1
|
Haberkorn U, Mier W, Kopka K, Herold-Mende C, Altmann A, Babich J. Identification of Ligands and Translation to Clinical Applications. J Nucl Med 2017; 58:27S-33S. [DOI: 10.2967/jnumed.116.186791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
|
2
|
Mechanistic and high-throughput approaches for the design of molecular imaging probes and targeted therapeutics. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Reagentless fluorescent biosensors based on proteins for continuous monitoring systems. Anal Bioanal Chem 2012; 402:3039-54. [DOI: 10.1007/s00216-012-5715-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/04/2012] [Indexed: 12/23/2022]
|
4
|
Mathieu V, Fastrez J, Soumillion P. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase. Protein Eng Des Sel 2010; 23:699-709. [PMID: 20591901 DOI: 10.1093/protein/gzq041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In nature, the activity of many enzymes involved in important biochemical pathways is controlled by binding a ligand in a site remote from the active site. The allosteric sites are frequently located in hinge regulatory subunits, in which a conformational change can occur and propagate to the active site. The enzymatic activity is then enhanced or decreased depending on the type of effectors. Many artificial binding sites have been created to engineer an allosteric regulation. Generally, these sites were engineered near the active site in loops or at the surface of contiguous helices or strands but rarely in hinge regions. This work aims at exploring the possibility of regulating a monomeric enzyme whose active site is located at the interface between two domains. We anticipated that binding of a ligand in the hinge region linking the domains would modify their positioning and, consequently, modulate the activity. Here, we describe the design of two mutants in a circularly permuted TEM-1 (cpTEM-1) beta-lactamase. The first one, cpTEM-1-His(3) was created by a rational design. It shows little regulation upon metal ion binding except for a weak activation with Zn(2+). The second one, cpTEM-1-3M-His(2), was selected by a directed evolution strategy. It is allosterically down-regulated by Zn(2+), Ni(2+) and Co(2+) with binding affinities around 300 microM.
Collapse
Affiliation(s)
- Valéry Mathieu
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université catholique de Louvain, Place Croix du Sud, 4-5 boîte 3, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
5
|
|
6
|
Brient-Litzler E, Plückthun A, Bedouelle H. Knowledge-based design of reagentless fluorescent biosensors from a designed ankyrin repeat protein. Protein Eng Des Sel 2009; 23:229-41. [DOI: 10.1093/protein/gzp074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Oh KJ, Cash KJ, Plaxco KW. Beyond molecular beacons: optical sensors based on the binding-induced folding of proteins and polypeptides. Chemistry 2009; 15:2244-51. [PMID: 19191230 DOI: 10.1002/chem.200701748] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many polypeptides and small proteins can be readily engineered such that they only fold upon binding a specific target ligand. This approach couples target recognition with a considerable change in polymer structure and dynamics. Recent years have seen the development of a number of biosensors that couple these large changes to readily measurable optical (fluorescent) outputs. These sensors afford the detection of a wide variety of macromolecular targets including proteins, polypeptides, and nucleic acids. Here we describe the design of such biosensors, from the first iterations as protein engineering experiments, to the development of biosensors targeting a range of protein and nucleic acid targets.
Collapse
Affiliation(s)
- Kenneth J Oh
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
8
|
Koide S, Sidhu SS. The importance of being tyrosine: lessons in molecular recognition from minimalist synthetic binding proteins. ACS Chem Biol 2009; 4:325-34. [PMID: 19298050 PMCID: PMC2829252 DOI: 10.1021/cb800314v] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Combinatorial libraries built with severely restricted chemical diversity have yielded highly functional synthetic binding proteins. Structural analyses of these minimalist binding sites have revealed the dominant role of large tyrosine residues for mediating molecular contacts and of small serine/glycine residues for providing space and flexibility. The concept of using limited residue types to construct optimized binding proteins mirrors findings in the field of small molecule drug development, where it has been proposed that most drugs are built from a limited set of side chains presented by diverse frameworks. The physicochemical properties of tyrosine make it the amino acid that is most effective for mediating molecular recognition, and protein engineers have taken advantage of these characteristics to build tyrosine-rich protein binding sites that outperform natural proteins in terms of affinity and specificity. Knowledge from preceding studies can be used to improve current designs, and thus synthetic protein libraries will continue to evolve and improve. In the near future, it seems likely that synthetic binding proteins will supersede natural antibodies for most purposes, and moreover, synthetic proteins will enable many new applications beyond the scope of natural proteins.
