1
|
Zhang Y, Zhao X, Jin L, Xu W, Shao X, Liu Y, Chen Y, Rosei F. Gold nanoparticles-wood nanohybrid as peroxidase-like for simple and selective detection of mercury ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125804. [PMID: 39923707 DOI: 10.1016/j.saa.2025.125804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
We present the design and synthesis of a gold nanoparticle-wood nanohybrid (AuNPs@Wood), synthesized via the in-situ growth of gold nanoparticles (AuNPs) within a hierarchical wood flour nanostructure under mild conditions. The AuNPs@Wood exhibited remarkable peroxidase-like activity, attributed to the unique hierarchical architecture of the wood flour. Furthermore, the use of AuNPs@Wood in conjunction with T-rich DNA (P1) results in the development of a label-free colorimetric approach for detecting mercury ions. The peroxidase-like activity of the AuNPs@Wood-P1 system was found to increase with rising concentrations of Hg (II), demonstrating a linear response to Hg (II) concentration with a correlation coefficient of 0.9917. The detection limit for Hg (II) was determined to be 0.016 μM based on three times the standard deviation (σ). Additionally, sensing Hg2+ ions remained unaffected by other metal ions, underscoring the exceptional selectivity of AuNPs@Wood-P1. In comparison to traditional methods, this approach offers advantages such as high selectivity, sensitivity, cost-effectiveness, and ease of operation without requiring complex instrumentation, thereby presenting significant potential for biosensing applications.
Collapse
Affiliation(s)
- Yuanfu Zhang
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Xue Zhao
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lei Jin
- Centre for Energy, Materials and Telecommunications, Institut National de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1P7, Canada; Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Wenyu Xu
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xianfeng Shao
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yaqi Liu
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yawei Chen
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la recherche scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC J3X 1P7, Canada.
| |
Collapse
|
2
|
Zhang H, Wang J, Wu W, Han C, Li M. Graphene oxide supported MOFs-nanofiber carbon aerogel/SPCE for simultaneous detection of Cd 2+ and Pb 2+ in seafood. Food Chem 2025; 470:142643. [PMID: 39742612 DOI: 10.1016/j.foodchem.2024.142643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/03/2025]
Abstract
A novel electrochemical sensor for detecting heavy metal ions in seafood was developed to address food safety concerns. The sensor integrates graphene oxide into NH2-UiO-66 loaded nanofiber carbon aerogel, enhanced its three-dimensional conductive network and effective active surface area (0.34 cm2), which improved ion enrichment and oxidation-reduction reaction rates. Using the Box-Behnken design, the sensor was optimized to detect cadmium and lead with LODs of 0.16 μg·L-1 and 0.07 μg·L-1 in the 1 to 150 μg·L-1 linear range. Applied to real seafood samples, the sensor showed results consistent with ICP-OES, confirmed its reliability in complex substrates. This approach offered a promising, low-cost solution for real-time monitoring of heavy metal contamination in seafood, ensuring public food safety.
Collapse
Affiliation(s)
- Hongyuan Zhang
- School of Science, Changchun Institute of Technology, 395 Kuanping Road, Changchun 130012, PR China.
| | - Jieqiong Wang
- School of Materials Science and Engineering, Changchun University, 6543, Weixing Road, Changchun 130022, PR China.
| | - Wei Wu
- College of Chemistry and Life Sciences, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Ce Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ming Li
- College of Chemistry and Life Sciences, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
3
|
Tamizhselvi R, Bhaskar R, Beena M, Palaniappan A, Kumar SKA, Napoleon AA. A dual responsive bis-thiophene affixed thiosemicarbazide based chemosensor for colorimetrically Hg 2+ and fluorometrically Cu 2+ ions and their applications in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124766. [PMID: 38968902 DOI: 10.1016/j.saa.2024.124766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
In this work, we developed a fast and straightforward colorimetric and photoluminescent chemosensor probe (P1), featuring bis-thiophene-thiosemicarbazide moieties as its signaling and binding unit. This probe exhibited rapid sensitivity to Hg2+ and Cu2+ ions in a semi-aqueous medium, resulting in distinct colorimetric and photoluminescent changes. In the presence of Cu2+, P1 displayed an impressive 50-fold increase in photoluminescence (PL) at 450 nm (with excitation at 365 nm). The probe P1 formed a 1:1 complex with Hg2+ and Cu2+ ions, featuring association constant values of 4.04 × 104 M-1 and 1.25 × 103 M-1, respectively. P1 has demonstrated its efficacy in the analysis of real samples, yielding promising results. Additionally, the probe successfully visualized copper ions on a mouse fibroblast cell line (NIH3T3), highlighting its potential as an intracellular probe for copper ion detection.
