1
|
Ning G, Wang F, Du H, Zhang R, Huo X, Wang X, Zhou T, Zhang G, Zhang Z. Discrimination of normal/cancer cells in bioimaging through a rolling circle amplification-enhanced red carbon dots-embedded multivalent aptamers nanoplatform. Talanta 2025; 285:127436. [PMID: 39719728 DOI: 10.1016/j.talanta.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Glutathione (GSH) is a key biomarker closely associated with cancer, and its content varies greatly between normal cells and cancer cells. However, intracellular detection of GSH was challenging because existing probes not only have a long detection time but also have fluorescence in the blue-green region that overlaps with the biological matrix's spontaneous fluorescence, thus affecting the detection accuracy. Therefore, a new red fluorescent nano-probe was needed to rapidly and accurately detected GSH within the biological matrix. Herein, red carbon dots (R-CDs) synthesized via hydrothermal method using N-(4-amino phenyl) acetamide and 4-Bromo-1,2-diaminobenzene as precursors offer enhanced fluorescence that could be quenched by MnO2 nanosheets (MnO2 NS) and restored by GSH. By combining R-CDs with the AS1411 aptamer and using rolling circle amplification, a multivalent aptamer modified R-CDs assembly (Assembly@R-CDs) was created for swift cancer cell targeting. Compared to monomeric aptamer, such multivalent aptamers exhibited higher affinity and selectivity, thereby enhancing the specificity and sensitivity of detection. After the fluorescence of the multivalent assembly was quenched by MnO2 NS (Assembly@R-CDs@MnO2 NS), it could be restored when targeting cancer cells, which could realize the distinction between normal cells and cancer cells. The experiment showed that 4T1 cancer cells took up more Assembly@R-CDs@MnO2 NS than L929 normal cells and generated stronger fluorescence, indicating the high selectivity for cancer cell detection. The potential of such nanosystem for tumor diagnosis combination therapy is promising, especially considering the embedding properties of anthracene drugs such as doxorubicin in DNA carriers.
Collapse
Affiliation(s)
- Gan Ning
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaobing Huo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
2
|
Dutta A, Gogoi SK. Rapid detection of Hg 2+ in an ON-OFF-ON process using N doped carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8204-8215. [PMID: 39492789 DOI: 10.1039/d4ay01210k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Contamination of ground water with pollutants released from various anthropogenic activities is a major concern due to its adverse effects on the environment and human health. Rapid and efficient detection of such pollutants is the first step toward remediation of the problem. Herein we report a two-point fluorescence turn OFF-ON detection method for Hg2+ ions using nitrogen doped carbon dots (NCDs). The NCDs obtained through solvothermal treatment of ammonium citrate tribasic in DMF at 190 °C for four hours exhibited a quantum yield of 9.67%. Hg2+ detection is demonstrated in two steps, first the quenching of the fluorescence of NCDs by Hg2+ and second the fluorescence recovery upon addition of ascorbic acid from different sources. A rapid filter paper-based detection device is demonstrated based on the principles developed.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati, 781014, Assam, India.
| | - Sonit Kumar Gogoi
- Department of Chemistry, Gauhati University, G. B. Nagar, Guwahati, 781014, Assam, India.
| |
Collapse
|
3
|
Anand A, Huang CC, Lai JY, Bano D, Pardede HI, Hussain A, Saleem S, Unnikrishnan B. Fluorescent carbon dots for labeling of bacteria: mechanism and prospects-a review. Anal Bioanal Chem 2024; 416:3907-3921. [PMID: 38656364 DOI: 10.1007/s00216-024-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The search for bacteria-labeling agents that are more efficient and less toxic compared to existing staining dyes is ongoing. Fluorescent quantum dots and carbon dots (CDs) have been extensively researched for various bioimaging applications. Priority is given to CDs due to several advantages, including lower toxicity, versatility in tuning their properties, and better photostability compared to metal-based quantum dots. Although significant progress is still needed to replace existing dyes with CDs for bacteria labeling, they offer promising potential for further improvement in efficiency. Surface charges and functional groups have been reported as decisive factors for bacterial discrimination and live/dead assays; however, a complete guideline for preparing CDs with optimum properties for efficient staining and predicting their labeling performance is lacking. In this review, we discuss the application of fluorescent CDs for bacterial labeling and the underlying mechanisms and principles. We primarily focus on the application and mechanism of CDs for Gram differentiation, live imaging, live/dead bacteria differentiation, bacterial viability testing, biofilm imaging, and the challenges associated with application of CDs. Based on proposed mechanisms of bacterial labeling and ambiguous results reported, we provide our view and guidelines for the researchers in this field to overcome the challenges associated with bacteria labeling using fluorescent CDs.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| | - Darakhshan Bano
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Helen Indah Pardede
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Amina Hussain
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Sehresh Saleem
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
4
|
Yuan L, Shao C, Zhang Q, Webb E, Zhao X, Lu S. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing. ENVIRONMENTAL RESEARCH 2024; 251:118610. [PMID: 38442811 DOI: 10.1016/j.envres.2024.118610] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Biomass-derived carbon dots (CDs) are non-toxic and fluorescently stable, making them suitable for extensive application in fluorescence sensing. The use of cheap and renewable materials not only improves the utilization rate of waste resources, but it is also drawing increasing attention to and interest in the production of biomass-derived CDs. Visual fluorescence detection based on CDs is the focus of current research. This method offers high sensitivity and accuracy and can be used for rapid and accurate determination under complex conditions. This paper describes the biomass precursors of CDs, including plants, animal remains and microorganisms. The factors affecting the use of CDs as fluorescent probes are also discussed, and a brief overview of enhancements made to the preparation process of CDs is provided. In addition, the application prospects and challenges related to biomass-derived CDs are demonstrated.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States.
