1
|
Mattsson J, Rogne P, Landström M, Wolf-Watz M. Robust approach for production of the human oncology target Aurora kinase B in complex with its binding partner INCENP. Biochimie 2025; 229:129-140. [PMID: 39424257 DOI: 10.1016/j.biochi.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Protein kinases are key players in many eukaryotic signal transduction cascades and are as a result often linked to human disease. In humans, the mitotic protein kinase family of Aurora kinases consist of three members: Aurora A, B and C. All three members are involved in cell division with proposed implications in various human cancers. The human Aurora kinase B has in particular proven challenging to study with structural biology approaches, and this is mainly due to difficulties in producing the large quantities of active enzyme required for such studies. Here, we present a novel and E. coli-based production system that allows for production of milligram quantities of well-folded and active human Aurora B in complex with its binding partner INCENP. The complex is produced as a continuous polypeptide chain and the resulting fusion protein is cleaved with TEV protease to generate a stable and native heterodimer of the Aurora B:INCENP complex. The activity, stability and degree of phosphorylation of the protein complex was quantified by using a coupled ATPase assay, 31P NMR spectroscopy and mass spectrometry. The developed production system enables isotope labeling and we here report the first 1H-15N-HSQC of the human Aurora B:INCENP complex. Our developed production strategy paves the way for future structural and functional studies of Aurora B and can as such assist the development of novel anticancer drugs targeting this important mitotic protein kinase.
Collapse
Affiliation(s)
- Jonna Mattsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences 6M, Pathology, Umeå University, 901 85, Umeå, Sweden
| | | |
Collapse
|
2
|
Yamada K, Kizawa R, Yoshida A, Koizumi R, Motohashi S, Shimoyama Y, Hannya Y, Yoshida S, Oikawa T, Shimoda M, Yoshida K. Extracellular PKCδ signals to EGF receptor for tumor proliferation in liver cancer cells. Cancer Sci 2022; 113:2378-2385. [PMID: 35490382 PMCID: PMC9277411 DOI: 10.1111/cas.15386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR‐expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C‐terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ‐EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ‐targeting therapy for liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ryusuke Kizawa
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ayano Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Rei Koizumi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saya Motohashi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yuya Shimoyama
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yoshito Hannya
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saishu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology Department of Internal Medicine The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Masayuki Shimoda
- Department of Pathology The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| |
Collapse
|
3
|
Identification of the Kinase-Substrate Recognition Interface between MYPT1 and Rho-Kinase. Biomolecules 2022; 12:biom12020159. [PMID: 35204659 PMCID: PMC8869655 DOI: 10.3390/biom12020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/08/2023] Open
Abstract
Protein kinases exert physiological functions through phosphorylating their specific substrates; however, the mode of kinase–substrate recognition is not fully understood. Rho-kinase is a Ser/Thr protein kinase that regulates cytoskeletal reorganization through phosphorylating myosin light chain (MLC) and the myosin phosphatase targeting subunit 1 (MYPT1) of MLC phosphatase (MLCP) and is involved in various diseases, due to its aberrant cellular contraction, morphology, and movement. Despite the importance of the prediction and identification of substrates and phosphorylation sites, understanding of the precise regularity in phosphorylation preference of Rho-kinase remains far from satisfactory. Here we analyzed the Rho-kinase–MYPT1 interaction, to understand the mode of Rho-kinase substrate recognition and found that the three short regions of MYPT1 close to phosphorylation sites (referred to as docking motifs (DMs); DM1 (DLQEAEKTIGRS), DM2 (KSQPKSIRERRRPR), and DM3 (RKARSRQAR)) are important for interactions with Rho-kinase. The phosphorylation levels of MYPT1 without DMs were reduced, and the effects were limited to the neighboring phosphorylation sites. We further demonstrated that the combination of pseudosubstrate (PS) and DM of MYPT1 (PS1 + DM3 and PS2 + DM2) serves as a potent inhibitor of Rho-kinase. The present information will be useful in identifying new substrates and developing selective Rho-kinase inhibitors.
Collapse
|
4
|
Yamada K, Yoshida K. Multiple subcellular localizations and functions of protein kinase Cδ in liver cancer. World J Gastroenterol 2022; 28:188-198. [PMID: 35110944 PMCID: PMC8776529 DOI: 10.3748/wjg.v28.i2.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase Cδ (PKCδ) is a member of the PKC family, and its implications have been reported in various biological and cancerous processes, including cell proliferation, cell death, tumor suppression, and tumor progression. In liver cancer cells, accumulating reports show the bi-functional regulation of PKCδ in cell death and survival. PKCδ function is defined by various factors, such as phosphorylation, catalytic domain cleavage, and subcellular localization. PKCδ has multiple intracellular distribution patterns, ranging from the cytosol to the nucleus. We recently found a unique extracellular localization of PKCδ in liver cancer and its growth factor-like function in liver cancer cells. In this review, we first discuss the structural features of PKCδ and then focus on the functional diversity of PKCδ based on its subcellular localization, such as the nucleus, cell surface, and extracellular space. These findings improve our knowledge of PKCδ involvement in the progression of liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
5
|
Aurora B kinase: a potential drug target for cancer therapy. J Cancer Res Clin Oncol 2021; 147:2187-2198. [PMID: 34047821 DOI: 10.1007/s00432-021-03669-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ensuring genetic integrity is essential during the cell cycle to avoid aneuploidy, one of the underlying causes of malignancies. Aurora kinases are serine/threonine kinase that play a vital role in maintaining the genomic integrity of the cells. There are three forms of aurora kinases in the mammalian cells, which are highly conserved and act together with several other proteins to control chromosome alignment and its equal distribution to daughter cells in mitosis and meiosis. METHODS We provide here a detailed analysis of Aurora B kinase (ABK) in terms of its expression, structure, function, disease association and potential therapeutic implications. RESULTS ABK plays an instrumental in mitotic entry, chromosome condensation, spindle assembly, cytokinesis, and abscission. Small-molecule inhibitors of ABK are designed and synthesized to control cancer progression. A detailed understanding of ABK pathophysiology in different cancers is of great significance in designing and developing effective therapeutic strategies. CONCLUSION In this review, we have discussed the physiological significance of ABK followed by its role in cancer progression. We further highlighted available small-molecule inhibitors to control the tumor proliferation and their mechanistic insights.
