1
|
Shcherbakova N, Desselle S, Bandiera C, Canedo J, Law AV, Aslani P. Drivers of citations in social pharmacy and practice research articles. Res Social Adm Pharm 2024; 20:590-596. [PMID: 38565426 DOI: 10.1016/j.sapharm.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Research in Social and Administrative Pharmacy has been expanding in the last decade. The recently published Granada Statements offer key recommendations to improve the quality of research in this field. OBJECTIVES To identify the factors associated with the citations of articles in the field of social, administrative, clinical pharmacy and practice research. METHODS This study was a retrospective, observational analysis of articles published in three leading journals. Per article Google Scholar citations was the dependent variable. Predictor variables were extracted from all articles published from 2013 to 2015. The dependent variable was dichotomized using sample's median Google Scholar citations. Logistic regression analysis was performed to identify independent predictors of citations ≥ median. RESULTS The median number of citations per article was 17 (range 0-341), with a mean of 24.2 (SD 27.6). The number of references included in the articles (OR 1.03, CI 1.02-1.04), the year of publication (OR 0.31 CI 0.21-0.46 for articles published 2015), article social media mentions (OR = 1.01, CI 1.01-1.03 and OR 1.10 CI 1.04-1.18 for Facebook and X, respectively), the topic area of research namely pharmacy services (OR 1.65, CI 1.06-2.57) and medication adherence (OR 2.22 CI 1.13-4.33) were independently associated with article having citations ≥ median. CONCLUSIONS The number of references, the year of publication, social media mentions and the topic area of research, namely pharmacy services and medication adherence, were associated with citations above median in the leading journals of social and administrative pharmacy research. Authors may consider providing a thorough literature review in their articles, while researchers, editors, and publishers are advised to use social media to promote newly published work. This article complements the Granada Statements and may contribute to fostering wider dissemination of the discipline's outputs.
Collapse
Affiliation(s)
- Natalia Shcherbakova
- Western New England University College of Pharmacy and Health Sciences, Springfield, MA, USA.
| | | | - Carole Bandiera
- The University of Sydney School of Pharmacy, Sydney, New South Wales, Australia.
| | - Joanne Canedo
- School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Anandi V Law
- College of Pharmacy, Western University of Health Sciences, 309 E 2nd St, Pomona, CA, 91766, USA.
| | - Parisa Aslani
- The University of Sydney School of Pharmacy, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Hepatoprotective effect of syringin combined with costunolide against LPS-induced acute liver injury in L-02 cells via Rac1/AKT/NF-κB signaling pathway. Aging (Albany NY) 2023; 15:11994-12020. [PMID: 37916984 PMCID: PMC10683587 DOI: 10.18632/aging.205161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse biological functions in various biological processes. We explored the underlying hepatoprotective effects of syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an effective candidate drug for the treatment of ALI.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| |
Collapse
|
3
|
Fan H, Cui J, Liu F, Zhang W, Yang H, He N, Dong Z, Dong J. Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and NLRP3 pathways and suppressing apoptosis and autophagy. Eur J Pharmacol 2022; 933:175252. [PMID: 36063870 DOI: 10.1016/j.ejphar.2022.175252] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Sepsis-related acute liver injury (ALI) is a fatal disease associated with many complications. Recent studies indicate that malvidin, an active flavonoid, has multiple bioactivities including anti-oxidant and anti-inflammation. However, the protective roles of malvidin against LPS-induced ALI are unknown. The purpose of this research is to explore whether malvidin has biological activities on LPS-induced ALI in mice and the underlying mechanisms. Male C57 mice were injected intraperitoneally with malvidin for five days and the mice were euthanized 6 hours after LPS (10 mg/kg body weight) intraperitoneal injection. Multiple methods of H&E staining, biochemical kits, qRT-PCR assay, western blotting analysis, TUNEL and transmission electron microscope (TEM) were used. Results showed that decreased ALT, AST levels and alleviated histopathological damage of liver tissue were observed in malvidin pretreatment group in mice. Then, malvidin prevented LPS-induced reduction of antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) via up-regulating nuclear factor E2-related factor2 (Nrf2) pathway. In addition, in malvidin pretreatment groups, mRNA levels of pro-inflammatory cytokines (TNF-α,IL-1β, IL-6) and protein levels of NOD-like receptor protein 3 (NLRP3) inflammasome in the liver were significantly down-regulated. We also found that the malvidin could reduce the expression of apoptosis key protein and TUNEL-labeled apoptotic hepatocytes. Furthermore, malvidin inhibited the protein expression of ATG5, p62 and the ratio of LC3-II/LC3-I. In conclusion, our study firstly suggests that malvidin is a potentially protective agent against LPS-induced ALI through up-regulating Nrf2 signaling pathway, suppressing NLRP3 inflammasome and inhibiting apoptosis and autophagy.