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
5
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
6
|
Liu Y, Xu Y, Wen Q. Carbon dots for staining bacterial dead cells and distinguishing dead/alive bacteria. Anal Biochem 2024; 687:115432. [PMID: 38113980 DOI: 10.1016/j.ab.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The small molecular dyes such as propidium iodide (PI) always suffer from photo-bleaching and potential toxicity. To tackle the problems, a type of nontoxic carbon dots (CDs) was obtained for dead/alive bacterial distinguishing. This kind of carbon dots has an average size of 1.91 nm and owns carboxyl groups, emerging as excellent candidates for imaging bacterial cells. The negative charges of carboxyl groups lead their avoidance of alive cells while their small size facilitates penetration of dead cells. This kind of nontoxic CDs has effectively differentiated between and alive ones, presenting a highly promising green dye comparing with traditional small molecular dyes.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Qin Wen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Wang Y, Guo X, Huang C, Shi C, Xiang X. Biomedical potency and mechanisms of marine polysaccharides and oligosaccharides: A review. Int J Biol Macromol 2024; 265:131007. [PMID: 38508566 DOI: 10.1016/j.ijbiomac.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Derived from bountiful marine organisms (predominantly algae, fauna, and microorganisms), marine polysaccharides and marine oligosaccharides are intricate macromolecules that play a significant role in the growth and development of marine life. Recently, considerable attention has been paid to marine polysaccharides and marine oligosaccharides as auspicious natural products due to their promising biological attributes. Herein, we provide an overview of recent advances in the miscellaneous biological activities of marine polysaccharides and marine oligosaccharides that encompasses their anti-cancer, anti-inflammatory, antibacterial, antiviral, antioxidant, anti-diabetes mellitus, and anticoagulant properties. Furthermore, we furnish a concise summary of the underlying mechanisms governing the behavior of these biological macromolecules. We hope that this review inspires research on marine polysaccharides and marine oligosaccharides in medicinal applications while offering fresh perspectives on their broader facets.
Collapse
Affiliation(s)
- Yi Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Xueying Guo
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Chunxiao Huang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| | - Xinxin Xiang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255020, China.
| |
Collapse
|
8
|
Jian K, Fu L, Zhang Y, Zhang H, Guo X, Zhao X. Microwave synthesis of chitosan-based carbon dots for Al 3+ detection and biological application. Int J Biol Macromol 2024; 260:129413. [PMID: 38262835 DOI: 10.1016/j.ijbiomac.2024.129413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Yellow fluorescent carbon dots (Y-CDs) were prepared via microwave method using chitosan and o-phenylenediamine as the main raw materials. The obtained Y-CDs possesses good water solubility, excellent biocompatibility and luminous stability. During the microwave pyrolysis carbonization process, the surface of Y-CDs was modified with the functional groups such as amino and carboxyl, which can bind to Al3+ by forming complexes, further improving the selectivity and sensitivity of the Al3+ detection. And the fluorescence of Y-CDs was quenched by Al3+ by static quenching process. More importantly, Y-CDs as fluorescent sensor was further applied for the determination of Al3+ in the real water samples with high reliability and accuracy. In addition, Y-CDs present potential application in biological imaging. The cultivated zebrafish embryos with Y-CDs displayed clearly in vivo uptake and metabolic fluorescence images, further confirming its low toxicity and excellent biocompatibility.
Collapse
Affiliation(s)
- Ke Jian
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Liming Fu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Yujie Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Hongmei Zhang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangjun Guo
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xihui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-fibers and Eco-textiles and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Wu W, Shi Y, Liu J, Liu X, Liu H, Wang T, Zhang G, Xu Z. Carbon dots derived from expired drugs based ratiometric fluorescent sensor for horseradish peroxidase in fruits and vegetables and screening inhibitors. Mikrochim Acta 2024; 191:109. [PMID: 38246895 DOI: 10.1007/s00604-023-06160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024]
Abstract
Household storage of pharmaceuticals to extract raw materials synthesized from carbon points facilitates the utilization of solid waste resources. A novel ratiometric fluorescence sensing technique was developed to ascertain the presence of horseradish peroxidase (HRP) in fruits and vegetables. The method employed a fluorescent probe, synthesized from expired amoxicillin (referred to as carbon dots, or A-CDs), serving as a reference fluorophore. Additionally, 2,3-diaminophenazine (DAP) was utilized as a specific response signal. DAP resulted from a catalytic reaction system involving phenylenediamine and hydrogen peroxide under the catalysis of HRP. The fluorescence intensity corresponding to DAP at 562 nm exhibited a substantial increase, simultaneous with the fluorescence quenching of A-CDs at 450 nm. The ratiometric fluorescence nanosensors displayed a broad linear range and high sensitivity for the detection of HRP. Across the concentration range 0.01 to 6 U L-1, the fluorescence intensity ratio between DAP and A-CDs demonstrated a proportional increase with rising HRP concentration, achieving an impressive detection limit of 0.002 U L-1. The recovery of HRP in fruit and vegetable samples ranged from 96.1 to 103%, with an RSD value of less than 3.8%. The proposed method facilitated the screening of inhibitors of HRP enzyme activity, contributing to the preservation of freshness in fruits and vegetables.