Collapse
Affiliation(s)
- R Tamizhselvi
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, Tamil Nadu, India
| | - R Bhaskar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, Tamil Nadu, India
| | - Maya Beena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, Tamil Nadu, India
| | | |
Collapse
|
4
|
Chakraborty A, Rajana VK, Saritha C, Srivastava A, Mandal D, Das N. A new Eosin Y-based 'turnon' fluorescent sensor for ratiometric sensing of toxic mercury ion (Hg 2+) offering unaided eye detection and its antibacterial activity. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134207. [PMID: 38593667 DOI: 10.1016/j.jhazmat.2024.134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
A unique fluorescent molecule (ND-S) was obtained from Eosin Y in two simple yet high yielding steps (1). ND-S has special metal ion sensing ability, such that it can selectively detect toxic Hg2+ present in very low concentration in aqueous solutions in the presence of other competing metal ions. The host-guest complexation is ratiometric and is associated with significant increase in fluorescence during the process. Isothermal titration calorimetry (ITC) experiments provided thermodynamic parameters related to interaction between ND-S and Hg2+. Using inductively coupled plasma mass spectrometry (ICP-MS), the Hg2+(aq) removal efficiency of ND-S was estimated to be 99.88%. Appreciable limit of detection (LOD = 7.4 nM) was observed. Other competing ions did not interfere with the sensing of Hg2+ by ND-S. The effects of external stimuli (temperature and pH) were studied. Besides, the complex (ND-M), formed by 1:1 coordination of ND-S and Hg2+ was found to be effective against the survival of Gram-positive bacteria (S. aureus and B. subtilis) with a high selectivity index. Moreover, bacterial cell death mechanism was studied systematically. Overall, we have shown the transformation of a toxic species (Hg2+), extracted from polluted water by a biocompatible sensor (ND-S), into an effective and potent antibacterial agent (ND-M).
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Vinod K Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Cevella Saritha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Abhinav Srivastava
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, 844102 Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India.
| |
Collapse
|
5
|
Fan E, Guo H, Hao T, Zhao R, Zhang P, Feng Y, Liu Y, Deng K. Morpholine-modified polyacrylamides with Polymerization-Induced emission and its specific detection to Cu 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123782. [PMID: 38215564 DOI: 10.1016/j.saa.2023.123782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
In this work, three morpholine-modified polyacrylamide derivatives (MMPAm) were successfully prepared by free radical polymerization of monomers with morpholine moiety. The intramolecular aggregation of morpholine rings on macromolecular backbone gives MMPAm a significant polymerization-induced emission (PIE). Particularly, poly(N-morpholine acrylamide) (PNMPA) has the characteristics of strong fluorescence at 450 nm, and its fluorescence quantum yield reaches 2.87 %. The introduction of morpholine moiety, the length of CH2 spacer between morpholine ring and the backbone and the molecular weight play the important roles in PIE properties of PNMPA. Interestingly, PNMPA can recognize and detect Cu2+ specifically even in the presence of 12 other metal ions by thorough fluorescence quenching, and the detection limit of PNMPA is 17.3 μM. Furthermore, the dynamic quenching of PNMPA by Cu2+ ions and the complexation ratio of 1:2 according to JOB's working diagram were confirmed by fluorescence titration. Under the assistance of EDTA, a reversible detection system for Cu2+ is achieved, and a portable test paper from PNMPA for the detection of Cu2+ was also made. In conclusion, PNMPA is endowed with a significant PIE effect by the intramolecular aggregation of morpholine rings along the backbone in the polymerization of non-fluorescent monomer, and is expected to be a promising material for specific detection to Cu2+ ions.