Collapse
|
6
|
Allosteric modulation of a human protein kinase with monobodies. Proc Natl Acad Sci U S A 2019; 116:13937-13942. [PMID: 31239342 DOI: 10.1073/pnas.1906024116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite being the subject of intense effort and scrutiny, kinases have proven to be consistently challenging targets in inhibitor drug design. A key obstacle has been promiscuity and consequent adverse effects of drugs targeting the ATP binding site. Here we introduce an approach to controlling kinase activity by using monobodies that bind to the highly specific regulatory allosteric pocket of the oncoprotein Aurora A (AurA) kinase, thereby offering the potential for more specific kinase modulators. Strikingly, we identify a series of highly specific monobodies acting either as strong kinase inhibitors or activators via differential recognition of structural motifs in the allosteric pocket. X-ray crystal structures comparing AurA bound to activating vs inhibiting monobodies reveal the atomistic mechanism underlying allosteric modulation. The results reveal 3 major advantages of targeting allosteric vs orthosteric sites: extreme selectivity, ability to inhibit as well as activate, and avoidance of competing with ATP that is present at high concentrations in the cells. We envision that exploiting allosteric networks for inhibition or activation will provide a general, powerful pathway toward rational drug design.
Collapse
|
7
|
Jenardhanan P, Panneerselvam M, Mathur PP. Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors. Curr Top Med Chem 2019; 19:467-485. [PMID: 31184298 DOI: 10.2174/1568026619666190304155711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Kinases are key modulators in regulating diverse range of cellular activities and are an essential part of the protein-protein interactome. Understanding the interaction of kinases with different substrates and other proteins is vital to decode the cell signaling machinery as well as causative mechanism for disease onset and progression. OBJECTIVE The objective of this review is to present all studies on the structure and function of few important kinases and highlight the protein-protein interaction (PPI) mechanism of kinases and the kinase specific interactome databases and how such studies could be utilized to develop anticancer drugs. METHODS The article is a review of the detailed description of the various domains in kinases that are involved in protein-protein interactions and specific inhibitors developed targeting these PPI domains. RESULTS The review has surfaced in depth the interacting domains in key kinases and their features and the roles of PPI in the human kinome and the various signaling cascades that are involved in certain types of cancer. CONCLUSION The insight availed into the mechanism of existing peptide inhibitors and peptidomimetics against kinases will pave way for the design and generation of domain specific peptide inhibitors with better productivity and efficiency and the various software and servers available can be of great use for the identification and analysis of protein-protein interactions.
Collapse
Affiliation(s)
| | - Manivel Panneerselvam
- Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Premendu P Mathur
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
8
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
9
|
Burgess SG, Oleksy A, Cavazza T, Richards MW, Vernos I, Matthews D, Bayliss R. Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biol 2017; 6:rsob.160089. [PMID: 27411893 PMCID: PMC4967828 DOI: 10.1098/rsob.160089] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/17/2016] [Indexed: 01/15/2023] Open
Abstract
The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.
Collapse
Affiliation(s)
- Selena G Burgess
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Arkadiusz Oleksy
- Centre for Therapeutics Discovery, MRC Technology, The Accelerator Building, Stevenage, Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK
| | - Tommaso Cavazza
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG) and UPF, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Mark W Richards
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Isabelle Vernos
- Cell and Developmental Biology program, Centre for Genomic Regulation (CRG) and UPF, Dr Aiguader 88, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - David Matthews
- Centre for Therapeutics Discovery, MRC Technology, The Accelerator Building, Stevenage, Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK
| |
Collapse
|
10
|
Reyland ME, Jones DNM. Multifunctional roles of PKCδ: Opportunities for targeted therapy in human disease. Pharmacol Ther 2016; 165:1-13. [PMID: 27179744 DOI: 10.1016/j.pharmthera.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The serine-threonine protein kinase, protein kinase C-δ (PKCδ), is emerging as a bi-functional regulator of cell death and proliferation. Studies in PKCδ-/- mice have confirmed a pro-apoptotic role for this kinase in response to DNA damage and a tumor promoter role in some oncogenic contexts. In non-transformed cells, inhibition of PKCδ suppresses the release of cytochrome c and caspase activation, indicating a function upstream of apoptotic pathways. Data from PKCδ-/- mice demonstrate a role for PKCδ in the execution of DNA damage-induced and physiologic apoptosis. This has led to the important finding that inhibitors of PKCδ can be used therapeutically to reduce irradiation and chemotherapy-induced toxicity. By contrast, PKCδ is a tumor promoter in mouse models of mammary gland and lung cancer, and increased PKCδ expression is a negative prognostic indicator in Her2+ and other subtypes of human breast cancer. Understanding how these distinct functions of PKCδ are regulated is critical for the design of therapeutics to target this pathway. This review will discuss what is currently known about biological roles of PKCδ and prospects for targeting PKCδ in human disease.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - David N M Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. ACTA ACUST UNITED AC 2015; 21:1102-14. [PMID: 25237857 DOI: 10.1016/j.chembiol.2014.09.001] [Citation(s) in RCA: 788] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The past 20 years have seen many advances in our understanding of protein-protein interactions (PPIs) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of "lead-like" or "drug-like" molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery-structure, computation, screening, and biomarkers. PPIs become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last 10 years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery.
Collapse
|
12
|
Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc Natl Acad Sci U S A 2014; 111:E4532-41. [PMID: 25288725 DOI: 10.1073/pnas.1407610111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells have developed specific protective molecular machinery against environmental stresses. The family of CBL-interacting protein kinases (CIPK) and their interacting activators, the calcium sensors calcineurin B-like (CBLs), work together to decode calcium signals elicited by stress situations. The molecular basis of biological activation of CIPKs relies on the calcium-dependent interaction of a self-inhibitory NAF motif with a particular CBL, the phosphorylation of the activation loop by upstream kinases, and the subsequent phosphorylation of the CBL by the CIPK. We present the crystal structures of the NAF-truncated and pseudophosphorylated kinase domains of CIPK23 and CIPK24/SOS2. In addition, we provide biochemical data showing that although CIPK23 is intrinsically inactive and requires an external stimulation, CIPK24/SOS2 displays basal activity. This data correlates well with the observed conformation of the respective activation loops: Although the loop of CIPK23 is folded into a well-ordered structure that blocks the active site access to substrates, the loop of CIPK24/SOS2 protrudes out of the active site and allows catalysis. These structures together with biochemical and biophysical data show that CIPK kinase activity necessarily requires the coordinated releases of the activation loop from the active site and of the NAF motif from the nucleotide-binding site. Taken all together, we postulate the basis for a conserved calcium-dependent NAF-mediated regulation of CIPKs and a variable regulation by upstream kinases.