Collapse
Affiliation(s)
- Wei Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Yuhan Shi
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Jingya Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Xiaoyu Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Hao Liu
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Tao Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China
| | - Guoqi Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China.
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, 610039, People's Republic of China.
| | - Zhihong Xu
- Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, People's Republic of China.
| |
Collapse
|
10
|
Liu G, Li B, Li J, Dong J, Baulin V, Feng Y, Jia D, Petrov YV, Tsivadze AY, Zhou Y. EGTA-Derived Carbon Dots with Bone-Targeting Ability: Target-Oriented Synthesis and Calcium Affinity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40163-40177. [PMID: 37603390 DOI: 10.1021/acsami.3c05184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The bone-targeting mechanism of clinic bisphosphonate-type drugs, such as alendronate, risedronate, and ibandronate, relies on chelated calcium ions on the surface of the bone mineralized matrix for the treatment of osteoporosis. EGTA with aminocarboxyl chelating ligands can specifically chelate calcium ions. Inspired by the bone-targeting mechanism of bisphosphonates, we hypothesize that EGTA-derived carbon dots (EGTA-CDs) hold bone-targeting ability. For the target-oriented synthesis of EGTA-CDs and to endow CDs with bone targeting, we designed calcium ion chelating agents as precursors, including aminocarboxyl chelating agents (EGTA and EDTA) and bisphosphonate agents (ALN and HEDP) for the target-oriented synthesis of aminocarboxyl-derived CDs (EGTA-CDs and EDTA-CDs) and bisphosphonate-derived CDs (ALN-CDs and HEDP-CDs) with high synthetic yield. The synthetic yield of EGTA-CDs reached 87.6%. Aminocarboxyl-derived CDs and bisphosphonate-derived CDs retain the chelation ability of calcium ions and can specifically bind calcium ions. The chemical environment bone-targeting value coordination constant K and chelation sites of EGTA-CDs were 6.48 × 104 M-1 and 4.12, respectively. A novel method was established to demonstrate the bone-targeting capability of chelate-functionalized carbon dots using fluorescence quenching in a simulated bone trauma microenvironment. EGTA-CDs exhibit superior bone-targeting ability compared with other aminocarboxyl-derived CDs and bisphosphonate-derived CDs. EGTA-CDs display exceptional specificity toward calcium ions and better bone affinity than ALN-CDs, suggesting their potential as novel bone-targeting drugs. EGTA-CDs with strong calcium ion chelating ability have calcium ion affinity in simulated body fluid and bone-targeting ability in a simulated bone trauma microenvironment. These findings offer new avenues for the development of advanced bone-targeting strategies.
Collapse
Affiliation(s)
- Guanxiong Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jie Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Vladimir Baulin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuri V Petrov
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg 199034, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
11
|
Guo Y, Wang R, Wei C, Li Y, Fang T, Tao T. Carbon quantum dots for fluorescent detection of nitrite: A review. Food Chem 2023; 415:135749. [PMID: 36848836 DOI: 10.1016/j.foodchem.2023.135749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
NO2- is commonly found in foods and the environment, and excessive intake of NO2- poses serious hazards to human health. Thus, rapid and accurate assay of NO2- is of considerable significance. Traditional instrumental approaches for detection of NO2- faced with limitations of expensive instruments and complicated operations. Current gold standards for sensing NO2- are Griess assay and 2,3-diaminonaphthalene assay, which suffer from slow detection kinetics and bad water solubility. The newly emerged carbon quantum dots (CQDs) exhibit integrated merits including easy fabrication, low-cost, high quantum yield, excellent photostability, tunable emission behavior, good water solubility and low toxicity, which make CQDs be widely applied to fluorescent assay of NO2-. In this review, synthetic strategies of CQDs are briefly presented. Advances of CQDs for fluorescent detection of NO2- are systematically highlighted. Lastly, the challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ruiqing Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chengwei Wei
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tiancheng Fang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Tao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
12
|
Zhao Y, Cheng G, Gao Y, Cui L, Zhao Y, Zhang Y, Tian Y, Zhao Y, Zhang Y, Qu H, Kong H. Green synthetic natural carbon dots derived from Fuligo Plantae with inhibitory effect against alcoholic gastric ulcer. Front Mol Biosci 2023; 10:1223621. [PMID: 37484528 PMCID: PMC10360179 DOI: 10.3389/fmolb.2023.1223621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Fuligo Plantae (FP), the ash that sticks to the bottom of pots or chimneys after weeds burn, has long been used for its hemostatic effects and treatment of gastrointestinal bleeding. Nevertheless, the active ingredient of FP still needs to be further explored. Methods: The microstructure, optical and chemical properties of FP-CDs were characterized. An alcohol-induced gastric ulcer model was utilized to evaluate whether pre-administration of FP-CDs alleviated gastric bleeding symptoms and ameliorated gastric mucosal barrier disruption. In addition, the feces of each group of rats were extracted for 16S rDNA genome sequencing of intestinal flora. Results: FP-CDs with a diameter ranging from 1.4-3.2 nm had abundant chemical groups, which may be beneficial to the exertion of inherent activity. FP-CDs alleviated alcohol-induced gastric ulcer, as demonstrated by activating the extrinsic coagulation pathway, alleviating inflammation, and suppressing oxidative stress levels. More interestingly, FP-CDs can improve the diversity and dysbiosis of intestinal flora in rats with alcohol-induced gastric ulcer. Conclusion: These comes about illustrate the momentous inhibitory effects of FP-CDs on alcoholic gastric ulcer in rats, which give a modern methodology for investigating the effective ingredient of FP, and lay an experimental basis for the application of FP-CDs in the clinical treatment of alcoholic gastric ulcer.