Collapse
Affiliation(s)
- Enze Fan
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Huiying Guo
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Tingting Hao
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Ronghui Zhao
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Department of Clinical Pharmacy, Affiliated Hospital of Hebei University, Baoding 071002, China
| | - Pengfei Zhang
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yayu Feng
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yunfei Liu
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kuilin Deng
- Key Laboratory of Analytical Science and Technology of Hebie Province (Project Number: 22567620H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
6
|
Li Q, Liu Y, Liang L, Zhang X, Huang K, Qin D. A terpyridyl-rhodamine hybrid fluorescent probe for discriminative sensing of Hg (II) and Cu (II) in water and applications for molecular logic gate and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123124. [PMID: 37451213 DOI: 10.1016/j.saa.2023.123124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Sensitive and discriminative sensing of more than one analyte with a single fluorescent probe is significant and challenging. Herein a new terpyridyl-rhodamine hybrid, namely TRH, has been rationally designed and prepared with two responsive groups in the molecular structure, which facilitate the discriminative detection of Hg2+ and Cu2+ ions in water with detection limits of 4.9 and 53.3 nM by ratiometric fluorescence change (F595/F485) and fluorescence quenching, respectively. Investigations show that the selectivity to Hg2+ ions can be attributed to Hg2+-promoted spirolactam ring opening and further hydrolysis, followed by a through-bond energy transfer (TBET) process. The selective fluorescence quenching to Cu2+ ions probably can be ascribed to the binding Cu2+ to terpyridyl that triggers a ligand-to-metal charge transfer (LMCT) process, which can also efficiently inhibit the TBET process induced by Hg2+ ions and promotes the discriminative sensing of Cu (II) and Hg (II). In addition, the fluorescent responses to Hg2+ and Cu2+ ions cover a wide pH range. Moreover, a combinatorial logic gate with the functions of NOR and INHIBIT has been fabricated by using Hg2+ and Cu2+ ions as chemical input signals, and fluorescence at 485 and 595 nm as output signals. Besides, TRH also exhibits sensitive and discriminative sensing ability to Hg2+ and Cu2+ ions by the fluorescence of rhodamine fluorophore. Significantly, based on the fluorescence signal output of rhodamine moiety, TRH can be used as a tracer for the discriminative sensing of Hg2+ and Cu2+ ions by using living cells.
Collapse
Affiliation(s)
- Qi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yuting Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Lijuan Liang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiangyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
7
|
Sada PK, Bar A, Jassal AK, Singh AK, Singh L, Rai A. A dual channel rhodamine appended smart probe for selective recognition of Cu 2+ and Hg 2+ via "turn on" optical readout. Anal Chim Acta 2023; 1263:341299. [PMID: 37225341 DOI: 10.1016/j.aca.2023.341299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
A new rhodamine-6G hydrazone RHMA has been synthesized using rhodamine-6G hydrazide and 5-Allyl-3-methoxysalicylaldehyde. RHMA has been fully characterized with different spectroscopic methods and single crystal XRD. RHMA can selectively recognize Cu2+ and Hg2+ in aqueous media amongst other common competitive metal ions. A significant change in absorbance was observed with Cu2+ and Hg2+ ions with emergence of a new peak at λmax 524 nm and 531 nm respectively. Hg2+ ions lead to "turn-on" fluorescence enhancement at λmax 555 nm. This event of absorbance and fluorescence marks the opening of spirolactum ring causing visual color change from colorless to magenta and light pink.RHMA-Cu2+ and RHMA- Hg2+complexes are found to be reversible in presence of EDTA2-ions. RHMA has real application in form of test strip. Additionally, the probe exhibits turn-on readout-based sequential logic gate-based monitoring of Cu2+ and Hg2+ at ppm levels, which may be able to address real-world challenges through simple synthesis, quick recovery, response in water, "by-eye" detection, reversible response, great selectivity, and a variety of output for accurate investigation.