Collapse
|
13
|
Wilson CG, Arkin MR. Probing structural adaptivity at PPI interfaces with small molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e501-8. [PMID: 24451641 DOI: 10.1016/j.ddtec.2012.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is strong interest in developing small molecules that modulate protein-protein interactions (PPI), since such compounds could serve as drug leads or as probes of protein function. Fragment-based ligand discovery has been a particularly useful approach for modulating PPI. Fragments are typically <250 Da compounds that bind to proteins with weak affinity but high ligand efficiency. Here, we review a method for fragment- based ligand discovery using covalent disulfide trapping (Tethering). Tethering uses a native or engineered cysteine residue to select thiol-containing fragments that bind to the protein near the tethering cysteine. Taking advantage of the site-directed nature of Tethering, one can investigate the 'druggability' of particular binding sites on a protein surface; furthermore, Tethering has been used to find new binding sites and to stabilize allosteric conformations. We review the principles of Tethering and discuss two examples where disulfide trapping has expanded our understanding of PPI. For the cytokine interleukin-2 (IL2), Tethering identified a binding site adjacent to the IL2/IL2- receptor and a new site allosterically coupled to this PPI. For the kinase PDK1, Tethering identified ligands that activated or inhibited enzymatic activity by bind-ing to a single allosteric site. These examples provide a context for successful fragment-discovery projects, in which complementary technologies work together to identify starting points for chemical biology and drug discovery.
Collapse
|
14
|
Abstract
A key issue in drug discovery is how to reduce drug dosage and increase specificity while retaining or increasing efficacy, as high dosage is often linked to toxicity. There are two types of drugs on the market: orthosteric and allosteric. Orthosteric drugs can be noncovalent or covalent. The latter are advantageous because they may be prescribed in lower doses, but their potential off-target toxicity is a primary concern. The chief advantages of allosteric drugs are their higher specificity and their consequently lower chance of toxic side effects. Covalent allosteric drugs combine the pharmacological merits of covalent drugs with the additional benefit of the higher specificity of allosteric drugs. In a recent promising step in therapeutic drug development, allosteric, disulfide-tethered fragments successfully modulated the activity of a protein kinase and K-Ras.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702;
| | | |
Collapse
|
15
|
Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, Cho YJ, Kern D. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. eLife 2014; 3:e02667. [PMID: 24867643 PMCID: PMC4032492 DOI: 10.7554/elife.02667] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We elucidate the molecular mechanisms of two distinct activation strategies (autophosphorylation and TPX2-mediated activation) in human Aurora A kinase. Classic allosteric activation is in play where either activation loop phosphorylation or TPX2 binding to a conserved hydrophobic groove shifts the equilibrium far towards the active conformation. We resolve the controversy about the mechanism of autophosphorylation by demonstrating intermolecular autophosphorylation in a long-lived dimer by combining X-ray crystallography with functional assays. We then address the allosteric activation by TPX2 through activity assays and the crystal structure of a domain-swapped dimer of dephosphorylated Aurora A and TPX21−25. While autophosphorylation is the key regulatory mechanism in the centrosomes in the early stages of mitosis, allosteric activation by TPX2 of dephosphorylated Aurora A could be at play in the spindle microtubules. The mechanistic insights into autophosphorylation and allosteric activation by TPX2 binding proposed here, may have implications for understanding regulation of other protein kinases. DOI:http://dx.doi.org/10.7554/eLife.02667.001 The kinase, Aurora A, is a human protein that is needed for cells to divide normally. Kinases are enzymes that control other proteins by adding phosphate groups to these proteins; however, like other kinases, Aurora A must first be activated or ‘switched on’ before it can do this. Aurora A kinase can be switched on in two ways: by having a phosphate group added to its ‘activation loop’; or by binding to another protein called TPX2. Also like other kinases, Aurora A can self-activate, but the details of this process are not understood. Does a single Aurora A kinase add a phosphate group to its own activation loop, or does one Aurora A kinase activate a second? Furthermore, it is not clear how binding to TPX2 can activate an Aurora A kinase without adding a phosphate group to the activation loop. Zorba, Buosi et al. now show that Aurora A kinases that have been activated in different ways—via the addition of a phosphate group or binding to TPX2—are equally good at adding phosphate groups to other proteins. Zorba, Buosi et al. also worked out the three-dimensional shapes of the kinases activated in these two ways—since many proteins change shape when they are switched on—and found that they were also the same. Finally, it was shown that self-activation involves two Aurora A kinases binding to each other, and one kinase adding a phosphate group to the other, rather than a single kinase adding a phosphate group to itself. Since other protein kinases can be activated in similar ways to Aurora A, the findings of Zorba, Buosi et al. might also help us to understand how other protein kinases can be switched ‘on’ or ‘off’. And, as mutations in Aurora A have been linked to the development of cancer, uncovering how this kinase is controlled could help efforts to design new drugs to treat this disease. DOI:http://dx.doi.org/10.7554/eLife.02667.002
Collapse
Affiliation(s)
- Adelajda Zorba
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Vanessa Buosi
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Steffen Kutter
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Nadja Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Francesco Pontiggia
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Young-Jin Cho
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| | - Dorothee Kern
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
| |
Collapse
|
16
|
Noujaim M, Bechstedt S, Wieczorek M, Brouhard GJ. Microtubules accelerate the kinase activity of Aurora-B by a reduction in dimensionality. PLoS One 2014; 9:e86786. [PMID: 24498282 PMCID: PMC3912212 DOI: 10.1371/journal.pone.0086786] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
Aurora-B is the kinase subunit of the Chromosome Passenger Complex (CPC), a key regulator of mitotic progression that corrects improper kinetochore attachments and establishes the spindle midzone. Recent work has demonstrated that the CPC is a microtubule-associated protein complex and that microtubules are able to activate the CPC by contributing to Aurora-B auto-phosphorylation in trans. Aurora-B activation is thought to occur when the local concentration of Aurora-B is high, as occurs when Aurora-B is enriched at centromeres. It is not clear, however, whether distributed binding to large structures such as microtubules would increase the local concentration of Aurora-B. Here we show that microtubules accelerate the kinase activity of Aurora-B by a "reduction in dimensionality." We find that microtubules increase the kinase activity of Aurora-B toward microtubule-associated substrates while reducing the phosphorylation levels of substrates not associated to microtubules. Using the single molecule assay for microtubule-associated proteins, we show that a minimal CPC construct binds to microtubules and diffuses in a one-dimensional (1D) random walk. The binding of Aurora-B to microtubules is salt-dependent and requires the C-terminal tails of tubulin, indicating that the interaction is electrostatic. We show that the rate of Aurora-B auto-activation is faster with increasing concentrations of microtubules. Finally, we demonstrate that microtubules lose their ability to stimulate Aurora-B when their C-terminal tails are removed by proteolysis. We propose a model in which microtubules act as scaffolds for the enzymatic activity of Aurora-B. The scaffolding activity of microtubules enables rapid Aurora-B activation and efficient phosphorylation of microtubule-associated substrates.