Collapse
Affiliation(s)
- Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Luming Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Torres FG, Gonzales KN, Troncoso OP, Cañedo VS. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar Drugs 2023; 21:338. [PMID: 37367663 DOI: 10.3390/md21060338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine polysaccharides have a distinct advantage over other CQD precursors because they contain multiple heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally doped, reducing the need for excessive use of chemical reagents and promoting green methods. The present review highlights the processing methods used to synthesize CQDs from marine polysaccharide precursors. These can be classified according to their biological origin as being derived from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties, including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs' structural, morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors. Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysaccharides have potential applications in various fields, including biomedicine (e.g., drug delivery, bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of renewable sources into a cutting-edge technological product. This review can provide fundamental insights for the development of novel nanomaterials derived from natural marine sources.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Victoria S Cañedo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| |
Collapse
|
14
|
Munusamy S, Mandlimath TR, Swetha P, Al-Sehemi AG, Pannipara M, Koppala S, Paramasivam S, Boonyuen S, Pothu R, Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. ENVIRONMENTAL RESEARCH 2023; 231:116046. [PMID: 37150390 DOI: 10.1016/j.envres.2023.116046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Angkok, 10330, Pathumwan, Thailand.
| | - Triveni Rajashekhar Mandlimath
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, G-30, Inavolu, Besides AP Secretariat Amaravati, Andhra Pradesh, India
| | - Puchakayala Swetha
- Department of Chemistry, Oakland University, Rochester, MI, 48309, United States
| | | | | | - Sivasankar Koppala
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Shanmugam Paramasivam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Ramyakrishna Pothu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University Doha, 2713, Qatar.
| |
Collapse
|
15
|
Zhang GQ, Shi YH, Wu W, Zhao Y, Xu ZH. A fluorescent carbon dots synthesized at room temperature for automatic determination of nitrite in Sichuan pickles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122025. [PMID: 36308829 DOI: 10.1016/j.saa.2022.122025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this paper, highly fluorescent carbon dots were synthesized from sodium ascorbate and polyethyleneimine at room temperature (R-CDs). The proposed green synthesis method was energy-saving, environmentally friendly and easy online. R-CDs exhibit an optimal emission peak of 490 nm under excitation at 380 nm with a quantum yield of 32 %. R-CDs morphology, composition, and properties were characterized using TEM, FTIR, XPS, UV-vis and fluorescence spectroscopy. The study revealed that nitrite quenched the fluorescence of R-CDs under acidic conditions. Subsequently, this discovered reaction of R-CDs and nitrite was combined with flow-injection technology, and a simple, precise and automatic fluorescence strategy for nitrite determination was accomplished. The response to nitrite was linear in 5-300 μg·L-1 concentration range and the limit of detection was 2.85 μg·L-1 (3.3 S/k). This method was applied to nitrite determination in Sichuan pickles during the pickling process and results were consistent with the standard method, demonstrating its feasibility in practical applications.
