to host defense and cell signaling. Maintaining an appropriate iron level in the body is vital to the human health. Iron deficiency or overload can cause life-threatening conditions. Thus, developing a new, rapid, cost-effective, and easy to use method for iron detection is significant not only for environmental monitoring but also for disease prevention. In this study, we report an innovative Fe3+ detection strategy by using both a ligand probe and an engineered nanopore with two binding sites. In our design, one binding site of the nanopore has a strong interaction with the ligand probe, while the other is more selective toward interfering species. Based on the difference in the number of ligand DTPMPA events in the absence and presence of ferric ions, micromolar concentrations of Fe3+ could be detected within minutes. Our method is selective: micromolar concentrations of Mg2+, Ca2+, Cd2+, Zn2+, Ni2+, Co2+, Mn2+, and Cu2+ would not interfere with the detection of ferric ions. Furthermore, Cu2+, Ni2+, Co2+, Zn2+, and Mn2+ produced current blockage events with quite different signatures from each other, enabling their simultaneous detection. In addition, simulated water and serum samples were successfully analyzed. The nanopore sensing strategy developed in this work should find useful application in the development of stochastic sensors for other substances, especially in situations where multi-analyte concurrent detection is desired.
Collapse
Affiliation(s)
- Pearl Arora
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | | | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
6
|
Mousavi Z, Ghasemi JB, Mohammadi Ziarani G, Rahimi S, Badiei A. Coumarin derivative-functionalized nanoporous silica as an on-off fluorescent sensor for detecting Fe 3+ and Hg 2+ ions: a circuit logic gate. DISCOVER NANO 2024; 19:70. [PMID: 38647707 PMCID: PMC11035537 DOI: 10.1186/s11671-024-04013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
A highly efficient fluorescent sensor (S-DAC) was easily created by functionalizing the SBA-15 surface with N-(2-Aminoethyl)-3-Aminopropyltrimethoxysilane followed by the covalent attachment of 7-diethylamino 3-acetyl coumarin (DAC). This chemosensor (S-DAC) demonstrates selective and sensitive recognition of Fe3+ and Hg2+ in water-based solutions, with detection limits of 0.28 × 10-9 M and 0.2 × 10-9 M for Hg2+ and Fe3+, respectively. The sensor's fluorescence characteristics were examined in the presence of various metal ions, revealing a decrease in fluorescence intensity upon adding Fe3+ or Hg2+ ions at an emission wavelength of 400 nm. This sensor was also able to detect ferric and mercury ions in spinach and tuna fish. The quenching mechanism of S-DAC was investigated using UV-vis spectroscopy, which confirmed a static-type mechanism for fluorescence quenching. Moreovre, the decrease in fluorescence intensity caused by mercury and ferric ions can be reversed using trisodium citrate dihydrate and EDTA as masking agents, respectively. As a result, a circuit logic gate was designed using Hg2+, Fe3+, trisodium citrate dihydrate, and EDTA as inputs and the quenched fluorescence emission as the output.
Collapse
Affiliation(s)
- Zahra Mousavi
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| | - Jahan B Ghasemi
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box: 1993893973, Tehran, Iran.
| | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran, Iran.
| |
Collapse
|
7
|
Rajendran P, Murugaperumal P, Nallathambi S, Perdih F, Ayyanar S, Chellappan S. Performance of 4,5-diphenyl-1H-imidazole derived highly selective 'Turn-Off' fluorescent chemosensor for iron(III) ions detection and biological applications. LUMINESCENCE 2024; 39:e4694. [PMID: 38414310 DOI: 10.1002/bio.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Two fluorescent chemosensors, denoted as chemosensor 1 and chemosensor 2, were synthesized and subjected to comprehensive characterization using various techniques. The characterization techniques employed were Fourier-transform infrared (FTIR), proton (1 H)- and carbon-13 (13 C)-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization (ESI) mass spectrometry, and single crystal X-ray diffraction analysis. Chemosensor 1 is composed of a 1H-imidazole core with specific substituents, including a 4-(2-(4,5-c-2-yl)naphthalene-3-yloxy)butoxy)naphthalene-1-yl moiety. However, chemosensor 2 features a 1H-imidazole core with distinct substituents, such as 4-methyl-2-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)butoxy)-5-methylphenyl. Chemosensor 1 crystallizes in the monoclinic space group C2/c. Both chemosensors 1 and 2 exhibit a discernible fluorescence quenching response selectively toward iron(III) ion (Fe3+ ) at 435 and 390 nm, respectively, in dimethylformamide (DMF) solutions, distinguishing them from other tested cations. This fluorescence quenching is attributed to the established mechanism of chelation quenched fluorescence (CHQF). The binding constants for the formation of the 1 + Fe3+ and 2 + Fe3+ complexes were determined using the modified Benesi-Hildebrand equation, yielding values of approximately 2.2 × 103 and 1.3 × 104 M-1 , respectively. The calculated average fluorescence lifetimes for 1 and 1 + Fe3+ were 2.51 and 1.17 ns, respectively, while for 2 and 2 + Fe3+ , the lifetimes were 1.13 and 0.63 ns, respectively. Additionally, the applicability of chemosensors 1 and 2 in detecting Fe3+ in live cells was demonstrated, with negligible observed cell toxicity.