Collapse
Affiliation(s)
- Michael Noujaim
- Department of Biology, McGill University, Montréal, Québec, Canada
| | | | - Michal Wieczorek
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Gary J. Brouhard
- Department of Biology, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
17
|
Cho YS, Yoo J, Park S, Cho HS. The structures of the kinase domain and UBA domain of MPK38 suggest the activation mechanism for kinase activity. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:514-21. [PMID: 24531485 PMCID: PMC3940201 DOI: 10.1107/s1399004713027806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
Abstract
Murine protein serine/threonine kinase 38 (MPK38) is the murine orthologue of human maternal embryonic leucine-zipper kinase (MELK), which belongs to the SNF1/AMPK family. MELK is considered to be a promising drug target for anticancer therapy because overexpression and hyperactivation of MELK is correlated with several human cancers. Activation of MPK38 requires the extended sequence (ExS) containing the ubiquitin-associated (UBA) linker and UBA domain and phosphorylation of the activation loop. However, the activation mechanism of MPK38 is unknown. This paper reports the crystal structure of MPK38 (T167E), which mimics a phosphorylated state of the activation loop, in complex with AMP-PNP. In the MPK38 structure, the UBA linker forces an inward movement of the αC helix. Phosphorylation of the activation loop then induces movement of the activation loop towards the C-lobe and results in interlobar cleft closure. These processes generate a fully active state of MPK38. This structure suggests that MPK38 has a similar molecular mechanism regulating activation as in other kinases of the SNF1/AMPK family.
Collapse
Affiliation(s)
- Yong-Soon Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jiho Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Soomin Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
18
|
Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 2013; 123:25-42. [PMID: 24091645 PMCID: PMC3967068 DOI: 10.1007/s00412-013-0437-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 12/11/2022]
Abstract
The ultimate goal of cell division is equal transmission of the duplicated genome to two new daughter cells. Multiple surveillance systems exist that monitor proper execution of the cell division program and as such ensure stability of our genome. One widely studied protein complex essential for proper chromosome segregation and execution of cytoplasmic division (cytokinesis) is the chromosomal passenger complex (CPC). This highly conserved complex consists of Borealin, Survivin, INCENP, and Aurora B kinase, and has a dynamic localization pattern during mitosis and cytokinesis. Not surprisingly, it also performs various functions during these phases of the cell cycle. In this review, we will give an overview of the latest insights into the regulation of CPC localization and discuss if and how specific localization impacts its diverse functions in the dividing cell.
Collapse
|
19
|
Mechanistic and functional diversity in the mechanosensory kinases of the titin-like family. Biochem Soc Trans 2013; 41:1066-71. [DOI: 10.1042/bst20130085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The giant cytoskeletal kinases of the titin-like family are emerging as key mediators of stretch-sensing in muscle. It is thought that their elastic conformational deformation during muscle function regulates both their catalysis and the recruitment of regulatory proteins to signalosomes that assemble in their vicinity. In the present article, we discuss the speciation of mechanosensory mechanisms in titin-like kinases, their scaffolding properties and the kinase/pseudokinase domain variations that define a rich functional diversity across the family.
Collapse
|
20
|
Bayliss R, Fry A, Haq T, Yeoh S. On the molecular mechanisms of mitotic kinase activation. Open Biol 2013; 2:120136. [PMID: 23226601 PMCID: PMC3513839 DOI: 10.1098/rsob.120136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022] Open
Abstract
During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein–protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Biochemistry, Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
21
|
Gold MG, Fowler DM, Means CK, Pawson CT, Stephany JJ, Langeberg LK, Fields S, Scott JD. Engineering A-kinase anchoring protein (AKAP)-selective regulatory subunits of protein kinase A (PKA) through structure-based phage selection. J Biol Chem 2013; 288:17111-21. [PMID: 23625929 PMCID: PMC3682517 DOI: 10.1074/jbc.m112.447326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.
Collapse
Affiliation(s)
- Matthew G Gold
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1302-21. [PMID: 23524293 DOI: 10.1016/j.bbapap.2013.03.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- José M Arencibia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
23
|
Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase. Proc Natl Acad Sci U S A 2012; 109:13608-13. [PMID: 22869697 DOI: 10.1073/pnas.1200697109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Titin-like kinases are an important class of cytoskeletal kinases that intervene in the response of muscle to mechanical stimulation, being central to myofibril homeostasis and development. These kinases exist in autoinhibited states and, allegedly, become activated during muscle activity by the elastic unfolding of a C-terminal regulatory segment (CRD). However, this mechano-activation model remains controversial. Here we explore the structural, catalytic, and tensile properties of the multidomain kinase region of Caenorhabditis elegans twitchin (Fn(31)-Nlinker-kinase-CRD-Ig(26)) using X-ray crystallography, small angle X-ray scattering, molecular dynamics simulations, and catalytic assays. This work uncovers the existence of an inhibitory segment that flanks the kinase N-terminally (N-linker) and that acts synergistically with the canonical CRD tail to silence catalysis. The N-linker region has high mechanical lability and acts as the primary stretch-sensor in twitchin kinase, while the CRD is poorly responsive to pulling forces. This poor response suggests that the CRD is not a generic mechanosensor in this kinase family. Instead, the CRD is shown here to be permissive to catalysis and might protect the kinase active site against mechanical damage. Thus, we put forward a regulatory model where kinase inhibition results from the combined action of both N- and C-terminal tails, but only the N-terminal extension undergoes mechanical removal, thereby affording partial activation. Further, we compare invertebrate and vertebrate titin-like kinases and identify variations in the regulatory segments that suggest a mechanical speciation of these kinase classes.
Collapse
|
24
|
Foster JD, Yang JW, Moritz AE, Challasivakanaka S, Smith MA, Holy M, Wilebski K, Sitte HH, Vaughan RA. Dopamine transporter phosphorylation site threonine 53 regulates substrate reuptake and amphetamine-stimulated efflux. J Biol Chem 2012; 287:29702-12. [PMID: 22722938 PMCID: PMC3436161 DOI: 10.1074/jbc.m112.367706] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the central nervous system, levels of extraneuronal dopamine are controlled primarily by the action of the dopamine transporter (DAT). Multiple signaling pathways regulate transport activity, substrate efflux, and other DAT functions through currently unknown mechanisms. DAT is phosphorylated by protein kinase C within a serine cluster at the distal end of the cytoplasmic N terminus, whereas recent work in model cells revealed proline-directed phosphorylation of rat DAT at membrane-proximal residue Thr(53). In this report, we use mass spectrometry and a newly developed phospho-specific antibody to positively identify DAT phosphorylation at Thr(53) in rodent striatal tissue and heterologous expression systems. Basal phosphorylation of Thr(53) occurred with a stoichiometry of ~50% and was strongly increased by phorbol esters and protein phosphatase inhibitors, demonstrating modulation of the site by signaling pathways that impact DAT activity. Mutations of Thr(53) to prevent phosphorylation led to reduced dopamine transport V(max) and total apparent loss of amphetamine-stimulated substrate efflux, supporting a major role for this residue in the transport kinetic mechanism.