Collapse
Affiliation(s)
- Pawan Kumar Sada
- University Department of Chemistry, L.N. Mithila University Darbhanga, 846008, Bihar, India
| | - Amit Bar
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Alok Kumar Singh
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| | - Laxman Singh
- Department of Chemistry, Siddharth University, Kapilvastu, Siddharth Nagar, 272202, Uttar Pradesh, India.
| | - Abhishek Rai
- University Department of Chemistry, L.N. Mithila University Darbhanga, 846008, Bihar, India.
| |
Collapse
|
8
|
Erdemir S, Oguz M, Malkondu S. Cu 2+-assisted sensing of fungicide Thiram in food, soil, and plant samples and the ratiometric detection of Hg 2+ in living cells by a low cytotoxic and red emissive fluorescent sensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131278. [PMID: 37004440 DOI: 10.1016/j.jhazmat.2023.131278] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Metal ions and pesticides are extensively used in many industries and agriculture. However, they cause significant environmental pollution and various adverse health effects. Therefore, the development of sensitive and selective techniques to detect them is necessary for human health and the ecosystem. In this paper, we report a novel red-emitting fluorescence probe with a large Stokes shift (∼220 nm) based on rhodamine and isophorone units. The probe shows a ratiometric fluorescence response toward Hg2+ ions; however, Cu2+ ions quench the red fluorescence signal. The decomposition of the probe-Cu2+ complex allows detection of Thiram followed by recovery of the red fluorescence signal of the probe. In addition, the probe shows a good linear response to Hg2+, Cu2+, and Thiram, with detection limits of 122.0 nM, 29.0 nM, and 72.0 nM, respectively. The practical applicability of the probe has been successfully tested in real samples. Moreover, smartphone detection and light-responsive capsule fabrication have been established, for easy and quick detection. The probe possesses very low cytotoxicity and allows visualization of Hg2+ and Cu2+ ions in HeLa cells. Therefore, the present probe is expected to be an effective tool assisting in easy, quick, and reliable detection of Thiram, Hg2+, and Cu2+ ions.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250 Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250 Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
9
|
Singh G, Sushma, Priyanka, Khurana S, Singh G, Singh J, Angeles Esteban M, Espinosa-Ruíz C, González-Silvera D. Thiosemicarbazone-triazole bearing siloxy framework for the detection of Hg2+ and Cu2+ ions and their potent cytotoxic activity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Tang H, Wang Y, Chen Z, Yang K, Qin J, Li X, Li H, Gao L, Lu S, Wang K. A cationic iridium(III) complex containing a thiosemicarbazide unit: Synthesis and application for turn-on chemiluminescent detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121396. [PMID: 35636135 DOI: 10.1016/j.saa.2022.121396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
A novel cationic iridium(III) complex [(ppy)2Ir(bPCPC)]PF6 (ppy: 2-phenylpyridine; bPCPC: 2-([2,2'-bipyridine]-4-carbonyl)-N-phenylhydrazinecarbothioamide) containing a thiosemicarbazide unit was designed and synthesized. The thiosemicarbazide unit was a sensitive functional group to Hg2+, when it reacted with Hg2+, it was desulphurized and thus led to the formation of 1,3,4-oxadiazole, [(ppy)2Ir(bPCPC)]PF6 resultantly was used as a "turn-on" chemodosimeter for luminescent detection of Hg2+ in DMF/PBS buffer solution at pH = 7-11. Except for Ag+, recognition capability of [(ppy)2Ir(bPCPC)]PF6 to Hg2+ was not interfered by other common metal ions (Co2+, Li+, Zn2+, Pb2+, K+, Al3+, Na+, Mn2+, Cu2+, Fe2+, Fe3+, Cr3+, Ba2+, Mg2+, Ni2+ and Ca2+). The detection limit was 1.83 × 10-9 mol∙L-1 (0.37 ppb), which indicated the complex was a highly sensitive chemiluminescent detection reagent of Hg2+.