Collapse
Affiliation(s)
- Praveena Rajendran
- Department of Industrial Chemistry, Alagappa University, Karaikudi, India
| | | | - Sengottuvelan Nallathambi
- Department of Chemistry, Directorate of Distance Education (DDE), Alagappa University, Karaikudi, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Siva Ayyanar
- Department of Inorganic Chemistry, Madurai Kamaraj University, Madurai, India
| | - Selvaraju Chellappan
- National Center for Ultrafast Process, University of Madras, Tarmani Campus, Chennai, India
| |
Collapse
|
8
|
Ghosh S, Mahato S, Dutta T, Ahamed Z, Ghosh P, Roy P. Highly selective, sensitive and biocompatible rhodamine-based isomers for Al 3+ detection: A comparative study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123455. [PMID: 37813088 DOI: 10.1016/j.saa.2023.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective detection of a metal ion with high selectivity is of great importance to understand its existence and its role in many chemical and biological processes. We report here the synthesis, characterization and Al3+ sensing properties of two rhodamine-based isomers, (E)-2-((2-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-2-oxy) and (E)-2-((4-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-4-oxy). L-2-oxyand L-4-oxy show pink coloration, significant enhancement in absorbance at 530 nm and fluorescence intensity at 553 nm in the presence of Al3+ among several cations. Quantum yield and lifetime of the probes increase in the presence of Al3+. LOD values have been determined as low as ∼1.0 nM for both the isomers. DFT study suggests that the cation induces opening of spirolactam ring resulting in the changes of the rhodamine dyes. Additional reason could be Chelation Enhanced Fluorescence (CHEF) effect due to the subsequent chelation of the metal ion. Between two isomers, L-2-oxy displays better sensing ability towards Al3+ in terms of fluorescence enhancement, limit of detection, lifetime enhancement. Both the probes have been utilized in cell imaging studies using rat skeletal myoblast cell line (L6 cell line).
Collapse
Affiliation(s)
- Sneha Ghosh
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Shephali Mahato
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Tiasha Dutta
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Zisan Ahamed
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
9
|
Jiang D, Zheng M, Ma X, Zhang Y, Jiang S, Li J, Zhang C, Liu K, Li L. Rhodamine-Anchored Polyacrylamide Hydrogel for Fluorescent Naked-Eye Sensing of Fe 3. Molecules 2023; 28:6572. [PMID: 37764348 PMCID: PMC10537437 DOI: 10.3390/molecules28186572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
A fluorescent and colorimetric poly (acrylamide)-based copolymer probe P(AAm-co-RBNCH) has been designed via free radical polymerization of a commercial acrylamide monomer with a rhodamine-functionalized monomer RBNCH. Metal ion selectivity of RBNCH was investigated by fluorescence and colorimetric spectrophotometry. Upon addition of Fe3+, a visual color change from colorless to red and a large fluorescence enhancement were observed for the ring-opening of the rhodamine spirolactam mechanism. The monomer gives a sensitive method for quantitatively detecting Fe3+ in the linear range of 100-200 μM, with a limit of detection as low as 27 nM and exhibiting high selectivity for Fe3+ over 12 other metal ions. The hydrogel sensor was characterized by FTIR, and the effects of RBNCH amount on gel content and swelling properties were explored. According to the recipe of 1.0 mol% RBNCH to the total monomers, the fabricated hydrogel sensor displayed a good swelling property and reversibility performance and has potential for application in the imaging of Fe3+ level in industrial wastewater.
Collapse
Affiliation(s)
- Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Minghao Zheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.M.); (S.J.)
| | - Yingzhen Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.M.); (S.J.)
| | - Juanhua Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| | - Liqing Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China; (D.J.); (M.Z.); (Y.Z.); (J.L.)
| |
Collapse
|
10
|
Liu Y, Cui H, Wei K, Kang M, Liu P, Yang X, Pei M, Zhang G. A new Schiff base derived from 5-(thiophene-2-yl)oxazole as "off-on-off" fluorescence sensor for monitoring indium and ferric ions sequentially and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122376. [PMID: 36709682 DOI: 10.1016/j.saa.2023.122376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A new Schiff base sensor (E)-N'-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)-5-(thiophen-2-yl)oxazole-4-carbohydrazide (TOQ) was synthesized and found to emit yellowish green fluorescence upon introduction of In3+. Furthermore, the resulting complex TOQ-In3+ was quenched selectively by Fe3+. The detection limits of TOQ for In3+ and Fe3+ were 1.75 × 10-10 M and 8.45 × 10-9 M, respectively. The complex stoichiometry of TOQ with target ions was determined to be 1:2 via Job's plot analysis, which further was verified by ESI-MS titration and theoretical calculations. Moreover, TOQ can be used for the determination of target ions in environmental water samples. A portable paper sensor of TOQ was successfully developed for detecting In3+ to assess its applicability.
