1
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
2
|
Aziznia S, Askari G, Emamdjomeh Z, Salami M. Effect of ultrasonic assisted grafting on the structural and functional properties of mung bean protein isolate conjugated with maltodextrin through maillard reaction. Int J Biol Macromol 2024; 254:127616. [PMID: 37918607 DOI: 10.1016/j.ijbiomac.2023.127616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Four different methods of maillard reaction including ultrasound (150 W, 10 min) assisted, classical wet heating (80 °C, 60min), moderate water bath heating (60°C, 12 to 30 h) and dry state method (60 °C, 79 % relative humidity and 48 h) were used to Mung bean protein isolate - Maltodexrtin conjugates (MPI-MD) preparation. The samples prepared under ultrasound and wet heating were chosen for further analysis according to degree of graft and UV-absorbance at 420 nm. Higher glycosylation at short time and lower browning were obtained under ultrasound treatment. Covalent attachment in conjugates confirmed by SDS-polyacrylamide gel electrophoresis. The structural analysis revealed prominent unfolding effect of ultrasound waves on the protein's molecules. The decrease of α-helix content was related to the exposure of buried amino group residues during reaction. Glycation of MPI under ultrasound caused changes in tertiary structure of protein and leads to decrease in the fluorescence intensity compared with native and wet heating treatments. FTIR spectra confirmed the conjugation of the MPI and MD and suggested that protein structure was changed and ultrasound promoted the graft reaction more than wet heating treatment. Conjugated MPI showed higher emulsification and solubility index than MPI, moreover the effect of ultrasonic waves on ameliorated functional properties was impressive than those for wet heating treatment. Overall, this study showed use of ultrasonication in maillard reaction was a suitable method for producing MPI- MD conjugates and improved the efficiency of graft reaction and functional properties of grafts.
Collapse
Affiliation(s)
- Somayeh Aziznia
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| | - Gholamreza Askari
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| | - Zahra Emamdjomeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| | - Maryam Salami
- Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Iran.
| |
Collapse
|
3
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
da Silva Leite R, Neves do Nascimento M, Hernandéz-Navarro S, Miguel Ruiz Potosme N, Karthikeyan S. Use of ATR-FTIR spectroscopy for analysis of water deficit tolerance in Physalis peruviana L. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121551. [PMID: 35779475 DOI: 10.1016/j.saa.2022.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Treatments that allow plants to better tolerate water deficit become essential, such as the application of chemical priming. In addition, it is essential to use analyses capable of measuring these effects at the biomolecular level, complementing the other physiological evaluations. In view of the above, this study aimed to evaluate the use of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy for analyses of water deficit tolerance in Physalis peruviana plants. For this, samples of leaves, stems and roots of plants subjected to different pretreatments with proline (10 mM and 20 mM), sodium nitroprusside (SNP 25 μM and 50 μM) and H2O as control, aiming at increasing tolerance to water deficit, were evaluated. The chemical agents used attenuated water deficit in P. peruviana plants, influencing phenotypic characterization and spectral analyses. Analysis of FTIR spectra indicates that different functional groups present in leaves, stems and roots were influenced by water deficit and priming treatments. Changes in lipid levels contributed to reducing water losses by increasing the thickness of cuticular wax. Accumulation of proteins and carbohydrates promoted osmoregulation and maintenance of the water status of plants. Thus, water deficit causes changes in the functional groups present in the organs of P. peruviana, and the ATR-FTIR technique is able to detect these biomolecular changes, helping in the selection of priming treatments to increase tolerance to water deficit.
Collapse
Affiliation(s)
- Romeu da Silva Leite
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil; Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain; Baiano Federal Institute of Science and Technology, Campus Xique-Xique, 47400-000 Xique-Xique, Brazil.
| | - Marilza Neves do Nascimento
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil
| | - Salvador Hernandéz-Navarro
- Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain
| | - Norlan Miguel Ruiz Potosme
- Superior Polytechnic School, European University Miguel de Cervantes, 47012 Valladolid, Castilla y Leon, Spain
| | - Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, 600039 Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Ardahanlı İ, Özkan Hİ, Özel F, Gurbanov R, Teker HT, Ceylani T. Infrared spectrochemical findings on intermittent fasting-associated gross molecular modifications in rat myocardium. Biophys Chem 2022; 289:106873. [PMID: 35964448 DOI: 10.1016/j.bpc.2022.106873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022]
Abstract
Cardiovascular diseases are among the primary life-threatening conditions affecting human society. Intermittent fasting is shown to be functional in the prevention of cardiovascular diseases, however, the information on fasting-associated modifications in myocardial biomolecules is limited. This study aimed to determine the impact of 18-h intermittent fasting administered for five weeks on 12 months-old rats using supervised linear discriminant analysis and support vector machine algorithms constructed on spectrochemical data obtained from myocardial tissues. These algorithms revealed gross biomolecular modifications, while quantitative analyses demonstrated higher amounts of saturated lipids (19%), triglycerides (11%), and lipids (56%), in addition to enhancement in membrane dynamics (18%). The concentrations of nucleic acids and glucose are increased by 52%, while the glycogen content is diminished by 61%. The protein carbonylation/oxidation is reduced by 38%, whereas a 35% increase in protein content was measured. Phosphorylated proteins have been calculated to be at higher concentrations in the 13-62% range. The study findings demonstrated significant molecular changes in the myocardium of rats subjected to intermittent fasting.
Collapse
Affiliation(s)
- İsa Ardahanlı
- Department of Cardiology, Faculty of Medicine, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Halil İbrahim Özkan
- Department of Biochemistry, Faculty of Medicine, Atatürk University Erzurum, Turkey
| | - Faik Özel
- Department of Internal Medicine, Faculty of Medicine, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University Bilecik, Turkey
| | | | - Taha Ceylani
- Department of Food Quality Control and Analysis, Muş Alparslan University Muş, Turkey.
| |
Collapse
|
6
|
Velmurugan B, Devaraj Stephen L, Karthikeyan S, Binu Kumari S. Biomolecular changes in gills of Gambusia affinis studied using two dimensional correlation infrared spectroscopy coupled with chemometric analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|