Collapse
Affiliation(s)
- Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
9
|
Stricher F, Huang CC, Descours A, Duquesnoy S, Combes O, Decker JM, Kwon YD, Lusso P, Shaw GM, Vita C, Kwong PD, Martin L. Combinatorial optimization of a CD4-mimetic miniprotein and cocrystal structures with HIV-1 gp120 envelope glycoprotein. J Mol Biol 2008; 382:510-24. [PMID: 18619974 PMCID: PMC2625307 DOI: 10.1016/j.jmb.2008.06.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 01/07/2023]
Abstract
Miniproteins provide a bridge between proteins and small molecules. Here we adapt methods from combinatorial chemistry to optimize CD4M33, a synthetic miniprotein into which we had previously transplanted the HIV-1 gp120 binding surface of the CD4 receptor. Iterative deconvolution of generated libraries produced CD4M47, a derivative of CD4M33 that had been optimized at four positions. Surface plasmon resonance demonstrated fourfold to sixfold improvement in CD4M47 affinity for gp120 to a level about threefold tighter than that of CD4 itself. Assessment of the neutralization properties of CD4M47 against a diverse range of isolates spanning from HIV-1 to SIVcpz showed that CD4M47 retained the extraordinary breadth of the parent CD4M33, but yielded only limited improvements in neutralization potencies. Crystal structures of CD4M47 and a phenylalanine variant ([Phe23]M47) were determined at resolutions of 2.4 and 2.6 A, in ternary complexes with HIV-1 gp120 and the 17b antibody. Analysis of these structures revealed a correlation between mimetic affinity for gp120 and overall mimetic-gp120 interactive surface. A correlation was also observed between CD4- and mimetic-induced gp120 structural similarity and CD4- and mimetic-induced gp120 affinity for the CCR5 coreceptor. Despite mimetic substitutions, including a glycine-to-(d)-proline change, the gp120 conformation induced by CD4M47 was as close or closer to the conformation induced by CD4 as the one induced by the parent CD4M33. Our results demonstrate the ability of combinatorial chemistry to optimize a disulfide-containing miniprotein, and of structural biology to decipher the resultant interplay between binding affinity, neutralization breadth, molecular mimicry, and induced affinity for CCR5.
Collapse
Affiliation(s)
| | - Chih-chin Huang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anne Descours
- CEA, iBiTecS, SIMOPRO, Gif-sur-Yvette, F-91191, France
| | | | | | - Julie M. Decker
- Howard Hughes Medical Institute, Department of Medicine, Department of Microbiology, University of Alabama at Birmingham, Alabama 35294, United States
| | - Young Do Kwon
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Paolo Lusso
- Unit of Human Virology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - George M. Shaw
- Howard Hughes Medical Institute, Department of Medicine, Department of Microbiology, University of Alabama at Birmingham, Alabama 35294, United States
| | - Claudio Vita
- CEA, iBiTecS, SIMOPRO, Gif-sur-Yvette, F-91191, France, Deceased
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892, United States, to whom correspondence should be addressed: PDK: Tel: (+1)-301-594-8685; Fax: (+1)-301-480-2658; e-mail: , LM: Tel: (+33)-169087133; Fax: (+33)-169089071; e-mail:
| | - Loïc Martin
- CEA, iBiTecS, SIMOPRO, Gif-sur-Yvette, F-91191, France, to whom correspondence should be addressed: PDK: Tel: (+1)-301-594-8685; Fax: (+1)-301-480-2658; e-mail: , LM: Tel: (+33)-169087133; Fax: (+33)-169089071; e-mail:
| |
Collapse
|
10
|
Abstract
For the last 30 years, the production of affinity reagents and particularly antibodies for research and therapeutic applications has been dominated by hybridoma and polyclonal technologies, while more modern, reliable and inexpensive approaches have lagged. Here we discuss why this is the case and how a cultural shift in the biomedical research community could bring the new technologies for creating antibodies and other tailor-designed binding proteins into the mainstream, with the potential for myriad new applications in research and medicine.