Collapse
Affiliation(s)
- Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huanxia Cui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Kehui Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
11
|
Shi C, Luo J, Wang Y, Ding L, Liang Q, Yang Z, Lu J, Wu A. A water-soluble naphthalimide fluorescent probe for Cr 2O 72- and Fe 3+ based on inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122245. [PMID: 36535222 DOI: 10.1016/j.saa.2022.122245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
A probe 3 (2-ethoxy-N-(2-(2-(2-hydroxyethoxy)ethyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de] isoquinolin-6-yl)benzamide) that could selectively respond to Cr2O72- and Fe3+ was reported in this paper. The selectivity, pH titration, concentration titration, detection limit, time dependence, quenching constant and recognition mechanism of probe 3 for Cr2O72- and Fe3+ were studied in CH3CN/HEPES buffer solution. The results showed that Cr2O72- and Fe3+ could rapidly quench the fluorescence of probe 3 through the inner filter effect (IFE). The quenching kept constant after 30 s, and the quenching constants were 7.99 × 103 L.mol-1 and 4.13 × 103 L.mol-1, respectively. The detection limits of probe 3 for Cr2O72- and Fe3+ were 1.15 μmol.L-1 and 1.95 μmol.L-1, respectively, which were lower than the maximum allowable concentrations in drinking water stipulated by EPA. The determination results of Cr2O72- and Fe3+ in water samples indicated that probe 3 could be used as a potential detection tool in practical applications.
Collapse
Affiliation(s)
- Chuntian Shi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jiangxiong Luo
- College of Mechanical & Vehicle Engineering, Hunan University, Changsha 410082, PR China
| | - Yijun Wang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Ling Ding
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Qingxiang Liang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhihui Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jihao Lu
- School of Science, Tianjin Chengjian University, Tianjin 300392, PR China
| | - Aibin Wu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
12
|
Alam MZ, Khan SA. A review on Rhodamine-based Schiff base derivatives: synthesis and fluorescent chemo-sensors behaviour for detection of Fe 3+ and Cu 2+ ions. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2183852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Md Zafer Alam
- Physical Science Section (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| | - Salman A. Khan
- Physical Science Section (Chemistry), School of Sciences, Maulana Azad National Urdu University, Hyderabad, Telangana, 500032, India
| |
Collapse
|
13
|
Shellaiah M, Sun KW. Review on Carbon Dot-Based Fluorescent Detection of Biothiols. BIOSENSORS 2023; 13:335. [PMID: 36979547 PMCID: PMC10046571 DOI: 10.3390/bios13030335] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play a vital role in gene expression, maintaining redox homeostasis, reducing damages caused by free radicals/toxins, etc. Likewise, abnormal levels of biothiols can lead to severe diseases, such as Alzheimer's disease (AD), neurotoxicity, hair depigmentation, liver/skin damage, etc. To quantify the biothiols in a biological system, numerous low-toxic probes, such as fluorescent quantum dots, emissive organic probes, composited nanomaterials, etc., have been reported with real-time applications. Among these fluorescent probes, carbon-dots (CDs) have become attractive for biothiols quantification because of advantages of easy synthesis, nano-size, crystalline properties, low-toxicity, and real-time applicability. A CDs-based biothiols assay can be achieved by fluorescent "Turn-On" and "Turn-Off" responses via direct binding, metal complex-mediated detection, composite enhanced interaction, reaction-based reports, and so forth. To date, the availability of a review focused on fluorescent CDs-based biothiols detection with information on recent trends, mechanistic aspects, linear ranges, LODs, and real applications is lacking, which allows us to deliver this comprehensive review. This review delivers valuable information on reported carbon-dots-based biothiols assays, the underlying mechanism, their applications, probe/CDs selection, sensory requirement, merits, limitations, and future scopes.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
14
|
Chantarasunthon K, Promkatkaew M, Waranwongcharoen P, Sueksachat A, Prasop N, Norasi T, Sonsiri N, Sansern S, Chomngam S, Wechakorn K, Thana C, Sakulsaknimitr W, Kongsaeree P, Srisuratsiri P. A novel highly selective FRET sensor for Fe(III) and DFT mechanistic evaluation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122031. [PMID: 36323091 DOI: 10.1016/j.saa.2022.122031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
A novel FRET-based sensor has been designed and developed through the conjugation of naphthyl and rhodamine via propylamine spacer, Naph-Rh. The naphthyl moiety serves as a FRET donor due to its emission spectrum overlapping with the rhodamine B absorption band. Naph-Rh exhibited a selectivity for sensing Fe3+ over other metal ions with a visual color change and fluorescent enhancement. The ratio of the Naph-Rh and Fe3+ was determined to be 1:1 based on Job's plot analysis with a detection limit of 83 nM. The probe exhibited a linear response to Fe3+ in the range of 0-120 μM. Furthermore, the density functional theory (DFT) calculations of Naph-Rh were carried out to rationalize the design and portray the plausible Fe3+ sensing mechanism.