Collapse
Affiliation(s)
- Guo-Qi Zhang
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China; School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Yu-Han Shi
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China
| | - Wei Wu
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China
| | - Yang Zhao
- The College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Shenzhen Changlong Technology Co Ltd., Longgang District, Shenzhen 518117, PR China
| | - Zhi-Hong Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
16
|
Bifunctional nanoprobe for dual-mode detection based on blue emissive iron and nitrogen co-doped carbon dots as a peroxidase-mimic platform. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Liu Y, Zhong D, Yu L, Shi Y, Xu Y. Primary Amine Functionalized Carbon Dots for Dead and Alive Bacterial Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:437. [PMID: 36770398 PMCID: PMC9920602 DOI: 10.3390/nano13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Small molecular dyes are commonly used for bacterial imaging, but they still meet a bottleneck of biological toxicity and fluorescence photobleaching. Carbon dots have shown high potential for bio-imaging due to their low cost and negligible toxicity and anti-photobleaching. However, there is still large space to enhance the quantum yield of the carbon quantum dots and to clarify their mechanisms of bacterial imaging. Using carbon dots for dyeing alive bacteria is difficult because of the thick density and complicated structure of bacterial cell walls. In this work, both dead or alive bacterial cell imaging can be achieved using the primary amine functionalized carbon dots based on their small size, excellent quantum yield and primary amine functional groups. Four types of carbon quantum dots were prepared and estimated for the bacterial imaging. It was found that the spermine as one of precursors can obviously enhance the quantum yield of carbon dots, which showed a high quantum yield of 66.46% and high fluorescence bleaching-resistance (70% can be maintained upon 3-h-irradiation). Furthermore, a mild modifying method was employed to bound ethylenediamine on the surface of the spermine-carbon dots, which is favorable for staining not only the dead bacterial cells but also the alive ones. Investigations of physical structure and chemical groups indicated the existence of primary amine groups on the surface of spermine-carbon quantum dots (which own a much higher quantum yield) which can stain alive bacterial cells visibly. The imaging mechanism was studied in detail, which provides a preliminary reference for exploring efficient and environment-friendly carbon dots for bacterial imaging.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao 266000, China
| | - Lei Yu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Villalba-Rodríguez AM, González-González RB, Martínez-Ruiz M, Flores-Contreras EA, Cárdenas-Alcaide MF, Iqbal HMN, Parra-Saldívar R. Chitosan-Based Carbon Dots with Applied Aspects: New Frontiers of International Interest in a Material of Marine Origin. Mar Drugs 2022; 20:782. [PMID: 36547929 PMCID: PMC9780941 DOI: 10.3390/md20120782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) have attracted significant research attention worldwide due to their unique properties and advantageous attributes, such as superior optical properties, biocompatibility, easy surface functionalization, and more. Moreover, biomass-derived CDs have attracted much attention because of their additional advantages related to more environmentally friendly and lower-cost synthesis. In this respect, chitosan has been recently explored for the preparation of CDs, which in comparison to other natural precursors exhibited additional advantages. Beyond the benefits related to the eco-friendly and abundant nature of chitosan, using it as a nanomaterial precursor offers additional benefits in terms of structure, morphology, and dopant elements. Furthermore, the high content of nitrogen in chitosan allows it to be used as a single carbon and nitrogen precursor for the preparation of N-doped CDs, significantly improving their fluorescent properties and, therefore, their performances. This review addresses the most recent advances in chitosan-based CDs with a special focus on synthesis methods, enhanced properties, and their applications in different fields, including biomedicine, the environment, and food packaging. Finally, this work also addresses the key challenges to be overcome to propose future perspectives and research to unlock their great potential for practical applications.
Collapse
Affiliation(s)
- Angel M. Villalba-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda A. Flores-Contreras
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - María Fernanda Cárdenas-Alcaide
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
19
|
Ji H, Wang J, Chen F, Fan N, Wang X, Xiao Z, Wang Z. Meta-analysis of chitosan-mediated effects on plant defense against oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158212. [PMID: 36028025 DOI: 10.1016/j.scitotenv.2022.158212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Chitosan, as a natural non-toxic biomaterial, has been demonstrated to enhance plant defense against oxidative stress. However, the general pattern and mechanism of how chitosan application modifies the amelioration of oxidative stress in plants have not been elucidated yet. Herein, we performed a meta-analysis of 58 published articles up to January 2022 to fill this knowledge gap, and found that chitosan application significantly increased the antioxidant enzyme activity (by 40.6 %), antioxidant metabolites content (by 24.6 %), defense enzyme activity (by 77.9 %), defense-related genes expression (by 103.2 %), phytohormones (by 26.9 %), and osmotic regulators (by 23.2 %) under stress conditions, which in turn notably reduced oxidative stress (by 32.2 %), and increased plant biomass (by 28.1 %) and yield (by 15.7 %). Moreover, chitosan-mediated effects on the amelioration of oxidative stress depended on the properties and application methods of chitosan. Our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated oxidative stress, which would promote the application of chitosan in plant protection in agriculture.