Collapse
|
11
|
Birtalan S, Zhang Y, Fellouse FA, Shao L, Schaefer G, Sidhu SS. The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 2008; 377:1518-28. [PMID: 18336836 DOI: 10.1016/j.jmb.2008.01.093] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/24/2022]
Abstract
Synthetic antibody libraries with restricted chemical diversity were used to explore the intrinsic contributions of four amino acids (Tyr, Ser, Gly and Arg) to the affinity and specificity of antigen recognition. There was no correlation between nonspecific binding and the content of Tyr, Ser or Gly in the antigen-binding site, and in fact, the most specific antibodies were those with the highest Tyr content. In contrast, Arg content was clearly correlated with increased nonspecific binding. We combined Tyr, Ser and Gly to generate highly specific synthetic antibodies with affinities in the subnanomolar range, showing that the high abundance of Tyr, Ser and Gly in natural antibody germ line sequences reflects the intrinsic capacity of these residues to work together to mediate antigen recognition. Despite being a major functional contributor to co-evolved protein-protein interfaces, we find that Arg does not contribute generally to the affinity of naïve antigen-binding sites and is detrimental to specificity. Again, this is consistent with studies of natural antibodies, which have shown that nonspecific, self-reactive antibodies are rich in Arg and other positively charged residues. Our findings suggest that the principles governing naïve molecular recognition differ from those governing co-evolved interactions. Analogous studies can be designed to explore the roles of the other amino acids in molecular recognition. Results of such studies should illuminate the basic principles underlying natural protein-protein interactions and should aid the design of synthetic binding proteins with functions beyond the scope of natural proteins.
Collapse
Affiliation(s)
- Sara Birtalan
- Department of Protein Engineering, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | |
Collapse
|
12
|
Binz HK, Plückthun A. Engineered proteins as specific binding reagents. Curr Opin Biotechnol 2007; 16:459-69. [PMID: 16005204 DOI: 10.1016/j.copbio.2005.06.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/10/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022]
Abstract
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
13
|
Heinis C, Schmitt S, Kindermann M, Godin G, Johnsson K. Evolving the substrate specificity of O6-alkylguanine-DNA alkyltransferase through loop insertion for applications in molecular imaging. ACS Chem Biol 2006; 1:575-84. [PMID: 17168553 DOI: 10.1021/cb6003146] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce a strategy for evolving protein substrate specificity by the insertion of random amino acid loops into the protein backbone. Application of this strategy to human O6-alkylguanine-DNA alkyltransferase (AGT) led to the isolation of mutants that react with the non-natural substrate O6-propargylguanine. Libraries generated by conventional random or targeted saturation mutagenesis, by contrast, did not yield any mutants with activity towards this new substrate. The strategy of loop insertion to alter enzyme specificity should be general and applicable to other classes of proteins. An important application of the isolated AGT mutant is in molecular imaging, where the mutant and parental AGTs are used to label two different AGT fusion proteins with different fluorophores in the same living cell or in vitro . This allowed the establishment of fluorescence-based assays to detect protein-protein interactions and measure enzymatic activities.