Collapse
Affiliation(s)
- Ketsarin Chantarasunthon
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Malinee Promkatkaew
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Patthreera Waranwongcharoen
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Anek Sueksachat
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Nitchanan Prasop
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Thanaporn Norasi
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Narisa Sonsiri
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Sirirat Sansern
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Sinchai Chomngam
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | - Chanat Thana
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Wissawat Sakulsaknimitr
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Palangpon Kongsaeree
- Department of Chemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pailin Srisuratsiri
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand.
| |
Collapse
|
15
|
Wang X, Huang J, Wei H, Wu L, Xing H, Zhu J, Kan C. A novel Fe3+ fluorescent probe based on rhodamine derivatives and its application in biological imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
A Highly Sensitive and Selective Quinazoline-Based Colorimetric Probe for Naked-Eye Detection of Fe3+ Ions. J Fluoresc 2022; 32:2309-2318. [DOI: 10.1007/s10895-022-03016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
|
18
|
Yakout AA, Basha MT, Shahat A. Robust and Ultrasensitive Chemosensor Based on Bifunctionalized MIL‐101(Al) for Fluorescent Detection of Ferric Ions in Serum and Pharmaceutical Tablets. ChemistrySelect 2022. [DOI: 10.1002/slct.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Amr A. Yakout
- Department of Chemistry College of Science University of Jeddah Jeddah Saudi Arabia
- Department of Chemistry Faculty of Science Alexandria University Alexandria Egypt
| | - Maram T. Basha
- Department of Chemistry College of Science University of Jeddah Jeddah Saudi Arabia
| | - Ahmed Shahat
- Department of Chemistry Faculty of Science Suez University 43518 Suez Egypt
| |
Collapse
|
19
|
Zhang Q, Ding H, Xu X, Wang H, Liu G, Pu S. Rational design of a FRET-based ratiometric fluorescent probe with large Pseudo-Stokes shift for detecting Hg 2+ in living cells based on rhodamine and anthracene fluorophores. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121242. [PMID: 35429865 DOI: 10.1016/j.saa.2022.121242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The development of fluorescent dyes has been a continuing attractive research topic in the field of fluorescence sensing and bioimaging technologies, most of them were subject to a single signal change. In this work, a novel colorimetric and ratiometric fluorescent probe 1 based on rhodamine and anthracene groups was designed and synthesized via the fluorescence resonance energy transfer (FRET) mechanism. Probe 1 showed excellent selectivity, higher sensitivity and ratiometric response to Hg2+ in the CH3CN/H2O (1/1, v/v) system, with a fast response time (less than 30 s); The fluorescent color changed from purple to orange and the solution visible to the naked-eye changed from colorless to pink. The Pseudo-Stokes shift was 174 nm upon addition of Hg2+. The limit of detection (LOD) was calculated to be 0.81 μM and 0.38 μM according to fluorescence and UV/vis measurements, respectively. Furthermore, a possible mechanism for the detection of Hg2+ by probe 1 was verified by using 1H NMR, ESI-MS, and HPLC spectra. Meanwhile, probe 1 was successfully used for cell imaging for the detection of Hg2+ in living cells.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiaohang Xu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Huaxin Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
20
|
Wang J, Qian B, Wang T, Ma Y, Lin H, Zhang Y, Lv H, Zhang X, Hu Y, Xu S, Liu F, Li H, Jiang Z. Nontoxic Tb 3+-induced hyaluronic nano-poached egg aggregates for colorimetric and luminescent detection of Fe 3+ ions. RSC Adv 2022; 12:22285-22294. [PMID: 36043088 PMCID: PMC9366763 DOI: 10.1039/d2ra03871d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
This study demonstrates that a luminescent Tb3+ complex with green emission can be complexed with hyaluronic (hya) to form nanoparticles. The structure of complexation is composed of a Tb(acac)2phen core with a hya surface, similar to those of the nano-poached eggs. What makes the structure unique is that Tb(acac)2phen and hya are connected by chemical bonds. To confirm their utility, we illustrate that the luminescence is rapidly and selectively quenched in the presence of Fe3+. Initial cytotoxicity experiments with human liver carcinoma cells show that the luminescent lanthanide complexes are cytotoxic, however, complexing lanthanides to hya renders them cytocompatible. The new complex integrates the advantages of superior lanthanide luminescence, the unique shape of nano-poached eggs, compatibility with aqueous systems, and cytocompatibility. Tb3+-induced hyaluronic nano-poached eggs (THNE) can, therefore, be used for Fe3+ detection in aqueous systems. The original Tb3+-induced hyaluronic nano-poached eggs (THNE) integrates the advantages of superior lanthanide luminescence, the unique shape of nano-poached eggs, and non-toxicity, for the sensing of Fe3+ in aqueous surroundings.![]()
Collapse
Affiliation(s)
- Jing Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Bei Qian