Collapse
Affiliation(s)
- James D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
A-kinase anchoring proteins (AKAPs) create compartmentalized environment inside the cell to bring various signaling molecules to their targets. In the heart, a slowly activating potassium channel (IKs) important for cardiac repolarization is tightly regulated by the sympathetic nervous system in an AKAP-dependent manner. IKs channel forms a macromolecular complex with AKAP9 and other enzymes, such as protein kinase A, phosphatase, adenylyl cyclase, and phosphodiesterase, all of which are responsible to control the phosphorylation state of the channel. Such a complex thus ensures the IKs channel to be regulated properly to maintain the normal cardiac rhythm. Disruptions of various elements of the complex have been found to cause severe pathological consequences, including the long QT syndrome.
Collapse
|
26
|
Xu Y, Liu Q, Li X, Wesdemiotis C, Pang Y. A zwitterionic squaraine dye with a large Stokes shift for in vivo and site-selective protein sensing. Chem Commun (Camb) 2012; 48:11313-5. [DOI: 10.1039/c2cc36285f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Seco J, Ferrer-Costa C, Campanera JM, Soliva R, Barril X. Allosteric regulation of PKCθ: understanding multistep phosphorylation and priming by ligands in AGC kinases. Proteins 2011; 80:269-80. [PMID: 22072623 DOI: 10.1002/prot.23205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/12/2011] [Accepted: 09/18/2011] [Indexed: 01/13/2023]
Abstract
Protein kinases play critical roles in cellular activation and differentiation, and are involved in numerous pathophysiological processes. As a critical component of the regulatory circuitry of the cell, the kinase domain has the ability to integrate multiple signals, yielding a predetermined output. In PKC and other protein kinases of the AGC family, several phosphorylation sites control the activity, but these are in turn influenced by the presence of ligands in the binding pocket, which promotes phosphorylation. Here, we take PKC-theta as a prototypical member of the family and use molecular dynamics simulations to investigate the cross-talk that exists between regulatory and functional sites. We first show how the apo-unphosphorylated form of the kinase is populating a conformational space in which access to the ATP binding site and to the activation loop (AL) are simultaneously hindered. This could explain why the inactive state is not only catalytically incompetent but also resistant to activation. AL phosphorylation induces ATP binding site opening, which can then readily accept the cofactor. But the signal transmission mechanism works both ways, and if ligand binding to the unphosphorylated form occurs first, the AL is de-protected and becomes exposed to phosphorylation, thus providing an explanation for the paradoxical activation of PKCs by their inhibitors.
Collapse
Affiliation(s)
- Jesus Seco
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.
Collapse
Affiliation(s)
- Bing Su
- Department of Immunobiology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
29
|
Yunta C, Martínez-Ripoll M, Zhu JK, Albert A. The structure of Arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress. J Mol Biol 2011; 414:135-44. [PMID: 21983340 DOI: 10.1016/j.jmb.2011.09.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/16/2022]
Abstract
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.
Collapse
Affiliation(s)
- Cristina Yunta
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid E-28006, Spain
| | | | | | | |
Collapse
|
30
|
Wilson CGM, Arkin MR. Small-molecule inhibitors of IL-2/IL-2R: lessons learned and applied. Curr Top Microbiol Immunol 2011; 348:25-59. [PMID: 20703966 DOI: 10.1007/82_2010_93] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The IL-2:IL-2R protein-protein interaction is of central importance to both healthy and diseased immune responses, and is one of the earliest examples of successful small-molecule inhibitor discovery against this target class. Drug-like inhibitors of IL-2 have been identified through a combination of fragment discovery, structure-based design, and medicinal chemistry; this discovery approach illustrates the importance of using a diverse range of complementary screening methods and analytical tools to achieve a comprehensive understanding of molecular recognition. The IL-2 story also provides insight into the dynamic nature of protein-protein interaction surfaces, their potential druggability, and the physical and chemical properties of effective small-molecule ligands. These lessons, from IL-2 and similar discovery programs, underscore an increasing awareness of the principles governing the development of drugs for protein-protein interactions.
Collapse
Affiliation(s)
- C G M Wilson
- Small Molecule Discovery Center, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
31
|
Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc Natl Acad Sci U S A 2011; 108:6056-61. [PMID: 21430264 DOI: 10.1073/pnas.1102376108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is significant interest in identifying and characterizing allosteric sites in enzymes such as protein kinases both for understanding allosteric mechanisms as well as for drug discovery. Here, we apply a site-directed technology, disulfide trapping, to interrogate structurally and functionally how an allosteric site on the Ser/Thr kinase, 3-phosphoinositide-dependent kinase 1 (PDK1)--the PDK1-interacting-fragment (PIF) pocket--is engaged by an activating peptide motif on downstream substrate kinases (PIFtides) and by small molecule fragments. By monitoring pairwise disulfide conjugation between PIFtide and PDK1 cysteine mutants, we defined the PIFtide binding orientation in the PIF pocket of PDK1 and assessed subtle relationships between PIFtide positioning and kinase activation. We also discovered a variety of small molecule fragment disulfides (< 300 Da) that could either activate or inhibit PDK1 by conjugation to the PIF pocket, thus displaying greater functional diversity than is displayed by PIFtides conjugated to the same sites. Biochemical data and three crystal structures provided insight into the mechanism of action of the best fragment activators and inhibitors. These studies show that disulfide trapping is useful for characterizing allosteric sites on kinases and that a single allosteric site on a protein kinase can be exploited for both activation and inhibition by small molecules.
Collapse
|
32
|
Patel RY, Doerksen RJ. Protein kinase-inhibitor database: structural variability of and inhibitor interactions with the protein kinase P-loop. J Proteome Res 2011; 9:4433-42. [PMID: 20681595 DOI: 10.1021/pr100662s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structure-based drug design of protein-kinase inhibitors has been facilitated by availability of an enormous number of structures in the Protein Databank (PDB), systematic analyses of which can provide insight into the factors that govern ligand-protein kinase interactions and into the conformational variability of the protein kinases. In this study, a nonredundant database containing 755 unique, curated, and annotated PDB protein kinase-inhibitor complexes (each consisting of a single protein kinase chain, a ligand, and water molecules around the ligand) was created. With this dataset, analyses were performed of protein conformational variability and interactions of ligands with 11 P-loop residues. Analysis of ligand-protein interactions included ligand atom preference, ligand-protein hydrogen bonds, and the number and position of crystallographic water molecules around important P-loop residues. Analysis of variability in the conformation of the P-loop considered backbone and side-chain dihedral angles, and solvent accessible surface area (SASA). A distorted conformation of the P-loop was observed for some of the protein kinase structures. Lower SASA was observed for the hydrophobic residue in beta1 of several members of the AGC family of protein kinases. Our systematic studies were performed amino acid-by-amino acid, which is unusual for analyses of protein kinase-inhibitor complexes.