Collapse
Affiliation(s)
- Huaijun Tang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China.
| | - Yuhong Wang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Zeyu Chen
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China; College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Kaixin Yang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Jing Qin
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Xianghua Li
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Haoju Li
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Long Gao
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Shiyou Lu
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Kaimin Wang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
11
|
Xu M, Wang X, Liu X. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11468-11480. [PMID: 36074997 DOI: 10.1021/acs.jafc.2c03916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, heavy metal pollution has become increasingly serious. Heavy metals exist in an environment mainly in the form of ions (heavy metal ions, HMs). They can contaminate food, water, soil, and the atmosphere, leading to serious harm to plants and animals. With high bioavailability and nonbiodegradability, HMs can accumulate through biomagnification. Consequently, heavy metal pollution has become the cause of many fatal diseases threatening human health and ecological environment. Therefore, the accurate detection of HMs is vital and necessary. In this paper, the harm and limit standards of heavy metals were systematically summarized and the common analysis methods were overviewed and compared. Specifically, the latest research progress of ratiometric photoelectric sensor, including optical and electrical sensor, were mainly described. The research status and advantages and disadvantages of a photoelectric sensor were summarized. Furthermore, the future directions were proposed, which provided the reference for the further research and application of the ratiometric photoelectric sensor.
Collapse
Affiliation(s)
- Mingming Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiangping Liu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| |
Collapse
|
12
|
Mohammadi Ziarani G, Roshankar S, Mohajer F, Badiei A, Karimi-Maleh H, Gaikwad SV. Molecular docking and optical sensor studies based on 2,4-diamino pyrimidine-5-carbonitriles for detection of Hg 2. ENVIRONMENTAL RESEARCH 2022; 212:113245. [PMID: 35398086 DOI: 10.1016/j.envres.2022.113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/03/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
An organic chemical sensor based on pyrimidine was successfully produced through the green reaction between aromatic aldehyde, malononitrile, and guanidine carbonate using SBA-Pr-SO3H. This fluorescence intensity of chemosensor (2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile) decreases by the addition of Hg2+ and its detection limit is about 14.89 × 10-5 M, in fact, through the green synthesis, the ligand was yielded to detect Hg2+ and the importance of ligand was considered in docking studies. The molecular docking of 2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile compound has been done with the protein selective estrogen receptor 5ACC complexed with (Azd9496), Human Anaplastic Lymphoma Kinase Pdb; 2xp2 complex with crizotinib (PF-02341066) and human wee1 kinase Pdb; 5vc3 complexed with bosutinib. The ligands 2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile generate very good docking results with the protein Pdb; 2xp2, which is responsible for effective tumor growth inhibition.
Collapse
Affiliation(s)
| | - Shima Roshankar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronics Science and Technology of China (UESTC), 611731, China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa.
| | - Sunil V Gaikwad
- Department of Chemistry, Dr. D. Y. Patil ACS Women's College, Pimpri Pune, MH, 411018, India
| |
Collapse
|
13
|
Singh G, Sushma, Priyanka, Diksha, Mohit, Gupta S, Angeles Esteban M, Espinosa-Ruíz C, González-Silvera D. Designing of thiosemicarbazone-triazole linked organotriethoxysilane as UV-Visible and fluorescence sensor for the selective detection of Hg2+ ions and their cytotoxic evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Shao H, Ma Q, Yu W, Dong X, Hong X. "Off-On" typed upconversion fluorescence resonance energy transfer probe for the determination of Cu 2+ in tap water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120920. [PMID: 35085997 DOI: 10.1016/j.saa.2022.120920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Detection of copper plays a prominent role in the environmental protection and human health. Herein, we firstly design and construct an "off-on" upconversion fluorescence resonance energy transfer (UFRET) probe with low toxicity for the Cu2+ determination by using NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) and Au NPs. UCNPs with positive charge and Au NPs with negative charge are respectively employed as the donor and acceptor, and bound together to form UFRET probe. The upconversion fluorescence quenching of UCNPs occurs by Au NPs through FRET (defined as "off" state). When Cu2+ exists in samples, Cu2+ reacts with 4-mercaptobenzoic acid (4-MBA) capped on the surface of Au NPs to make Au NPs detach from UCNPs, leading to the termination of FRET and the recovery of upconversion fluorescence (defined as "on" state). "Off-on" typed UFRET probe has excellent sensing performances, including linear range of 0.02-1 μM Cu2+ concentration, the limit of detection of 18.2 nM, high selectivity to Cu2+ and good recovery. The probe has been successfully used to determine Cu2+ in spiked tap water with satisfactory results. The probe will provide theoretical and technical support for the design of new sensitive heavy metal ion detection probe.