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University Qingdao 266109 China
| | - Tao Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Yanyan Ma
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Haitao Lin
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Yimeng Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Hongmin Lv
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Xiaonan Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Yimeng Hu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Shanshan Xu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Fengchen Liu
- Shandong Technological Center of Oceanographic Instrumentation Co., Ltd 37 Miaoling Road Qingdao 266061 P. R. China
| | - Huiling Li
- Innovation and Development Institute of Shangdong Province Jinan 250101 P. R. China
| | - Zike Jiang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| |
Collapse
|
21
|
Xia YF, Bao GM, Peng XX, Wu XY, Lu HF, Zhong YF, Li W, He JX, Liu SY, Fan Q, Li SH, Xiao W, Yuan HQ. A highly water-stable dual-emission fluorescent probe based on Eu3+-loaded MOF for the simultaneous detection and quantification of Fe3+ and Al3+ in swine wastewater. Anal Chim Acta 2022; 1221:340115. [DOI: 10.1016/j.aca.2022.340115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
|
22
|
Li Y, Chen Q, Pan X, Lu W, Zhang J. Development and Challenge of Fluorescent Probes for Bioimaging Applications: From Visualization to Diagnosis. Top Curr Chem (Cham) 2022; 380:22. [PMID: 35412098 DOI: 10.1007/s41061-022-00376-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Fluorescent probes have been used widely in bioimaging, including biological substance detection, cell imaging, in vivo biochemical reaction process tracking, and disease biomarker monitoring, and have gradually occupied an indispensable position. Compared with traditional biological imaging technologies, such as positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI), the attractive advantages of fluorescent probes, such as real-time imaging, in-depth visualization, and less damage to biological samples, have made them increasingly popular. Among them, ultraviolet-visible (UV-vis) fluorescent probes still occupy the mainstream in the field of fluorescent probes due to the advantages of available structure, simple synthesis, strong versatility, and wide application. In recent years, fluorescent probes have become an indispensable tool for bioimaging and have greatly promoted the development of diagnostics. In this review, we focus on the structure, design strategies, advantages, representative probes and latest discoveries in application fields of UV-visible fluorescent probes developed in the past 3-5 years based on several fluorophores. We look forward to future development trends of fluorescent probes from the perspective of bioimaging and diagnostics. This comprehensive review may facilitate the development of more powerful fluorescent sensors for broad and exciting applications in the future.
Collapse
Affiliation(s)
- Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
23
|
Alhawsah B, Yan B, Aydin Z, Niu X, Guo M. Highly Selective Fluorescent Probe With an Ideal pH Profile for the Rapid and Unambiguous Determination of Subcellular Labile Iron (III) Pools in Human Cells. ANAL LETT 2022; 55:1954-1970. [DOI: 10.1080/00032719.2022.2039932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Bayan Alhawsah
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Bing Yan
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Ziya Aydin
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Xiangyu Niu
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Maolin Guo
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
24
|
A FRET-based ratiometric fluorescent probe with large pseudo-stokes for the detection of mercury ion based on xanthene and naphthalimide fluorophores. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Liu Z, Li N, Liu P, Qin Z, Jiao T. Highly Sensitive Detection of Iron Ions in Aqueous Solutions Using Fluorescent Chitosan Nanoparticles Functionalized by Rhodamine B. ACS OMEGA 2022; 7:5570-5577. [PMID: 35187371 PMCID: PMC8851898 DOI: 10.1021/acsomega.1c07071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 05/04/2023]
Abstract
Detection of iron ions in aqueous solutions is of significant importance because of their important role in the environment and the human body. Herein, a fluorescent rhodamine B-functionalized chitosan nanoparticles probe is reported for the efficient detection of iron ions. The chitosan nanospheres-rhodamine B (CREN) was prepared by grafting rhodamine B onto the surface of chitosan nanospheres through an amidation reaction. The as-prepared CREN fluorescent probes exhibit high fluorescence intensity under ultraviolet light. When iron ions are added to the CREN solution, they can be coordinated with weak-field ligands such as N and O on the surface of chitosan nanoparticles (CSNP) by a high-spin method. The self-assembly of Fe3+ on the surface of the CREN led to the generation of single electrons and the presence of high paramagnetism, resulting in fluorescence quenching. The quenching effect of Fe3+ on the CREN fluorescent probe can achieve the efficient detection of Fe3+, and the detection limit reaches 10-5 mol/mL. Moreover, this fluorescence quenching effect of Fe3+ on the CREN fluorescent probe is specific, which could not be disturbed by other metal ions and counteranions.