Collapse
Affiliation(s)
- Haihua Ji
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Gao Y, Bian C, Li N, Yao K, Xiao L, Yang Z, Guan T. Exploring the binding mechanism and adverse toxic effects of chiral phenothrin to human serum albumin: Based on multi-spectroscopy, biochemical and computational approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121659. [PMID: 35930945 DOI: 10.1016/j.saa.2022.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
To understand the binding mechanism of a mixture of chiral phenothrin with human serum albumin (HSA), we used multi-spectroscopy, including steady-state fluorescence spectroscopic titration, three-dimensional fluorescence spectroscopy, circular dichroism, and FTIR spectra to explore the precise interactions between the complex. Based on the modified Stern-Volmer equation, the binding constant (Ka) was calculated under three temperatures, which revealed that phenothrin interacts with HSA through a static quenching mechanism. The thermodynamic parameters including enthalpy change (ΔH) and entropy change (ΔS) were determined by fitting the experimental data with van't Hoff equation, which indicates that electrostatic force and hydrogen bonds dominate the interplay in the phenothrin-HSA complex. Circular dichroism and FTIR showed the addition of phenothrin changed the secondary structure of proteins, in which the α-helicity decreased from 52.37% in free HSA to 50.02%. The esterase-like activity was reduced with the increase of phenothrin concentration, which may be attributed to the perturbated senior structure of HSA. Competitive displacement experiments confirmed that phenothrin inserted into the subdomain IIA (site I) of HSA. Several computational approaches such as molecular docking, frontier molecular orbital analysis, and electrostatic potential analysis were utilized to probe into the binding mode of the phenothrin-HSA complex. The binding behaviors of the chiral phenothrin mixture differed during the complexation. In conclusion, both the experimental and theoretical investigations provide useful information for better understanding and reducing the potential deleterious effects of the chiral phenothrin mixture on human long-term physio-pathological status.
Collapse
Affiliation(s)
- Ya Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Canfeng Bian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ning Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Kun Yao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Lixia Xiao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
21
|
Tan Q, Li X, Wang L, Zhao J, Yang Q, Sun P, Deng Y, Shen G. One-step synthesis of highly fluorescent carbon dots as fluorescence sensors for the parallel detection of cadmium and mercury ions. Front Chem 2022; 10:1005231. [PMID: 36247679 PMCID: PMC9563711 DOI: 10.3389/fchem.2022.1005231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd2+) and mercury ions (Hg2+) are essential for the quality control of food samples because of their serious toxicity to human health, but the effective and simple strategy for their parallel detection remains challenging. In this paper, a rapid and simple parallel detection method for Cd2+ and Hg2+ was developed using carbon dots (CDs) as fluorescent sensors. A one-step hydrothermal method with a single precursor l-arginine as both the carbon and nitrogen sources was employed to prepare nitrogen-doped CDs (N-CDs). N-CDs exhibited a uniform particle size and excitation-independent fluorescence emission. The maximum emission wavelength of N-CDs was observed at 354 nm with the excitation wavelength at 295 nm. The quantum yield of N-CDs reached as high as 71.6% in water. By using sodium diphosphate and phytic acid as masking agents, the fluorescent sensor can be quenched by Cd2+ and Hg2+ in the linear range of 0–26.8 μM and 0–49.9 μM within 5 min. Other common ions in farm products showed no significant effect on the fluorescence intensity of the sensing system. The results demonstrated that the sensing system had good selectivity and sensitivity for Cd2+ and Hg2+. The detection limits for Cd2+ and Hg2+ were 0.20 and 0.188 μM, respectively. In addition, the fluorescent sensor had been successfully applied for the detection of Cd2+ and Hg2+ in fruits and vegetables, and the recoveries were 86.44–109.40% and 86.62–115.32%, respectively. The proposed fluorescent sensor provides a rapid, simple, and sensitive detection method for Cd2+ and Hg2+ in food samples and thus a novel quantitative detection method for heavy metal ions in foods.
Collapse
Affiliation(s)
- Qiren Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoying Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lumei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan, China
| | - Jie Zhao
- Shanghai Pudong Agriculture Technology Extension Centre, Shanghai, China
| | - Qinyan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan, China
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- YunNan (Dali) Research Institute of Shanghai Jiao Tong University, Dali, Yunnan, China
- *Correspondence: Guoqing Shen,
| |
Collapse
|
22
|
Carneiro SV, Oliveira JJP, Rodrigues VSF, Fechine LMUD, Antunes RA, Neto MLA, de Moura TA, César CL, de Carvalho HF, Paschoal AR, Freire RM, Fechine PBA. Doped Carbon Quantum Dots/PVA Nanocomposite as a Platform to Sense Nitrite Ions in Meat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43597-43611. [PMID: 36103380 DOI: 10.1021/acsami.2c09197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensor device based on doped-carbon quantum dots is proposed herein for detection of nitrite in meat products by fluorescence quenching. For the sensing platform, carbon quantum dots doped with boron and functionalized with nitrogen (B,N-Cdot) were synthesized with an excellent 44.3% quantum yield via a one-step hydrothermal route using citric acid, boric acid, and branched polyethylenimine as carbon, boron, and nitrogen sources, respectively. After investigation of their chemical structure and fluorescent properties, the B,N-Cdot at aqueous suspensions showed high selectivity for NO2- in a linear range from 20 to 50 mmol L-1 under optimum conditions at pH 7.4 and a 340 nm excitation. Furthermore, the prepared B,N-Cdots successfully detected NO2- in a real meat sample with recovery of 91.4-104% within the analyzed range. In this manner, a B,N-Cdot/PVA nanocomposite film with blue emission under excitation at 360 nm was prepared, and a first assay detection of NO2- in meat products was tested using a smartphone application. The potential application of the newly developed sensing device containing a highly fluorescent probe should aid in the development of a rapid and inexpensive strategy for NO2- detection.