Collapse
Affiliation(s)
- Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China; Key Laboratory of UV-Emitting Materials and Technology at Ministry of Education, Northeast Normal University, Changchun 130024, PR China; Research Institute of Changchun University of Science and Technology in Chongqing, Chongqing 401120, PR China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China; Research Institute of Changchun University of Science and Technology in Chongqing, Chongqing 401120, PR China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China; Research Institute of Changchun University of Science and Technology in Chongqing, Chongqing 401120, PR China.
| | - Xia Hong
- Key Laboratory of UV-Emitting Materials and Technology at Ministry of Education, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
15
|
Erdemir S, Oguz M, Malkondu S. A NIR fluorescent sensor based on thiazoline-isophorone with low cytotoxicity in living cells for Hg 2+ detection through ICT associated hydrogen bonding effect. Anal Chim Acta 2022; 1192:339353. [PMID: 35057933 DOI: 10.1016/j.aca.2021.339353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Mercury (Hg) is a toxic pollutant and may cause serious health and environmental threats even at low concentrations. Thus, sensitive, efficient, and accurate techniques for the detection of Hg2+ ions in biological systems are in particular demand. In the current paper, a new, red emitting fluorescence probe (THI) based on electron deficient dicyanovinyl, electron-rich diethylamino, and receptor thiazoline toward Hg2+ has been developed. It has been determined that the recognition behavior of the probe toward Hg2+ is reversible with S2-. The probe not only shows perfect selectivity toward Hg2+ with a low detection limit over a series of metal ions, but it also displays positive solvato-chromism among the tested solvents via modulation of intramolecular energy transfer from the diethylamino to a dicyanovinyl moiety. Furthermore, it has been shown that the probe can be applied as a fluorescent probe for visualizing Hg2+ in living HeLa cells through a confocal laser scanning microscope. Also, the probe THI has not shown any toxic effect in cervical cancer and epithelial cells. Thus, the probe demonstrates high promise for Hg2+ detection in biomarker screening, disease diagnosis, and clinical medicine with low cytotoxicity.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey.
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, 42250, Konya, Turkey
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| |
Collapse
|
16
|
Ríos MC, Bravo NF, Sánchez CC, Portilla J. Chemosensors based on N-heterocyclic dyes: advances in sensing highly toxic ions such as CN - and Hg 2. RSC Adv 2021; 11:34206-34234. [PMID: 35497277 PMCID: PMC9042589 DOI: 10.1039/d1ra06567j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 12/19/2022] Open
Abstract
CN- and Hg2+ ions are harmful to both the environment and human health, even at trace levels. Thus, alternative methods for their detection and quantification are highly desirable given that the traditional monitoring systems are expensive and require qualified personnel. Optical chemosensors (probes) have revolutionized the sensing of different species due to their high specificity and sensitivity, corresponding with their modular design. They have also been used in aqueous media and different pH ranges, facilitating their applications in various samples. The design of molecular probes is based on organic dyes, where the key species are N-heterocyclic compounds (NHCs) due to their proven photophysical properties, biocompatibility, and synthetic versatility, which favor diverse applications. Accordingly, this review aims to provide an overview of the reports from 2016 to 2021, in which fluorescent probes based on five- and six-membered N-heterocycles are used for the detection of CN- and Hg2+ ions.
Collapse
Affiliation(s)
- María-Camila Ríos
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Néstor-Fabián Bravo
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Christian-Camilo Sánchez
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes Carrera 1 No. 18A-10 Bogotá 111711 Colombia
| |
Collapse
|