Collapse
Affiliation(s)
- Zhiwei Liu
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ping Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhihui Qin
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
26
|
Shi C, Yu M, Wu A, Luo J, Li X, Wang N, Shu W, Yu W. A Water-Soluble Naphthalimide-Based Fluorescent Probe for Specific Sensing of Fe 3+ and $\text{C}{{\text{r}}_{2}}\text{O}_{7}^{2-}$. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Singh G, Kaur JD, Pawan, Sushma, Priyanka, Satija P, Singh KN, Esteban MA, Espinosa-Ruíz C. A veratraldehyde-appended organosilicon probe and its hybrid silica nanoparticles as a dual chemosensor for colorimetric and fluorimetric detection of Cu 2+ and Fe 3+ ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05105a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schiff bases of veratraldehyde based organosilatranes have been synthesized. The colorimetric and fluorimetric detection of 3a and its hybrid silica nanoparticles (V-NPs) revealed significant sensorial ability only towards Cu2+ and Fe3+ ions.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pawan
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sushma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Priyanka
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pinky Satija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - K. N. Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - María Angeles Esteban
- Department of Cell Biology & Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Cristóbal Espinosa-Ruíz
- Department of Cell Biology & Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
28
|
Shellaiah M, Sun KW. Diamond-Based Electrodes for Detection of Metal Ions and Anions. NANOMATERIALS 2021; 12:nano12010064. [PMID: 35010014 PMCID: PMC8746347 DOI: 10.3390/nano12010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Diamond electrodes have long been a well-known candidate in electrochemical analyte detection. Nano- and micro-level modifications on the diamond electrodes can lead to diverse analytical applications. Doping of crystalline diamond allows the fabrication of suitable electrodes towards specific analyte monitoring. In particular, boron-doped diamond (BDD) electrodes have been reported for metal ions, anions, biomolecules, drugs, beverage hazards, pesticides, organic molecules, dyes, growth stimulant, etc., with exceptional performance in discriminations. Therefore, numerous reviews on the diamond electrode-based sensory utilities towards the specified analyte quantifications were published by many researchers. However, reviews on the nanodiamond-based electrodes for metal ions and anions are still not readily available nowadays. To advance the development of diamond electrodes towards the detection of diverse metal ions and anions, it is essential to provide clear and focused information on the diamond electrode synthesis, structure, and electrical properties. This review provides indispensable information on the diamond-based electrodes towards the determination of metal ions and anions.
Collapse
|
29
|
Qin Z, Su W, Liu P, Ma J, Zhang Y, Jiao T. Facile Preparation of a Rhodamine B Derivative-Based Fluorescent Probe for Visual Detection of Iron Ions. ACS OMEGA 2021; 6:25040-25048. [PMID: 34604683 PMCID: PMC8482772 DOI: 10.1021/acsomega.1c04206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 05/17/2023]
Abstract
Iron ions play an important role in our lives. Excessive or lack of iron ion intake leads to many diseases. At the same time, the water environment is easily polluted by these metal ions with the acceleration of industrialization. Therefore, the detection of iron ions in the water environment and the human body is particularly important. In this paper, we prepared a RhB-EDA fluorescent probe by condensing rhodamine B (RhB) with ethylenediamine (EDA) for high recognition of Fe3+. A RhB-EDA molecule itself is colorless and has no fluorescence emission in an alcohol solution. When Fe3+ was added, the lactam ring structure of the fluorescent probe opened, and the UV and fluorescence spectra changed. At the same time, the color of the mixed solution gradually deepened toward pink. Therefore, dual spectral detection and naked-eye observation of Fe3+ were realized. In addition, with the decrease of the pH value and the prolongation of chelating time, the ultraviolet absorbance and fluorescence emission intensity were enhanced and the color of the mixed solution deepened. The RhD-EDA fluorescent probe is simple and accurate and provides good technical support for the detection of Fe3+.
Collapse
Affiliation(s)
- Zhihui Qin
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Weiwei Su
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Ping Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jinming Ma
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Yaru Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| |
Collapse
|
30
|
Cao XY, Pang CM, Xiao Y, Xiao WQ, Luo SH, He JP, Wang ZY. Preparation of Large Conjugated Polybenzimidazole Fluorescent Materials and Their Application in Metal Ion Detection. Polymers (Basel) 2021; 13:polym13183091. [PMID: 34577993 PMCID: PMC8472194 DOI: 10.3390/polym13183091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/19/2023] Open
Abstract
A new type of conjugated polybenzimidazole (CPBI) was synthesized through a simple polycondensation reaction without metal catalysis, and N-alkylation modification was carried out to solve the problems of solubility and fluorescence properties. A series of nano-microsphere polymers CPBIn with large conjugation, good solubility, and strong fluorescence has been successfully used as “turn-off” fluorescent probes for the first time. The results show that, under suitable N-alkylation conditions, the obtained CPBIn can be used as a highly sensitive and selective fluorescent probe for the detection of Cu2+ and Zn2+ at the same time, and their detection limits are both nM levels. In addition, CPBI2 can be designed as an ultra-sensitive IMPLICATION logic gate at the molecular level, cyclically detecting Cu2+. With the test paper containing CPBI2, easy and quick on-site detection can be achieved. This research provides a new idea for the brief synthesis of multifunctional materials.