Collapse
Affiliation(s)
- Ronak Y Patel
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, USA
| | | |
Collapse
|
33
|
Short B. PP6 puts the brakes on spindle assembly. J Biophys Biochem Cytol 2010. [PMCID: PMC3010070 DOI: 10.1083/jcb.1917if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phosphatase limits Aurora A's kinase activity during mitosis.
Collapse
|
34
|
Zeng K, Bastos RN, Barr FA, Gruneberg U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol 2010; 191:1315-32. [PMID: 21187329 PMCID: PMC3010072 DOI: 10.1083/jcb.201008106] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023] Open
Abstract
Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A-TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A-TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.
Collapse
Affiliation(s)
- Kang Zeng
- University of Liverpool, Cancer Research Centre, Liverpool L3 9TA, England, UK
| | | | | | | |
Collapse
|
35
|
Dong H, Shim KN, Li JMJ, Estrema C, Ornelas TA, Nguyen F, Liu S, Ramamoorthy SL, Ho S, Carethers JM, Chow JYC. Molecular mechanisms underlying Ca2+-mediated motility of human pancreatic duct cells. Am J Physiol Cell Physiol 2010; 299:C1493-503. [PMID: 20861471 DOI: 10.1152/ajpcell.00242.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We recently reported that transforming growth factor-β (TGF-β) induces an increase in cytosolic Ca(2+) ([Ca(2+)](cyt)) in pancreatic cancer cells, but the mechanisms by which TGF-β mediates [Ca(2+)](cyt) homeostasis in these cells are currently unknown. Transient receptor potential (TRP) channels and Na(+)/Ca(2+) exchangers (NCX) are plasma membrane proteins that play prominent roles in controlling [Ca(2+)](cyt) homeostasis in normal mammalian cells, but little is known regarding their roles in the regulation of [Ca(2+)](cyt) in pancreatic cancer cells and pancreatic cancer development. Expression and function of NCX1 and TRPC1 proteins were characterized in BxPc3 pancreatic cancer cells. TGF-β induced both intracellular Ca(2+) release and extracellular Ca(2+) entry in these cells; however, 2-aminoethoxydiphenyl borate [2-APB; a blocker for both inositol 1,4,5-trisphosphate (IP(3)) receptor and TRPC], LaCl(3) (a selective TRPC blocker), or KB-R7943 (a selective inhibitor for the Ca(2+) entry mode of NCX) markedly inhibited the TGF-β-induced increase in [Ca(2+)](cyt). 2-APB or KB-R7943 treatment was able to dose-dependently reverse membrane translocation of PKCα induced by TGF-β. Transfection with small interfering RNA (siRNA) against NCX1 almost completely abolished NCX1 expression in BxPc3 cells and also inhibited PKCα serine phosphorylation induced by TGF-β. Knockdown of NCX1 or TRPC1 by specific siRNA transfection reversed TGF-β-induced pancreatic cancer cell motility. Therefore, TGF-β induces Ca(2+) entry likely via TRPC1 and NCX1 and raises [Ca(2+)](cyt) in pancreatic cancer cells, which is essential for PKCα activation and subsequent tumor cell invasion. Our data suggest that TRPC1 and NCX1 may be among the potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Hui Dong
- Division of Gastroenterology, Department of Medicine, University of California, San Diego CA 92093-0063, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu Y, Li Z, Malkovskiy A, Sun S, Pang Y. Aggregation Control of Squaraines and Their Use as Near-Infrared Fluorescent Sensors for Protein. J Phys Chem B 2010; 114:8574-80. [DOI: 10.1021/jp1029536] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongqian Xu
- Department of Chemistry & Maurice Morton Institute of Polymer Science and Department of Polymer Science, The University of Akron, Akron, Ohio 44325, and State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, P. R. China
| | - Zhiyong Li
- Department of Chemistry & Maurice Morton Institute of Polymer Science and Department of Polymer Science, The University of Akron, Akron, Ohio 44325, and State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, P. R. China
| | - Andrey Malkovskiy
- Department of Chemistry & Maurice Morton Institute of Polymer Science and Department of Polymer Science, The University of Akron, Akron, Ohio 44325, and State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, P. R. China
| | - Shiguo Sun
- Department of Chemistry & Maurice Morton Institute of Polymer Science and Department of Polymer Science, The University of Akron, Akron, Ohio 44325, and State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, P. R. China
| | - Yi Pang
- Department of Chemistry & Maurice Morton Institute of Polymer Science and Department of Polymer Science, The University of Akron, Akron, Ohio 44325, and State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, P. R. China
| |
Collapse
|
37
|
Takimura T, Kamata K, Fukasawa K, Ohsawa H, Komatani H, Yoshizumi T, Takahashi I, Kotani H, Iwasawa Y. Structures of the PKC-iota kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533-551 in the C-terminal tail and their roles in ATP binding. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:577-83. [PMID: 20445233 DOI: 10.1107/s0907444910005639] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/10/2010] [Indexed: 11/11/2022]
Abstract
Protein kinase C (PKC) plays an essential role in a wide range of cellular functions. Although crystal structures of the PKC-theta, PKC-iota and PKC-betaII kinase domains have previously been determined in complexes with small-molecule inhibitors, no structure of a PKC-substrate complex has been determined. In the previously determined PKC-iota complex, residues 533-551 in the C-terminal tail were disordered. In the present study, crystal structures of the PKC-iota kinase domain in its ATP-bound and apo forms were determined at 2.1 and 2.0 A resolution, respectively. In the ATP complex, the electron density of all of the C-terminal tail residues was well defined. In the structure, the side chain of Phe543 protrudes into the ATP-binding pocket to make van der Waals interactions with the adenine moiety of ATP; this is also observed in other AGC kinase structures such as binary and ternary substrate complexes of PKA and AKT. In addition to this interaction, the newly defined residues around the turn motif make multiple hydrogen bonds to glycine-rich-loop residues. These interactions reduce the flexibility of the glycine-rich loop, which is organized for ATP binding, and the resulting structure promotes an ATP conformation that is suitable for the subsequent phosphoryl transfer. In the case of the apo form, the structure and interaction mode of the C-terminal tail of PKC-iota are essentially identical to those of the ATP complex. These results indicate that the protein structure is pre-organized before substrate binding to PKC-iota, which is different from the case of the prototypical AGC-branch kinase PKA.