Collapse
Affiliation(s)
- Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiajia Cui
- Department of Rheumatology and Immunology, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
4
|
Mao J, Yi M, Wang R, Huang Y, Chen M. Protective Effects of Costunolide Against D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice. Front Pharmacol 2018; 9:1469. [PMID: 30618760 PMCID: PMC6307542 DOI: 10.3389/fphar.2018.01469] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/30/2018] [Indexed: 01/14/2023] Open
Abstract
Costunolide, a sesquiterpene isolated from Vladimiria souliei (Franch.) Ling, is known to exhibit anti-inflammatory, anti-viral, and anti-tumor activities. However, the effects of costunolide on liver injury are poorly understood. The current study aimed to investigate the hepatoprotective effects of costunolide against lipopolysaccharide (LPS) and D-galactosamine-induced acute liver injury (ALI) in mice. The results indicated that costunolide (40 mg/kg) could significantly improve the pathological changes of hepatic tissue, and reduced the LPS and D-galactosamine-induced increases of alanine aminotransferase (from 887.24 ± 21.72 to 121.67 ± 6.56 IU/L) and aspartate aminotransferase (from 891.01 ± 45.24 to 199.94 ± 11.53 IU/L) activities in serum. Further research indicated that costunolide significantly reduced malondialdehyde content (from 24.56 ± 1.39 to 9.17 ± 0.25 nmol/ml) and reactive oxygen species (from 203.34 ± 7.68 to 144.23 ± 7.12%), increased the activity of anti-oxidant enzymes superoxide dismutase (from 153.74 ± 10.33 to 262.27 ± 8.39 U/ml), catalase (from 6.12 ± 0.30 to 12.44 ± 0.57 U/ml), and total anti-oxidant capacity (from 0.64 ± 0.06 to 6.29 ± 0.11 U/ml) in hepatic tissues. Western blot results revealed that costunolide may trigger the anti-oxidative defense system by inhibiting kelch-like ECH-associated protein 1 and nuclear factor-related factor 2 (cytosol), increasing nuclear factor-related factor 2 (nucleus), heme oxygenase-1 and NAD (P) H quinone oxidoreductase 1 activity. Moreover, costunolide significantly decreased the protein expression of proinflammatory cytokines including interleukin 1β, interleukin 6, and tumor necrosis factor. Pretreatment with costunolide could reduce the expression of toll-like receptor 4, myeloid differentiation factor 88, p65 (Nucleus), phosphorylated IκB kinase α/β, inhibitor of nuclear factor kappa-B kinase, inhibitor kappa Bα and prevent the expression of phosphorylated inhibitor kappa B kinase which repressed translocation of p65 from cytoplasm to nucleus. In addition, pretreatment with costunolide also inhibited hepatocyte apoptosis by reducing the expression of B-cell lymphoma 2 associated X, cytochrome C, cysteinyl aspartate specific proteinase 3, cysteinyl aspartate specific proteinase 8 and cysteinyl aspartate specific proteinase 9, and by increasing B-cell lymphoma 2. From the above analysis, the protective effects of costunolide against LPS and D-galactosamine-induced ALI in mice may be attributed to its anti-oxidative activity in nuclear factor-related factor 2 signaling pathways, anti-inflammatory suppression in nuclear factor-kappa B signaling pathways, and inhibition of hepatocyte apoptosis. Thus, costunolide may be a potential therapeutic agent in attenuating LPS and D-galactosamine -induced ALI in the future.
Collapse
Affiliation(s)
| | | | | | | | - Min Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Walker AM, Zhou X, Ananthakrishnan AN, Weiss LS, Shen R, Sobel RE, Bate A, Reynolds RF. Computer-assisted expert case definition in electronic health records. Int J Med Inform 2016; 86:62-70. [DOI: 10.1016/j.ijmedinf.2015.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
|