Collapse
Affiliation(s)
- Christian Heinis
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Mathonet P, Barrios H, Soumillion P, Fastrez J. Selection of allosteric beta-lactamase mutants featuring an activity regulation by transition metal ions. Protein Sci 2006; 15:2335-43. [PMID: 16963642 PMCID: PMC2242392 DOI: 10.1110/ps.062304406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Libraries of phage-displayed beta-lactamase mutants in which up to three loops have been engineered by genetic introduction of random peptide sequences or by randomization of the wild-type sequence have been submitted to selection protocols designed to find mutants in which binding of transition metal ions to the engineered secondary binding site leads to significant effects on the enzymatic activity. A double-selection protocol was applied: The phage-displayed libraries were first selected for transition metal ions affinity by panning on IMAC support, then a second selection step was applied to isolate mutants that have retained significant catalytic activity. The analysis of the kinetic properties of mutants in the presence of nickel, copper, or zinc ions allowed isolation of a few mutants whose activity was either enhanced or inhibited by factors up to three and >10, respectively, in a metal-specific manner. A remarkable mutant exhibiting differential allosteric regulation depending on the metal was found. Its activity was activated by nickel ion binding, inhibited by cupric ion binding, and nearly unaffected by zinc ions. These observations point to an interesting potential for up- or down-regulation of activity within a monomeric enzyme by binding to an "allosteric site" relatively remote from the active site.
Collapse
Affiliation(s)
- Pascale Mathonet
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université catholique de Louvain, B1348 Louvain la Neuve, Belgium
| | | | | | | |
Collapse
|
15
|
Mathonet P, Deherve J, Soumillion P, Fastrez J. Active TEM-1 beta-lactamase mutants with random peptides inserted in three contiguous surface loops. Protein Sci 2006; 15:2323-34. [PMID: 16963643 PMCID: PMC2242396 DOI: 10.1110/ps.062303606] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Engineering of alternative binding sites on the surface of an enzyme while preserving the enzymatic activity would offer new opportunities for controlling the activity by binding of non-natural ligands. Loops and turns are the natural substructures in which binding sites might be engineered with this purpose. We have genetically inserted random peptide sequences into three relatively rigid and contiguous loops of the TEM-1 beta-lactamase and assessed the tolerance to insertion by the percentage of active mutants. Our results indicate that tolerance to insertion could not be correlated to tolerance to mutagenesis. A turn between two beta-strands bordering the active site was observed to be tolerant to random mutagenesis but not to insertions. Two rigid loops comprising rather well-conserved amino acid residues tolerated insertions, although with some constraints. Insertions between the N-terminal helix and the first beta-strand generated active libraries if cysteine residues were included at both ends of the insert, suggesting the requirement for a stabilizing disulfide bridge. Random sequences were relatively well accommodated within the loop connecting the final beta-strand to the C-terminal helix, particularly if the wild-type residue was retained at one of the loops' end. This suggests two strategies for increasing the percentage of active mutants in insertion libraries. The amino acid distribution in the engineered loops was analyzed and found to be less biased against hydrophobic residues than in natural medium-sized loops. The combination of these activity-selected libraries generated a huge library containing active hybrid enzymes with all three loops modified.