Collapse
Affiliation(s)
- Samuel Veloso Carneiro
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - José Joelson Pires Oliveira
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Vivian Stephanie Ferreira Rodrigues
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Lillian Maria Uchoa Dutra Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Renato Altobelli Antunes
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, CEP 09210-580 Santo André, São Paulo, Brazil
| | - Manoel Lourenço Alves Neto
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Thiago Alves de Moura
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Carlos Lenz César
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Hernandes Faustino de Carvalho
- National Institute of Photonics Applied to Cell Biology, State University of Campinas, IFGW - Unicamp Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
- State University of Campinas, Institute of Biology, Department of Cell Biology, Department of Cell Biology - IB - CP, 6109 UNICAMP Cid. Universitária, 13083863 Campinas, São Paulo, Brazil
| | - Alexandre Rocha Paschoal
- Department of Physics, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| | - Rafael Melo Freire
- Laboratory of Pesticide Residues and Environment, Instituto de Investigaciones Agropecuarias, INIA Centro Regional La Platina, Santiago 8820000, Chile
| | - Pierre Basílio Almeida Fechine
- Advanced Materials Chemistry Group (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara - UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, Ceará, Brazil
| |
Collapse
|
23
|
pH and solvent induced discoloration behavior of multicolor fluorescent carbon dots. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Ning G, Mu P, Li B, Liu J, Xiao Q, Huang S. Fluorine and nitrogen co-doped near-infrared carbon dots for fluorescence "on-off-on" determination of nitrite. Mikrochim Acta 2022; 189:230. [PMID: 35612770 DOI: 10.1007/s00604-022-05337-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
A fluorescence "on-off-on" strategy was established for the determination of nitrite in aqueous solution based on fluorine and nitrogen co-doped near-infrared carbon dots (NIR-CDs). NIR-CDs were prepared via one-step hydrothermal method by using N-(4-aminophenyl)-acetamide and 4,5-difluorobenzene-1,2-diamine as precursors. The photoluminescence quantum yield of NIR-CDs reaches to 17.4%, and the optimal emission peak of NIR-CDs is 675 nm under excitation of 530 nm. The Stokes shift of NIR-CDs (145 nm) is higher than that of some CDs with longer emission wavelengths. The red bathophenanthroline disulfonic acid (BPS)-Fe2+ complex can quench the fluorescence of NIR-CDs via inner filter effect and static quench modes. Nitrite can oxidize Fe2+ to produce Fe3+ in acidic environment, resulting in not only the formation of colorless and unstable BPS-Fe3+ complex but also the fluorescence recovery of NIR-CDs. This fluorescence "on-off-on" phenomenon also comes with the color variation of the mixture, resulting in both the fluorescence and the visual determination of nitrite. Under optimal conditions, this assay exhibits a good linear range from 1 to 50 μM and a low detection limit of 0.056 μM for nitrite determination. The method showed good applicability for nitrite determination in soil extract, human urine, and water samples with acceptable results. A convenient fluorescence "on-off-on" strategy for nitrite detection based on fluorine and nitrogen co-doped near-infrared carbon dots (NIR-CDs) and bathophenanthroline disulfonic acid (BPS)-Fe2+ complex was innovatively established. This probe showed a low detection limit of 0.056 μM for nitrite in authentic samples, which offered a new sight for fluorescent and visual detection of nitrite in environmental protection and human health areas.
Collapse
Affiliation(s)
- Gan Ning
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Pingping Mu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Jiajia Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
25
|
Domingo-Tafalla B, Martínez-Ferrero E, Franco F, Palomares-Gil E. Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO 2. Molecules 2022; 27:1081. [PMID: 35164346 PMCID: PMC8840083 DOI: 10.3390/molecules27031081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
The photocatalytic and electrocatalytic conversion of CO2 has the potential to provide valuable products, such as chemicals or fuels of interest, at low cost while maintaining a circular carbon cycle. In this context, carbon dots possess optical and electrochemical properties that make them suitable candidates to participate in the reaction, either as a single component or forming part of more elaborate catalytic systems. In this review, we describe several strategies where the carbon dots participate, both with amorphous and graphitic structures, in the photocatalysis or electrochemical catalysis of CO2 to provide different carbon-containing products of interest. The role of the carbon dots is analyzed as a function of their redox and light absorption characteristics and their complementarity with other known catalytic systems. Moreover, detailed information about synthetic procedures is also reviewed.
Collapse
Affiliation(s)
- Beatriu Domingo-Tafalla
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, E-43007 Tarragona, Spain
| | - Eugenia Martínez-Ferrero
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
| | - Federico Franco
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
| | - Emilio Palomares-Gil
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology (ICIQ-BIST), Avda. Països Catalans, 16, E-43007 Tarragona, Spain; (B.D.-T.); (E.M.-F.)