Collapse
Affiliation(s)
- Tetsuo Takimura
- Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co. Ltd, Okubo-3, Tsukuba, 300-2611 Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Richards MW, O'Regan L, Mas-Droux C, Blot JM, Cheung J, Hoelder S, Fry AM, Bayliss R. An autoinhibitory tyrosine motif in the cell-cycle-regulated Nek7 kinase is released through binding of Nek9. Mol Cell 2009; 36:560-70. [PMID: 19941817 PMCID: PMC2807034 DOI: 10.1016/j.molcel.2009.09.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/24/2009] [Accepted: 09/04/2009] [Indexed: 02/06/2023]
Abstract
Mitosis is controlled by multiple protein kinases, many of which are abnormally expressed in human cancers. Nek2, Nek6, Nek7, and Nek9 are NIMA-related kinases essential for proper mitotic progression. We determined the atomic structure of Nek7 and discovered an autoinhibited conformation that suggests a regulatory mechanism not previously described in kinases. Additionally, Nek2 adopts the same conformation when bound to a drug-like molecule. In both structures, a tyrosine side chain points into the active site, interacts with the activation loop, and blocks the alphaC helix. Tyrosine mutants of Nek7 and the related kinase Nek6 are constitutively active. The activity of Nek6 and Nek7, but not the tyrosine mutant, is increased by interaction with the Nek9 noncatalytic C-terminal domain, suggesting a mechanism in which the tyrosine is released from its autoinhibitory position. The autoinhibitory conformation is common to three Neks and provides a potential target for selective kinase inhibitors.
Collapse
Affiliation(s)
- Mark W. Richards
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Laura O'Regan
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Corine Mas-Droux
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Joelle M.Y. Blot
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Jack Cheung
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Swen Hoelder
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Richard Bayliss
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
39
|
Sunami T, Byrne N, Diehl RE, Funabashi K, Hall DL, Ikuta M, Patel SB, Shipman JM, Smith RF, Takahashi I, Zugay-Murphy J, Iwasawa Y, Lumb KJ, Munshi SK, Sharma S. Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation. J Biol Chem 2009; 285:4587-94. [PMID: 19864428 DOI: 10.1074/jbc.m109.040667] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3'-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3'-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.
Collapse
Affiliation(s)
- Tomoko Sunami
- Department of Chemistry, Tsukuba Research Institute, Banyu Pharmaceutical Company, Limited, Tsukuba, Ibaraki, 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gibson TJ. Cell regulation: determined to signal discrete cooperation. Trends Biochem Sci 2009; 34:471-82. [PMID: 19744855 DOI: 10.1016/j.tibs.2009.06.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 11/25/2022]
Abstract
Do kinases cascade? How well is cell regulation understood? What are the best ways to model regulatory systems? Attempts to answer such questions can have bearings on the way in which research is conducted. Fortunately there are recurring themes in regulatory processes from many different cellular contexts, which might provide useful guidance. Three principles seem to be almost universal: regulatory interactions are cooperative; regulatory decisions are made by large dynamic protein complexes; and regulation is intricately networked. A fourth principle, although not universal, is remarkably common: regulatory proteins are actively placed where they are needed. Here, I argue that the true nature of cell signalling and our perceptions of it are in a state of discord. This raises the question: Are our misconceptions detrimental to progress in biomedical science?
Collapse
Affiliation(s)
- Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
41
|
Elkins JM, Amos A, Niesen FH, Pike ACW, Fedorov O, Knapp S. Structure of dystrophia myotonica protein kinase. Protein Sci 2009; 18:782-91. [PMID: 19309729 DOI: 10.1002/pro.82] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled-coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM-8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled-coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully-ordered and correctly positioned alphaC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C-terminal extension of the kinase domain is bound to the N-terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C-terminal extension compared to the closely related Rho-associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM-8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Pu KY, Cai L, Liu B. Design and Synthesis of Charge-Transfer-Based Conjugated Polyelectrolytes as Multicolor Light-Up Probes. Macromolecules 2009. [DOI: 10.1021/ma9010389] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kan-Yi Pu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117576
| | - Liping Cai
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117576
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, National University of Singapore, Singapore 117576
| |
Collapse
|
43
|
Abstract
Several families of protein kinases orchestrate the complex events that drive the cell cycle, and their activity is frequently deregulated in hyperproliferative cancer cells. Although several molecules that inhibit cell cycle kinases have been developed and clinically screened as potential anticancer agents, none of these has been approved for commercial use and an effective strategy to specifically control malignant cell proliferation has yet to be established. However, recent genetic and biochemical studies have provided information about the requirement for certain cell cycle kinases by specific tumours and specialized tissue types. Here, we discuss the potential and limitations of established cell cycle kinases as targets in anticancer drug discovery as well as novel strategies for the design of new agents.
Collapse
Affiliation(s)
- Silvia Lapenna
- Oncology Research Centre of Mercogliano, Mercogliano, Avellino, Italy.
| | | |
Collapse
|
44
|
Huang CC, Yoshino-Koh K, Tesmer JJG. A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases. J Biol Chem 2009; 284:17206-17215. [PMID: 19364770 PMCID: PMC2719358 DOI: 10.1074/jbc.m809544200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/10/2009] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated GPCRs and initiate their desensitization. Many prior studies suggest that activated GPCRs dock to an allosteric site on the GRKs and thereby stimulate kinase activity. The extreme N-terminal region of GRKs is clearly involved in this process, but its role is not understood. Using our recent structure of bovine GRK1 as a guide, we generated mutants of solvent-exposed residues in the GRK1 kinase domain that are conserved among GRKs but not in the extended protein kinase A, G, and C family and evaluated their catalytic activity. Mutation of select residues in strands beta1 and beta3 of the kinase small lobe, alphaD of the kinase large lobe, and the protein kinase A, G, and C kinase C-tail greatly impaired receptor phosphorylation. The most dramatic effect was observed for mutation of an invariant arginine on the beta1-strand (approximately 1000-fold decrease in k(cat)/K(m)). These residues form a continuous surface that is uniquely available in GRKs for protein-protein interactions. Surprisingly, these mutants, as well as a 19-amino acid N-terminal truncation of GRK1, also show decreased catalytic efficiency for peptide substrates, although to a lesser extent than for receptor phosphorylation. Our data suggest that the N-terminal region and the newly identified surface interact and stabilize the closed, active conformation of the kinase domain. Receptor binding is proposed to promote this interaction, thereby enhancing GRK activity.