Collapse
Affiliation(s)
- Xi-Ying Cao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Chu-Ming Pang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, China
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| | - Ying Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Wan-Qing Xiao
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| | - Jin-Ping He
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, China; (X.-Y.C.); (Y.X.); (W.-Q.X.); (J.-P.H.)
- Correspondence: (C.-M.P.); (S.-H.L.); (Z.-Y.W)
| |
Collapse
|
31
|
Wang TT, Liu JY, An JD, Shi YF, Zhang YY, Huo JZ, Huang ZG, Liu YY, Ding B. Hydrothermal synthesis of two-dimensional cadmium(II) micro-porous coordination material based on Bi-functional building block and its application in highly sensitive detection of Fe 3+ and Cr 2O 72. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119655. [PMID: 33744702 DOI: 10.1016/j.saa.2021.119655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic framework (MOFs), also known as porous coordination polymers (PCPs), is a new kind of crystalline porous materials, which has received extensive attention in the past few decades. As a new type of sensing material, MOFs stand out from many other traditional fluorescence sensors because of its crystal characteristics, structural diversity, stable porosity and adjustable functional characteristics. In this work, the bi-functional building block containing aromatic carboxylic acid and triazole moieties, namely 3-(1H-1,3,4-triazol-1-yl) benzoic acid, was selected as the linker to synthesize {[Cd(µ5-L)⋅I}n (1, HL = 3-(1H-1,3,4-triazol-1-yl)benzoic acid) by hydrothermal method with transition CdII metal centers. Firstly, the preliminary characterization of 1 was carried out by means of PXRD, FT-IR, and then the UV and fluorescence tests were conducted to study the fluorescence properties of 1. The crystal structure analysis indicates that CdII is the center and the ligand is bridged to form a two-dimensional porous structure. In addition, 1 has good selectivity for Fe3+ and Cr2O72-, meanwhile, it has high detection sensitivity (Ksv quenching efficiency for Fe3+: 1.2 × 104 M-1 and Cr2O72- 1.85 × 104 M-1) and low detection limit (Fe3+: 19.21 μM and Cr2O72-: 12.46 μM). The results of photoluminescence test show that 1 can detect cations and anions with high sensitivity, resist the interference of other ions, and have good reusability. As far as we know, 1 is the first example of ultra-stable two-dimensional (2D) Cadmium (II) microporous coordination material as a fluorescence sensor for Fe3+ and Cr2O72-.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jun-Dan An
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yang-Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi-Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zheng-Guo Huang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
32
|
Zhang J, Bai CB, Chen MY, Yue SY, Qin YX, Liu XY, Xu MY, Zheng QJ, Zhang L, Li RQ, Qiao R, Qu CQ. Novel Fluorescent Probe toward Fe 3+ Based on Rhodamine 6G Derivatives and Its Bioimaging in Adult Mice, Caenorhabditis elegans, and Plant Tissues. ACS OMEGA 2021; 6:8616-8624. [PMID: 33817522 PMCID: PMC8015108 DOI: 10.1021/acsomega.1c00440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A new fluorescent probe LXY based on the rhodamine 6G platforms has been designed, synthesized, and characterized, which could recognize Fe3+ effectively in HEPES buffer (10 mM, pH = 7.4)/CH3CN (2:3, v/v). And the distinct color change and the rapid emergence of fluorescence emission at 550 nm achieved "naked eye" detection of Fe3+. The interaction mode between them was achieved by Job's plot, MS, SEM, and X-ray single-crystal diffraction. Importantly, the crystal structures proved that Fe3+ could induce the rhodamine moiety transform the closed-cycle form to the open-cycle form. But it is interesting that Fe3+ did not appear in the crystal structures. Meanwhile, the limit of detection (LOD) of LXY to Fe3+ was calculated to be 3.47 × 10-9. In addition, the RGB experiment, test papers, and silica gel plates all indicated that the probe LXY could be used to distinguish Fe3+ quantitatively and qualitatively on-site. Moreover, the probe LXY has also been successfully applied to Fe3+ image in Caenorhabditis elegans, adult mice, and plant tissues. Thus, LXY was considered to have some potential for application in bioimaging.