Collapse
Affiliation(s)
- Pascale Mathonet
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université catholique de Louvain, B1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
16
|
Mascini M, Del Carlo M, Compagnone D, Cozzani I, Tiscar PG, Mpamhanga CP, Chen B. Piezoelectric Sensors Based on Biomimetic Peptides for the Detection of Heat Shock Proteins (HSPs) in Mussels. ANAL LETT 2006. [DOI: 10.1080/00032710600713529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Drevelle A, Graille M, Heyd B, Sorel I, Ulryck N, Pecorari F, Desmadril M, van Tilbeurgh H, Minard P. Structures of in Vitro Evolved Binding Sites on Neocarzinostatin Scaffold Reveal Unanticipated Evolutionary Pathways. J Mol Biol 2006; 358:455-71. [PMID: 16529771 DOI: 10.1016/j.jmb.2006.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/24/2006] [Accepted: 02/02/2006] [Indexed: 11/15/2022]
Abstract
We have recently applied in vitro evolution methods to create in Neocarzinostatin a new binding site for a target molecule unrelated to its natural ligand. The main objective of this work was to solve the structure of some of the selected binders in complex with the target molecule: testosterone. Three proteins (1a.15, 3.24 and 4.1) were chosen as representative members of sequence families that came out of the selection process within different randomization schemes. In order to evaluate ligand-induced conformational adaptation, we also determined the structure of one of the proteins (3.24) in the free and complexed forms. Surprisingly, all these mutants bind not one but two molecules of testosterone in two very different ways. The 3.24 structure revealed that the protein spontaneously evolved in the system to bind two ligand molecules in one single binding crevice. These two binding sites are formed by substituted as well as by non-variable side-chains. The comparison with the free structure shows that only limited structural changes are observed upon ligand binding. The X-ray structures of the complex formed by 1a.15 and 4.1 Neocarzinostatin mutants revealed that the two variants form very similar dimers. These dimers were observed neither for the uncomplexed variants nor for wild-type Neocarzinostatin but were shown here to be induced by ligand binding. Comparison of the three complexed forms clearly suggests that these unanticipated structural responses resulted from the molecular arrangement used for the selection experiments.
Collapse
Affiliation(s)
- Antoine Drevelle
- Equipe de Modélisation et Ingénierie des Protéines, IBBMC, CNRS, UMR8619, Université Paris XI, Bât. 430, 91405 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Amstutz P, Koch H, Binz HK, Deuber SA, Plückthun A. Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Eng Des Sel 2006; 19:219-29. [PMID: 16551653 DOI: 10.1093/protein/gzl004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe here the rapid selection of specific MAP-kinase binders from a combinatorial library of designed ankyrin repeat proteins (DARPins). A combined in vitro/in vivo selection approach, based on ribosome display and the protein fragment complementation assay (PCA), yielded a large number of different binders that are fully functional in the cellular cytoplasm. Ribosome-display selection pools of four successive selection rounds were examined to monitor the enrichment of JNK2-specific DARPins. Surprisingly, only one round of ribosome display with subsequent PCA selection of this pool was necessary to isolate a first specific binder with micromolar affinity. After only two rounds of ribosome-display selection followed by PCA, virtually all DARPins showed JNK2-specific binding, with affinities in the low nanomolar range. The enrichment factor of ribosome display thus approaches 10(5) per round. In a second set of experiments, similar results were obtained with the kinases JNK1 and p38 as targets. Again, almost all investigated DARPins obtained after two rounds of ribosome display showed specific binding to the targets used, JNK1 or p38. In all three selection experiments the identified DARPins possess very high specificity for the target kinase. Taken together, the combination of ribosome display and PCA selections allowed the identification of large pools of binders at unparalleled speed. Furthermore, DARPins are applicable in intracellular selections and immunoprecipitations from the extract of eukaryotic cells.
Collapse
Affiliation(s)
- Patrick Amstutz
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Telmer PG, Shilton BH. Structural studies of an engineered zinc biosensor reveal an unanticipated mode of zinc binding. J Mol Biol 2005; 354:829-40. [PMID: 16288781 DOI: 10.1016/j.jmb.2005.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022]
Abstract
Protein engineering was used previously to convert maltose-binding protein (MBP) into a zinc biosensor. Zn(2+) binding by the engineered MBP was thought to require a large conformational change from "open" to "closed", similar to that observed when maltose is bound by the wild-type protein. We show that although this re-designed MBP molecule binds Zn(2+) with high affinity as previously reported, it does not adopt a closed conformation in solution as assessed by small-angle X-ray scattering. High-resolution crystallographic studies of the engineered Zn(2+)-binding MBP molecule demonstrate that Zn(2+) is coordinated by residues on the N-terminal lobe only, and therefore Zn(2+) binding does not require the protein to adopt a fully closed conformation. Additional crystallographic studies indicate that this unexpected Zn(2+) binding site can also coordinate Cu(2+) and Ni(2+) with only subtle changes in the overall conformation of the protein. This work illustrates that the energetic barrier to domain closure, which normally functions to maintain MBP in an open concentration in the absence of ligand, is not easily overcome by protein design. A comparison to the mechanism of maltose-induced domain rearrangement is discussed.