Collapse
Affiliation(s)
- Chih-Chin Huang
- From the Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - Kae Yoshino-Koh
- From the Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216
| | - John J G Tesmer
- From the Life Sciences Institute, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-2216.
| |
Collapse
|
45
|
Zeqiraj E, Filippi BM, Goldie S, Navratilova I, Boudeau J, Deak M, Alessi DR, van Aalten DMF. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. PLoS Biol 2009; 7:e1000126. [PMID: 19513107 PMCID: PMC2686265 DOI: 10.1371/journal.pbio.1000126] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/29/2009] [Indexed: 01/27/2023] Open
Abstract
Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADalpha in complex with MO25alpha. The structure reveals an intricate web of interactions between STRADalpha and MO25alpha involving the alphaC-helix of STRADalpha, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADalpha binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADalpha for MO25alpha, and conversely, binding of MO25alpha promotes interaction of STRADalpha with ATP. Mutagenesis studies reveal that association of STRADalpha with either ATP or MO25alpha is essential for LKB1 activation. We conclude that ATP and MO25alpha cooperate to maintain STRADalpha in an "active" closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADalpha that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADalpha and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADalpha to activate LKB1 is dependent on a closed "active" conformation, aided by ATP and MO25alpha binding. Thus, the function of STRADalpha is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.
Collapse
Affiliation(s)
- Elton Zeqiraj
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Beatrice Maria Filippi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Simon Goldie
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Iva Navratilova
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Jérôme Boudeau
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Maria Deak
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland
- * E-mail:
| |
Collapse
|
46
|
Arkin MR, Whitty A. The road less traveled: modulating signal transduction enzymes by inhibiting their protein-protein interactions. Curr Opin Chem Biol 2009; 13:284-90. [PMID: 19553156 DOI: 10.1016/j.cbpa.2009.05.125] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 05/13/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
The biological functions of intracellular signaling enzymes typically depend on multiple protein-protein interactions (PPI) with substrates, scaffolding proteins, and other cytoplasmic molecules. Blocking these interactions provides an alternative means to modulate signaling activity without fully ablating the catalytic activity of the target. Several recent reports describe small-molecule antagonists that target PPI sites on signaling enzymes. These findings suggest that such sites may often be druggable. However, the hypothesis that targeting such sites might confer on the resulting inhibitors improved properties of efficacy and/or tolerability, while appealing, remains largely untested.
Collapse
Affiliation(s)
- Michelle R Arkin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, United States.
| | | |
Collapse
|
47
|
3-D structure and dynamics of protein kinase B-new mechanism for the allosteric regulation of an AGC kinase. J Chem Biol 2009; 2:11-25. [PMID: 19568789 DOI: 10.1007/s12154-009-0016-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 12/11/2022] Open
Abstract
New developments regarding the structure and in vivo dynamics of protein kinase B (PKB/Akt) have been recently exposed. Here, we specifically review how the use of multi-disciplinary approaches has resulted in reaching the recent progress made to relate the quaternary structure of PKB to its in vivo function. Using X-ray crystallography, the structure of PKB pleckstrin homology (PH) and kinase domains was determined separately. The molecular mechanisms involved in (a) the binding of the phosphoinositides to the PH domain and (b) the activation of the kinase with the rearrangement of the catalytic site and substrate binding were determined. In vitro, nuclear magnetic resonance and circular dychroism studies gave complementary information on the interaction of the PH domain with the phosphoinositides. However, the molecular nature and the function of the interactions between the PKB domains could not be deduced from the X-ray data since the full-length PKB has not been crystallised. In vitro, dynamic information on the inter-domain conformational changes related to PKB activation states emerged with the use of tandem mass spectrometry. Cell imaging and Förster resonance energy transfer provided in vivo dynamics. Molecular modelling and dynamic simulations in conjunction with mutagenesis and biochemical analysis were used to investigate the complex interactions between the PKB domains in vivo and understand at the molecular level how it linked to its activity. The compilation of the information obtained on the 3-D structure and the spatiotemporal dynamics of this widely studied oncogene could be applied to the study of other proteins. This inter-disciplinary approach led to a more profound understanding of PKB complex activation mechanism in vivo that will shed light onto new ideas and possibilities for modulating its activity.
Collapse
|
48
|
Reyland ME. Protein kinase C isoforms: Multi-functional regulators of cell life and death. Front Biosci (Landmark Ed) 2009; 14:2386-99. [PMID: 19273207 DOI: 10.2741/3385] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family consists of 10 related serine/threonine protein kinases some of which are critical regulators of cell proliferation, survival and cell death. While early studies relied on broad spectrum chemical activators or inhibitors of this family, the generation of isoform specific tools has greatly facilitated our understanding of the contribution of specific PKC isoforms to cell proliferation and apoptosis. These studies suggest that PKC-alpha, PKC-epsilon, and the atypical PKC's, PKC-lambda/iota and PKC-zeta, preferentially function to promote cell proliferation and survival, while the novel isoform, PKC-delta is an important regulator of apoptosis. The essential role of this kinase family in both cell survival and apoptosis suggests that specific isoforms may function as molecular sensors, promoting cell survival or cell death depending on environmental cues. Given their central role in cell and tissue homeostasis, it is not surprising that the expression or activity of some of these kinases is altered in human diseases, particularly cancer.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| |
Collapse
|
49
|
Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun (Camb) 2009:4332-53. [DOI: 10.1039/b904665h] [Citation(s) in RCA: 3109] [Impact Index Per Article: 194.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Insights into the conformational variability and regulation of human Nek2 kinase. J Mol Biol 2008; 386:476-85. [PMID: 19124027 PMCID: PMC2741569 DOI: 10.1016/j.jmb.2008.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022]
Abstract
The Nek family of serine/threonine kinases regulates centrosome and cilia function; in addition, several of its members are potential targets for drug discovery. Nek2 is dimeric, is cell cycle regulated and functions in the separation of centrosomes at G2/M. Here, we report the crystal structures of wild-type human Nek2 kinase domain bound to ADP at 1.55-A resolution and T175A mutant in apo form as well as that bound to a non-hydrolyzable ATP analog. These show that regions of the Nek2 structure around the nucleotide-binding site can adopt several different but well-defined conformations. None of the conformations was the same as that observed for the previously reported inhibitor-bound structure, and the two nucleotides stabilized two conformations. The structures suggest mechanisms for the auto-inhibition of Nek2 that we have tested by mutagenesis. Comparison of the structures with Aurora-A and Cdk2 gives insight into the structural mechanism of Nek2 activation. The production of specific inhibitors that target individual kinases of the human genome is an urgent challenge in drug discovery, and Nek2 is especially promising as a cancer target. We not only identify potential challenges to the task of producing Nek2 inhibitors but also propose that the conformational variability provides an opportunity for the design of Nek2 selective inhibitors because one of the conformations may provide a unique target.
Collapse
|