- ICREA, Passeig Lluís Companys 23, E08010 Barcelona, Spain
| |
Collapse
|
26
|
Liu L, Mi Z, Huo X, Yuan L, Bao Y, Liu Z, Feng F. A label-free fluorescence nanosensor based on nitrogen and phosphorus co-doped carbon quantum dots for ultra-sensitive detection of new coccine in food samples. Food Chem 2022; 368:130829. [PMID: 34411858 DOI: 10.1016/j.foodchem.2021.130829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/22/2023]
Abstract
In this paper, an innovative method for the sensitive detection of new coccine using N, P-doped carbon quantum dots (N,P-CQDs) as fluorescent nanosensor is reported for the first time. The sensing mechanism is based on the fluorescence quenching of N,P-CQDs by new coccine through inner filter effect (IFE). N,P-CQDs were prepared by simple hydrothermal treatment of citric acid, phosphoric acid and ethylenediamine. Under the optimal conditions, the new coccine has two good linear responses in the concentration range of 0.2-100 and 100-200 μM, and the detection limits are as low as 24.8 and 9.4 nM, respectively. Our developed nanosensor has been successfully used for the determination of new coccine in food samples with good precision and high accuracy. This work highlights the economic, rapid, simple, selective and ultra-sensitive for new coccine detection, and opens up a new way for the monitoring of new coccine in actual food samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Xingyan Huo
- Shanxi Normal University, Linfen 041004, PR China
| | - Lin Yuan
- Shanxi Datong University, Datong 037009, PR China
| | - Yayan Bao
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
27
|
Wu X, Meng X, Hou B, Sun Z, Zhang Y, Li M. Rapid fluorescent color analysis of copper ions on a smart phone via ratiometric fluorescence sensor. Mikrochim Acta 2022; 189:67. [PMID: 35064839 DOI: 10.1007/s00604-022-05166-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
A smartphone-assisted fluorescence color sensing system for rapid, convenient, and on-site detection of copper ions was developed. The ratiometric fluorescence sensor was fabricated by using silica-coated blue-light-emitting carbon dots and surface-grafted red-light-emitting cadmium-telluride quantum dots. After exposure to Cu2+ in 20 s, the red fluorescence was quenched obviously, while the blue fluorescence remained unchanged, and the sensor color changes continuously from red to blue under the ultraviolet lamp. The concentration (50-1200 nM) of copper ions could be measured by the fluorescence spectrum (excitation at 360 nm, dual-emission at 441 and 640 nm) with a detection limit of 7.7 nM. The fluorescence colors were converted to digital RGB values to calculate the concentration of copper ions by a smartphone with a detection limit of 9.6 nM. The method was applied to detecting copper ions spiked in real samples with recovery from 97.9 to 108.0% and RSD from 3.8 to 8.9%. Thus, this convenient and practical fluorescence color sensing system presents a new strategy for rapid, sensitive, and on-site determination of copper ions in environmental or biological samples.
Collapse
Affiliation(s)
- Xia Wu
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xufeng Meng
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Baoxiu Hou
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Zhong Sun
- Mengyin Inspection and Testing Center, Linyi, Shandong, 276000, People's Republic of China
| | - Yunyi Zhang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| |
Collapse
|
28
|
Lv S, Liang S, Zuo J, Zhang S, Wei D. Preparation and application of chitosan-based fluorescent probes. Analyst 2022; 147:4657-4673. [DOI: 10.1039/d2an01070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass materials have abundant natural resources, renewability and good biochemical compatibility, so biomass-based fluorescent materials prepared from biomass materials have gradually become a research hotspot.
Collapse
Affiliation(s)
- Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingjing Zuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shanshan Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
29
|
Yu M, Zhang H, Liu Y, Zhang Y, Shang M, Wang L, Zhuang Y, Lv X. A colorimetric and fluorescent dual-readout probe based on red emission carbon dots for nitrite detection in meat products. Food Chem 2021; 374:131768. [PMID: 34891086 DOI: 10.1016/j.foodchem.2021.131768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023]
Abstract
Nitrite (NO2-) is widely present in the human environment and accurate, sensitive and selective detecting of nitrite is of vital significance for food safety and water quality. Herein, a novel red emission carbon dots (r-CDs) fluorescent probe was fabricated for dual-mode detection of nitrite, which was capable of both convenient colorimetric analysis and accurate fluorometric detection. When NO2- is added to the rose-red r-CDs solution, NO2- interacts with the amino groups which on the surface of r-CDs to form diazotized substance, resulting in that the colorimetric color of r-CDs solution realizes the transition from rose red to light purple, and the red fluorescence is gradually quenched. The detection limits of colorimetric and fluorescence for NO2- were 0.193 μM and 0.149 μM, respectively. Furthermore, the dual-readout probe revealed satisfactory recovery and reliability when analyzing the concentration of NO2- in ham and bacon samples..
Collapse
Affiliation(s)
- Min Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minghui Shang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Zhang SR, Cai SK, Wang GQ, Cui JZ, Gao CZ. One-step synthesis of N, P-doped carbon quantum dots for selective and sensitive detection of Fe2+ and Fe3+ and scale inhibition. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|