Collapse
Affiliation(s)
- Patrick G Telmer
- Department of Biochemistry, University of Western Ontario, London, Ontari, Canada N6A 5C1
| | | |
Collapse
|
20
|
Haberkorn U, Eisenhut M. Molecular imaging and therapy—a programme based on the development of new biomolecules. Eur J Nucl Med Mol Imaging 2005; 32:1354-9. [PMID: 16133375 DOI: 10.1007/s00259-005-1924-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Parker MH, Chen Y, Danehy F, Dufu K, Ekstrom J, Getmanova E, Gokemeijer J, Xu L, Lipovsek D. Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein Eng Des Sel 2005; 18:435-44. [PMID: 16087651 DOI: 10.1093/protein/gzi050] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tenth human fibronectin type three domain ((10)Fn3) is a small (10 kDa), extremely stable and soluble protein with an immunoglobulin-like fold, but without cysteine residues. Selections from (10)Fn3-based libraries of proteins with randomized loops have yielded high-affinity, target-specific antibody mimics. However, little is known about the biophysical properties of such antibody mimics, which will determine their suitability for in vitro and medical applications. We characterized target binding and biophysical properties of two related (10)Fn3-based antibody mimics that bind vascular endothelial growth factor receptor two (VEGF-R2). The first antibody mimic, which has a dissociation constant (K(d)) of 13 nM, is highly stable [melting temperature (T(m))=62 degrees C] and soluble, whereas the second, which binds VEGF-R2 with 40 x higher affinity, is less stable (T(m) < 40 degrees C) and relatively insoluble. We used our understanding of these two (10)Fn3 derivatives and of wild-type (10)Fn3 structure to engineer the next generation of antibody mimics, which have an improved combination of high affinity (K(d)=0.59 nM), stability (T(m)=53 degrees C) and solubility. Our findings illustrate that (10)Fn3-based antibody mimics can be engineered for favorable biophysical properties even when 20% of the wild-type (10)Fn3 sequence is mutated in order to satisfy target-binding requirements.
Collapse
Affiliation(s)
- M H Parker
- Phylos, Inc., succeeded by Compound Therapeutics, Waltham, MA 02453, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kohn JE, Plaxco KW. Engineering a signal transduction mechanism for protein-based biosensors. Proc Natl Acad Sci U S A 2005; 102:10841-5. [PMID: 16046542 PMCID: PMC1182433 DOI: 10.1073/pnas.0503055102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 06/16/2005] [Indexed: 11/18/2022] Open
Abstract
Hybridization-induced conformational changes have been successfully used in biosensors for the transduction of DNA-binding events into readily observable optical or electronic signals. Similar signal transduction has not, however, proven of equal utility in protein-based biosensors. The discrepancy arises because, unlike ssDNA, most proteins do not undergo significant conformational changes upon ligand binding. Here, we describe a solution to this problem. We show that an arbitrarily selected, normally well folded protein can be rationally engineered such that it undergoes ligand-induced folding. The engineered protein responds rapidly (milliseconds) and selectively to its target, and it couples recognition with the largest possible conformational change: folding. These traits suggest that ligand-induced folding could serve as an ideal signal-transduction mechanism. Consistent with this claim, we demonstrate a label-free optical biosensor based on the effect that is sufficiently selective to detect its target even in complex, contaminant-ridden samples such as blood serum.
Collapse
Affiliation(s)
- Jonathan E Kohn
- Interdepartmental Program in Biomolecular Science and Engineering, Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| | | |
Collapse
|