1
|
Peng S, Zheng Y, Li W, Lin M, Wu Z, You R, Lin Q, Wu Y. Silver nanowire/gold nanosphere binary plasma-assembled membranes for sensitive SERS detection of homocysteine. Mikrochim Acta 2024; 192:32. [PMID: 39724434 DOI: 10.1007/s00604-024-06891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10-8 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability. We perform an indirect detection of homocysteine (Hcy) through a specific reaction of Hcy with o-phthalaldehyde (OPA). The lowest detectable concentration of Hcy was 5 × 10-9 M. The recoveries of Hcy were 94.53 ~ 103.43% with the relative standard deviations (RSDs) of 2.53%, 9.21% and 12.26%, respectively, in the spike recovery experiments. With good selectivity and accuracy for Hcy detection, this plasma film provides an idea for the detection of disease markers in serum.
Collapse
Affiliation(s)
- Shirun Peng
- School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yujun Zheng
- School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Wanjing Li
- School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Minghuan Lin
- School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Zhihong Wu
- School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Normal University, Fujian Province Higher Education Institutes, Fuzhou, Fujian, 350007, China.
| | - Qingqiang Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Yaling Wu
- School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
2
|
Park H, Chai K, Kim W, Park J, Lee W, Park J. Asterias forbesi-Inspired SERS Substrates for Wide-Range Detection of Uric Acid. BIOSENSORS 2023; 14:8. [PMID: 38248385 PMCID: PMC10813034 DOI: 10.3390/bios14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Uric acid (UA), the final metabolite of purine, is primarily excreted through urine to maintain an appropriate concentration in the bloodstream. However, any malfunction in this process can lead to complications due to either deficiency or excess amount of UA. Hence, the development of a sensor platform with a wide-range detection is crucial. To realize this, we fabricated a surface-enhanced Raman spectroscopy (SERS) substrate inspired by a type of starfish with numerous protrusions, Asterias forbesi. The Asterias forbesi-inspired SERS (AF-SERS) substrate utilized an Au@Ag nanostructure and gold nanoparticles to mimic the leg and protrusion morphology of the starfish. This substrate exhibited excellent Raman performance due to numerous hotspots, demonstrating outstanding stability, reproducibility, and repeatability. In laboratory settings, we successfully detected UA down to a concentration of 1.16 nM (limit of detection) and demonstrated selectivity against various metabolites. In the experiments designed for real-world application, the AF-SERS substrate detected a broad range of UA concentrations, covering deficiencies and excesses, in both serum and urine samples. These results underscore the potential of the developed AF-SERS substrate as a practical detection platform for UA in real-world applications.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Kyunghwan Chai
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Woochang Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Joohyung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jinsung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; (H.P.); (K.C.); (W.K.); (J.P.)
| |
Collapse
|