Collapse
Affiliation(s)
- Jie Zhang
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Cui-Bing Bai
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
TIPC, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Research
Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, P. R. China
| | - Meng-Yu Chen
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shao-Yun Yue
- Engineering
Research Center of Biomass Conversion and Pollution Prevention Anhui
Educational Institutions, Fuyang, Anhui 236037, P. R. China
| | - Yu-Xin Qin
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Xin-Yu Liu
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Meng-Ya Xu
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Qi-Jun Zheng
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Lin Zhang
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Research
Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, P. R. China
| | - Rui-Qian Li
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Research
Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, P. R. China
| | - Rui Qiao
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
TIPC, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Research
Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, P. R. China
| | - Chang-Qing Qu
- Engineering
Research Center of Biomass Conversion and Pollution Prevention Anhui
Educational Institutions, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
33
|
Yang Y, Guo Z, Ye J, Gao CY, Liu J, Duan L. Sulfonate substituted rhodamine hydrophilic fluorescent probes: Application to specific detection of Fe 3+ and imaging in living fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119238. [PMID: 33307348 DOI: 10.1016/j.saa.2020.119238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Two Sulfonate substituted rhodamine hydrophilic fluorescent probes RbS1 and RbS2 were designed and synthesized for specific detection of Fe3+. It was found that the probe RbS2 was stronger than RbS1 in the water solubility test. Both of them displayed responses to Fe3+ with a apparent fluorescence enhancement at 585 nm, accompanied with a distinct fluorescence change to pink. Upon addition of Fe3+ ions (0-16 μM), the emission intensity of RbS1 and RbS2 increased to 40 and 70 fold, which exhibited a good linear relationship with the concentration of Fe3+. The detection limits of RbS1 and RbS2 for sensing Fe3+ were 0.64 μM and 0.56 μM, respectively. The binding ratios of the RbS1 and RbS2 to Fe3+ were 1:1 and the recycling ability for Fe3+ was reasonable. RbS1 and RbS2 have been successfully applied to the determination of Fe3+ in real water samples with satisfactory recovery and accuracy. In further living fish imaging test, the probe RbS2 was distributed into abdomen, which exhibited better fluorescence imaging ability than that of RbS1.
Collapse
Affiliation(s)
- Yang Yang
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China.
| | - Zhenli Guo
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Jinting Ye
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Chao-Ying Gao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| | - Jinglin Liu
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China.
| | - Limei Duan
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028043, PR China; College of Chemistry and Material Science, Inner Mongolia University for Nationalities, Tongliao 028043, PR China
| |
Collapse
|
34
|
Li H, Liu Z, Jia R. "Turn-on" fluorescent probes based on Rhodamine B/amino acid derivatives for detection of Fe 3+ in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119095. [PMID: 33160134 DOI: 10.1016/j.saa.2020.119095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Five kinds of Fe3+ fluorescent probes (RhB-Gly, RhB-Ala, RhB-Try, RhB-Cys, and RhB-His) were synthesized and characterized by NMR and mass spectrometry, based on the "OFF-ON" mechanism of Rhodamine B derivatives. The RhB-His based probe showed remarkable sensing performance toward the detection for Fe3+ and showed high selectivity for Fe3+ in the presence of other metal ions (such as Fe2+, Hg2+, Zn2+, Ba2+, Al3+, Co2+, Cd2+, K+, Na+, Mn2+, Pd2+, Pb2+, Ca2+, Ni2+, Cu2+, and Ag+), in PBS buffer solution (containing 2% of EtOH, pH 7.4, 1.0 mmol/L). The enhancement of the fluorescence was linearly proportional with the concentration Fe3+ (from 0 to 20 μmol/L), while the detection limit reached 0.88 μmol/L with a response time of 15 s. The RhB-His probe was successfully applied to investigate real samples and living cell imaging.
Collapse
Affiliation(s)
- Hongda Li
- Department of Forensic Chemistry, Criminal Investigation Police University of China, Shenyang 110035, China.
| | - Zhixue Liu
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Rulin Jia
- Department of Forensic Chemistry, Criminal Investigation Police University of China, Shenyang 110035, China
| |
Collapse
|
35
|
Zhao G, Sun Y, Duan H. Four xanthene–fluorene based probes for the detection of Hg2+ ions and their application in strip tests and biological cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj05155a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new fluorescent probes based on the xanthene structure to detect mercury ions with different colors of fluorescence have been reported.
Collapse
Affiliation(s)
- Guozhi Zhao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences)
- Ji'nan
- China
| | - Yucheng Sun
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences)
- Ji'nan
- China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences)
- Ji'nan
- China
| |
Collapse
|
36
|
Shellaiah M, Thirumalaivasan N, Sun KW, Wu SP. A pH cooperative strategy for enhanced colorimetric sensing of Cr(III) ions using biocompatible L-glutamic acid stabilized gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Wang Y, Pak YL, Xu Q. A Selective Fluorescent Probe for Ferric Ion Based on Rhodamine
6G. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuting Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yanqi Lake Campus of University of Chinese Academy of Sciences Huaibei town, Huairou District, Beijing China
| | - Yen Leng Pak
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yanqi Lake Campus of University of Chinese Academy of Sciences Huaibei town, Huairou District, Beijing China
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Yanqi Lake Campus of University of Chinese Academy of Sciences Huaibei town, Huairou District, Beijing China
| |
Collapse
|